1
|
Xu Y, Chen Y, Zhang K, Chen M, Duan R, Ren Y. Investigating the effects of TRPV4 and Ca v1.2 channels in 3D culture for promoting the differentiation of BMSCs at various stages. Exp Cell Res 2025; 447:114515. [PMID: 40073957 DOI: 10.1016/j.yexcr.2025.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/24/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.2 calcium ion channels have been reported to play significant roles in the cartilage differentiation of BMSCs. However, there is no study on whether the effects of these two ion channels vary in different periods of BMSC differentiation, especially in 3D culture. In this article, we clarified the role of TRPV4 and Cav1.2 signaling pathways in the early and late stages of BMSCs cartilage differentiation during 3D culture in hyaluronic acid hydrogel with specific mechanical properties. This research can provide new ideas for further accelerating the stimulation of BMSCs cartilage differentiation and formulating cartilage repair strategies in vivo.
Collapse
Affiliation(s)
- Yuanqing Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Yuhang Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Kun Zhang
- Xuzhou Stomatological Hospital, Xuzhou, 221007, China
| | - Minmin Chen
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Rongquan Duan
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China
| | - Ying Ren
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China; Xuzhou Stomatological Hospital, Xuzhou, 221007, China.
| |
Collapse
|
2
|
Eremeev A, Pikina A, Ruchko Y, Bogomazova A. Clinical Potential of Cellular Material Sources in the Generation of iPSC-Based Products for the Regeneration of Articular Cartilage. Int J Mol Sci 2023; 24:14408. [PMID: 37833856 PMCID: PMC10572671 DOI: 10.3390/ijms241914408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory joint diseases, among which osteoarthritis and rheumatoid arthritis are the most common, are characterized by progressive degeneration of the cartilage tissue, resulting in the threat of limited or lost joint functionality in the absence of treatment. Currently, treating these diseases is difficult, and a number of existing treatment and prevention measures are not entirely effective and are complicated by the patients' conditions, the multifactorial nature of the pathology, and an incomplete understanding of the etiology. Cellular technologies based on induced pluripotent stem cells (iPSCs) can provide a vast cellular resource for the production of artificial cartilage tissue for replacement therapy and allow the possibility of a personalized approach. However, the question remains whether a number of etiological abnormalities associated with joint disease are transmitted from the source cell to iPSCs and their chondrocyte derivatives. Some data state that there is no difference between the iPSCs and their derivatives from healthy and sick donors; however, there are other data indicating a dissimilarity. Therefore, this topic requires a thorough study of the differentiation potential of iPSCs and the factors influencing it, the risk factors associated with joint diseases, and a comparative analysis of the characteristics of cells obtained from patients. Together with cultivation optimization methods, these measures can increase the efficiency of obtaining cell technology products and make their wide practical application possible.
Collapse
Affiliation(s)
- Artem Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Arina Pikina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, GSP-1 Leninskie Gory, Moscow 119991, Russia
| | - Yevgeny Ruchko
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia;
| | - Alexandra Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow 119435, Russia; (A.P.); (A.B.)
| |
Collapse
|
3
|
Kim B, Bouklas N, Cohen I, Bonassar LJ. Instabilities induced by mechanical loading determine the viability of chondrocytes grown on porous scaffolds. J Biomech 2023; 152:111591. [PMID: 37088031 DOI: 10.1016/j.jbiomech.2023.111591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Tissue-engineered cartilage constructs have shown promise to treat focal cartilage defects in multiple clinical studies. Notably, products in clinical use or in late-stage clinical trials often utilize porous collagen scaffolds to provide mechanical support and attachment sites for chondrocytes. Under loading, both the local mechanical responses of collagen scaffolds and the corresponding cellular outcomes are poorly understood, despite their wide use. As such, the architecture of collagen scaffolds varies significantly among tissue-engineered cartilage products, but the effects of such architectures on construct mechanics and cell viability are not well understood. This study investigated the effects of local mechanical responses of collagen scaffolds on chondrocyte viability in tissue-engineered cartilage constructs. We utilized fast confocal microscopy combined with a strain mapping technique to analyze the architecture-dependent instabilities under quasi-static loading and subsequent chondrocyte death in honeycomb and sponge scaffolds. More specifically, we compared the isotropic and the orthotropic planes for each type of collagen scaffold. Under compression, both planes exhibited elastic, buckled, and densified deformation modes. In both loading directions, cell death was minimal in regions that experienced elastic deformation mode and a trend of increase in buckled mode. More interestingly, we saw a significant increase in cell death in densified mode. Overall, this study suggests that local instabilities are directly correlated to chondrocyte death in tissue-engineered cartilage constructs, highlighting the importance of understanding the architecture-dependent local mechanical responses under loading.
