1
|
Jenkins TL, Venkataraman S, Saleh A, Calve S, Pourdeyhimi B, Little D. Application of Tendon-Derived Matrix and Carbodiimide Crosslinking Matures the Engineered Tendon-Like Proteome on Meltblown Scaffolds. J Tissue Eng Regen Med 2025; 2025:2184723. [PMID: 40224957 PMCID: PMC11985250 DOI: 10.1155/term/2184723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/20/2025] [Indexed: 04/15/2025]
Abstract
Background: Tendon injuries are increasingly common and heal by fibrosis rather than scar-less regeneration. Tissue engineering seeks to improve repair using synthetic polymer scaffolds with biomimetic factors to enhance the regenerative potential. Methods: In this study, we compared three groups, namely, poly(lactic acid) (PLA) meltblown scaffolds, PLA meltblown scaffolds coated with tendon-derived matrix (TDM), and PLA meltblown scaffolds with carbodiimide crosslinked TDM (2.5:1:1 EDC:NHS:COOH ratio) (EDC-TDM) and determined their potential for engineered tendon development. We cultured human adipose stem cells (hASCs) for 28 days on meltblown scaffolds (n = 4-6/group) and measured tensile mechanical function, matrix synthesis, and matrix composition using biochemical assays and proteomics. Results: Coating PLA meltblown scaffolds with TDM improved yield stretch and stress at 28 days compared with PLA. Matrix synthesis rates for TDM or EDC-TDM were similar to PLA. Proteomic analysis revealed that hASCs produced a collagen-rich extracellular matrix, with many tendon-related matrix proteins. Coating scaffolds with TDM led to an increase in collagen type I whereas EDC-TDM scaffolds had an increase in glycoproteins and ECM regulators compared with other groups, consistent with increased maturity of the newly deposited matrix. Conclusions: TDM coating and crosslinking of meltblown scaffolds demonstrated matricellular benefits for the proteome of engineered tendon development but provided fewer clear benefits toward mechanical, biochemical, and rate of matrix accumulation than expected, and that previous work with electrospun scaffolds would suggest. However, electrospun scaffolds have different fiber structure and microarchitecture than meltblown, suggesting that further consideration of these differences and refinement of TDM application methods to meltblown scaffolds is required.
Collapse
Affiliation(s)
- Thomas Lee Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sadhana Venkataraman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Aya Saleh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Sarah Calve
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Mechanical Engineering, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Behnam Pourdeyhimi
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Dianne Little
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Jenkins TL, Sarmiento Huertas PA, Umemori K, Guilak F, Little D. Tendon-derived matrix crosslinking techniques for electrospun multi-layered scaffolds. J Biomed Mater Res A 2023; 111:1875-1887. [PMID: 37489733 PMCID: PMC10592356 DOI: 10.1002/jbm.a.37588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/19/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Tendon tears are common and healing often occurs incompletely and by fibrosis. Tissue engineering seeks to improve repair, and one approach under investigation uses cell-seeded scaffolds containing biomimetic factors. Retention of biomimetic factors on the scaffolds is likely critical to maximize their benefit, while minimizing the risk of adverse effects, and without losing the beneficial effects of the biomimetic factors. The aim of the current study was to evaluate cross-linking methods to enhance the retention of tendon-derived matrix (TDM) on electrospun poly(ε-caprolactone) (PCL) scaffolds. We tested the effects of ultraviolet (UV) or carbodiimide (EDC:NHS:COOH) crosslinking methods to better retain TDM to the scaffolds and stimulate tendon-like matrix synthesis. Initially, we tested various crosslinking configurations of carbodiimide (2.5:1:1, 5:2:1, and 10:4:1 EDC:NHS:COOH ratios) and UV (30 s 1 J/cm2 , 60 s 1 J/cm2 , and 60 s 4 J/cm2 ) on PCL films compared to un-crosslinked TDM. We found that no crosslinking tested retained more TDM than coating alone (Kruskal-Wallis: p > .05), but that human adipose stem cells (hASCs) spread most on the 60 s 1 J/cm2 UV- and 2.5:1:1 EDC-crosslinked films (Kruskal-Wallis: p < .05). Next, we compared the effects of 60 s 1 J/cm2 UV- and 2.5:1:1 EDC-crosslinked to TDM-coated and untreated PCL scaffolds on hASC-induced tendon-like differentiation. UV-crosslinked scaffolds had greater modulus and stiffness than PCL or TDM scaffolds, and hASCs spread more on UV-crosslinked scaffolds (ANOVA: p < .05). Fourier transform infrared spectra revealed that UV- or EDC-crosslinking TDM did not affect the peaks at wavenumbers characteristic of tendon. Crosslinking TDM to electrospun scaffolds improves tendon-like matrix synthesis, providing a viable strategy for improving retention of TDM on electrospun PCL scaffolds.
Collapse
Affiliation(s)
- Thomas L. Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | | | - Kentaro Umemori
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO
- Shriners Hospitals for Children – St. Louis, St. Louis, MO
| | - Dianne Little
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
3
|
Sayin D, Gundogdu G, Kilic-Erkek O, Gundogdu K, Coban HS, Abban-Mete G. Silk protein sericin: a promising therapy for Achilles tendinopathy-evidence from an experimental rat model. Clin Rheumatol 2023; 42:3361-3373. [PMID: 37733079 DOI: 10.1007/s10067-023-06767-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE This study investigated the efficacy of sericin in treating experimental Achilles tendinopathy (AT) in rats via the transforming growth factor-beta (TGF-β)/mothers against decapentaplegic (Smad) pathway compared with diclofenac sodium (DS). METHOD An AT model was induced in rats using collagenase enzyme type I and divided into 5 groups: C (control), AT (diseased control), ATS (AT treated with sericin), ATN (AT treated with DS), and ATSN (AT treated with sericin and DS). Sericin injection was given on the 3rd and 6th days by intratendinous injection (0.8 g/kg/mL), and DS was administered for 14 days by oral gavage (1.1 mg/kg/day). Serum concentrations of total oxidant-antioxidant status (TOS-TAS), TGF-β1, decorin, Smad2, and connective tissue growth factor (CTGF) were measured. Histopathologic and immunohistochemical (IHC) studies were conducted on Achilles tendon samples. RESULTS The TOS, oxidative stress index (OSI), TGF-β1, Smad2, CTGF, and decorin serum concentrations were significantly higher in AT than in C and significantly lower in ATS than in AT (P<0.05). Histopathological examination revealed that irregular fibers, degeneration, and round cell nuclei were significantly elevated in AT. Spindle-shaped fibers were similar to those in C, and degeneration was reduced in ATS. TGF-β1 and Smad2/3 expression was increased, and collagen type I alpha-1 (Col1A1) expression was decreased in AT vs. C (P=0.001). In the ATS, TGF-β1 and Smad2/3 expression decreased, and Col1A1 expression increased. The Bonar score significantly increased in the AT group (P =0.001) and significantly decreased in the ATS group (P =0.027). CONCLUSION Sericin shows potential efficacy in reducing oxidative stress and modulating the TGF-β/Smad pathway in experimental AT models in rats. It may be a promising therapeutic agent for AT, warranting further clinical studies for validation. Key Points • This study revealed that sericin mitigates AT-induced damage through the TGF-β/Smad pathway in an AT rat model. • ELISA and IHC investigations corroborated the effectiveness of sericin via the pivotal TGF-β/Smad