Collapse
Affiliation(s)
- Byumsu Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
4
|
Kraus SE, Lee E. Engineering approaches to investigate the roles of lymphatics vessels in rheumatoid arthritis. Microcirculation 2023; 30:e12769. [PMID: 35611452 PMCID: PMC9684355 DOI: 10.1111/micc.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common chronic inflammatory joint disorders. While our understanding of the autoimmune processes that lead to synovial degradation has improved, a majority of patients are still resistant to current treatments and require new therapeutics. An understudied and promising area for therapy involves the roles of lymphatic vessels (LVs) in RA progression, which has been observed to have a significant effect on mediating chronic inflammation. RA disease progression has been shown to correlate with dramatic changes in LV structure and interstitial fluid drainage, manifesting in the retention of distinct immune cell phenotypes within the synovium. Advances in dynamic imaging technologies have demonstrated that LVs in RA undergo an initial expansion phase of increased LVs and abnormal contractions followed by a collapsed phase of reduced lymphatic function and immune cell clearance in vivo. However, current animal models of RA fail to decouple biological and biophysical factors that might be responsible for this lymphatic dysfunction in RA, and a few attempted in vitro models of the synovium in RA have not yet included the contributions from the LVs. Various methods of replicating LVs in vitro have been developed to study lymphatic biology, but these have yet not been integrated into the RA context. This review discusses the roles of LVs in RA and the current engineering approaches to improve our understanding of lymphatic pathophysiology in RA.
Collapse
Affiliation(s)
- Samantha E. Kraus
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
López-Marcial GR, Elango K, O’Connell GD. Addition of collagen type I in agarose created a dose-dependent effect on matrix production in engineered cartilage. Regen Biomater 2022; 9:rbac048. [PMID: 35991580 PMCID: PMC9390219 DOI: 10.1093/rb/rbac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 07/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Extracellular-matrix composition impacts mechanical performance in native and engineered tissues. Previous studies showed collagen type I-agarose blends increased cell-matrix interactions and extra-cellular matrix production. However, long-term impacts on protein production and mechanical properties of engineered cartilage are unknown. Our objective was to characterize the effect of collagen type I on matrix production of chondrocytes embedded in agarose hydrogels. We hypothesized that the addition of collagen would improve long-term mechanical properties and matrix production (e.g., collagen and glycosaminoglycans) through increased bioactivity. Agarose hydrogels (2% w/v) were mixed with varying concentrations of collagen type I (0, 2, 5 mg/mL). Juvenile bovine chondrocytes were added to the hydrogels to assess matrix production over 4 weeks through biochemical assays, and mechanical properties were assessed through unconfined compression. We observed a dose-dependent effect on cell bioactivity, where 2 mg/mL of collagen improved bioactivity, but 5 mg/mL had a negative impact on bioactivity. This resulted in higher modulus for scaffolds supplemented with lower collagen concentration as compared to the higher collagen concentration, but not when compared to the control. In conclusion, the addition of collagen to agarose constructs provided a dose-dependent impact on improving glycosaminoglycan production but did not improve collagen production or compressive mechanics.
Collapse
Affiliation(s)
| | - Keerthana Elango
- University of California Department of Mechanical Engineering, , Berkeley
| | - Grace D O’Connell
- University of California Department of Mechanical Engineering, , Berkeley
- University of California Department of Orthopaedic Surgery, , San Francisco
| |
Collapse
|
6
|
Meng Y, Xu J, Ma L, Jin Z, Prakash B, Ma T, Wang W. A review of advances in tribology in 2020–2021. FRICTION 2022; 10:1443-1595. [PMCID: PMC9552739 DOI: 10.1007/s40544-022-0685-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 07/22/2023]
Abstract
Around 1,000 peer-reviewed papers were selected from 3,450 articles published during 2020–2021, and reviewed as the representative advances in tribology research worldwide. The survey highlights the development in lubrication, wear and surface engineering, biotribology, high temperature tribology, and computational tribology, providing a show window of the achievements of recent fundamental and application researches in the field of tribology.
Collapse
Affiliation(s)
- Yonggang Meng
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Jun Xu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Liran Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Zhongmin Jin
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031 China
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT UK
| | - Braham Prakash
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Tianbao Ma
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084 China
| | - Wenzhong Wang
- School of Mechanical and Vehicle Engineering, Beijing Institute of Technology, Beijing, 100082 China
| |
Collapse
|
7
|
Middendorf JM, Diamantides N, Kim B, Dugopolski C, Kennedy S, Blahut E, Cohen I, Bonassar LJ. The influence of chondrocyte source on the manufacturing reproducibility of human tissue engineered cartilage. Acta Biomater 2021; 131:276-285. [PMID: 34245892 DOI: 10.1016/j.actbio.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
Multiple human tissue engineered cartilage constructs are showing promise in advanced clinical trials but identifying important measures of manufacturing reproducibility remains a challenge. FDA guidance suggests measuring multiple mechanical properties prior to implantation, because these properties could affect the long term success of the implant. Additionally, these engineered cartilage mechanics could be sensitive to the autologous chondrocyte source, an inherently irregular manufacturing starting material. If any mechanical properties are sensitive to changes in the autologous chondrocyte source, these properties may need to be measured prior to implantation to ensure manufacturing reproducibility and quality. Therefore, this study identified variability in the compressive, friction, and shear properties of a human tissue engineered cartilage constructs due to the chondrocyte source. Over 200 constructs were created from 7 different chondrocyte sources and tested using 3 distinct mechanical experiments. Under confined compression, the compressive properties (aggregate modulus and hydraulic permeability) varied by orders of magnitude due to the chondrocyte source. The friction coefficient changed by a factor of 5 due to the chondrocyte source and high intrapatient variability was noted. In contrast, the shear modulus was not affected by changes in the chondrocyte source. Finally, measurements on the local compressive and shear mechanics revealed variability in the depth dependent strain fields based on chondrocyte source. Since the chondrocyte source causes large amounts of variability in the compression and local mechanical properties of engineered cartilage, these mechanical properties may be important measures of manufacturing reproducibility. STATEMENT OF SIGNIFICANCE: Although the FDA recommends measuring mechanical properties of human tissue engineered cartilage constructs during manufacturing, the effect of manufacturing variability on construct mechanics is unknown. As one of the first studies to measure multiple mechanical properties on hundreds of human tissue engineered cartilage constructs, we found the compressive properties are most sensitive to changes in the autologous chondrocyte source, an inherently irregular manufacturing variable. This sensitivity to the autologous chondrocyte source reveals the compressive properties should be measured prior to implantation to assess manufacturing reproducibility.
Collapse
Affiliation(s)
- Jill M Middendorf
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, United States
| | - Nicole Diamantides
- Meinig School of Biomedical Engineering Cornell University, Ithaca, NY, United States
| | - Byumsu Kim
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, United States
| | | | | | - Eric Blahut
- Histogenics Corporation, Waltham, MA, United States
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States
| | - Lawrence J Bonassar
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, United States; Meinig School of Biomedical Engineering Cornell University, Ithaca, NY, United States.
| |
Collapse
|
8
|
Stelcer E, Kulcenty K, Rucinski M, Kruszyna-Mochalska M, Skrobala A, Sobecka A, Jopek K, Suchorska WM. Ionizing radiation exposure of stem cell-derived chondrocytes affects their gene and microRNA expression profiles and cytokine production. Sci Rep 2021; 11:7481. [PMID: 33820914 PMCID: PMC8021574 DOI: 10.1038/s41598-021-86230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be differentiated into chondrocyte-like cells. However, implantation of these cells is not without risk given that those transplanted cells may one day undergo ionizing radiation (IR) in patients who develop cancer. We aimed to evaluate the effect of IR on chondrocyte-like cells differentiated from hiPSCs by determining their gene and microRNA expression profile and proteomic analysis. Chondrocyte-like cells differentiated from hiPSCs were placed in a purpose-designed phantom to model laryngeal cancer and irradiated with 1, 2, or 3 Gy. High-throughput analyses were performed to determine the gene and microRNA expression profile based on microarrays. The composition of the medium was also analyzed. The following essential biological processes were activated in these hiPSC-derived chondrocytes after IR: "apoptotic process", "cellular response to DNA damage stimulus", and "regulation of programmed cell death". These findings show the microRNAs that are primarily responsible for controlling the genes of the biological processes described above. We also detected changes in the secretion level of specific cytokines. This study demonstrates that IR activates DNA damage response mechanisms in differentiated cells and that the level of activation is a function of the radiation dose.
Collapse
Affiliation(s)
- Ewelina Stelcer
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland.
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland.
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781, Poznan, Poland.
| | - Katarzyna Kulcenty
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781, Poznan, Poland
| | - Marta Kruszyna-Mochalska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15th, 61-866, Poznan, Poland
| | - Agnieszka Skrobala
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15th, 61-866, Poznan, Poland
| | - Agnieszka Sobecka
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 Street, 60-781, Poznan, Poland
| | - Wiktoria Maria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15th, 61-866, Poznan, Poland
- Radiobiology Lab, Greater Poland Cancer Centre, Garbary 15th Street, 61-866, Poznan, Poland
| |
Collapse
|
9
|
Csobonyeiova M, Polak S, Nicodemou A, Zamborsky R, Danisovic L. iPSCs in Modeling and Therapy of Osteoarthritis. Biomedicines 2021; 9:186. [PMID: 33673154 PMCID: PMC7917981 DOI: 10.3390/biomedicines9020186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) belongs to chronic degenerative disorders and is often a leading cause of disability in elderly patients. Typically, OA is manifested by articular cartilage erosion, pain, stiffness, and crepitus. Currently, the treatment options are limited, relying mostly on pharmacological therapy, which is often related to numerous complications. The proper management of the disease is challenging because of the poor regenerative capacity of articular cartilage. During the last decade, cell-based approaches such as implantation of autologous chondrocytes or mesenchymal stem cells (MSCs) have shown promising results. However, the mentioned techniques face their hurdles (cell harvesting, low proliferation capacity). The invention of induced pluripotent stem cells (iPSCs) has created new opportunities to increase the efficacy of the cartilage healing process. iPSCs may represent an unlimited source of chondrocytes derived from a patient's somatic cells, circumventing ethical and immunological issues. Aside from the regenerative potential of iPSCs, stem cell-derived cartilage tissue models could be a useful tool for studying the pathological process of OA. In our recent article, we reviewed the progress in chondrocyte differentiation techniques, disease modeling, and the current status of iPSC-based regenerative therapy of OA.
Collapse
Affiliation(s)
- Maria Csobonyeiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (S.P.)
| | - Stefan Polak
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia; (M.C.); (S.P.)
| | - Andreas Nicodemou
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Radoslav Zamborsky
- National Institute of Children’s Diseases, Department of Orthopedics, Faculty of Medicine, Comenius University, Limbova 1, 833 40 Bratislava, Slovakia;
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
| |
Collapse
|
10
|
Duan WP, Huang LA, Dong ZQ, Li HQ, Guo L, Song WJ, Yang YF, Li PC, Wei XC. Studies of Articular Cartilage Repair from 2009 to 2018: A Bibliometric Analysis of Articles. Orthop Surg 2021; 13:608-615. [PMID: 33554478 PMCID: PMC7957388 DOI: 10.1111/os.12888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023] Open
Abstract
Objective To perform a bibliometric analysis of research on articular cartilage repair published in Chinese and English over the past decade. Fundamental and clinical research topics of high interest were further comparatively analyzed. Methods Relevant studies published from 1 January 2009 to 31 December 2018 (10 years) were retrieved from the Wanfang database (Chinese articles) and six databases, including MEDLINE, WOS, INSPEC, SCIELO, KJD, and RSCI on the website “Web of Science” (English articles), using key words: “articular cartilage” AND “injury” AND “repair”. The articles were categorized according to research focuses for a comparative analysis between those published in Chinese vs English, and further grouped according to publication date (before and after 2014). A comparative analysis was performed on research focus to characterize the variation in research trends between two 5‐year time spans. Moreover, articles were classified as basic and clinical research studies. Results Overall, 5762 articles were retrieved, including 2748 in domestic Chinese journals and 3014 in international English journals. A total of 4937 articles focused on the top 10 research topics, with the top 3 being stem cells (32.1%), tissue‐engineered scaffold (22.8%), and molecular mechanisms (16.4%). Differences between the numbers of Chinese and English papers were observed for 3 topics: chondrocyte implantation (104 vs 316), osteochondral allograft (27 vs 86), and microfracture (127 vs 293). The following topics gained more research interest in the second 5‐year time span compared with the first: microfracture, osteochondral allograft, osteochondral autograft, stem cells, and tissue‐engineered scaffold. Articles with a focus on three‐dimensional‐printing technology have shown the fastest increase in publication numbers. Among 5613 research articles, basic research studies accounted for the majority (4429), with clinical studies described in only 1184 articles. The top 7 research topics of clinical studies were: chondrocyte implantation (28.7%), stem cells (21.9%), microfracture (19.2%), tissue scaffold (10.6%), osteochondral autograft (10.5%), osteochondral allograft (6.3%), and periosteal transplantation (2.8%). Conclusion Studies focused on stem cells and tissue‐engineered scaffolds led the field of damaged articular cartilage repair. International researchers studied allograft‐related implantation approaches more often than Chinese researchers. Traditional surgical techniques, such as microfracture and osteochondral transplantation, gained high research interest over the past decade.
Collapse
Affiliation(s)
- Wang-Ping Duan
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Ling-An Huang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Zheng-Quan Dong
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Hao-Qian Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Li Guo
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Wen-Jie Song
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Yan-Fei Yang
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Peng-Cui Li
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| | - Xiao-Chun Wei
- Department of Orthopaedics, Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, China
| |
Collapse
|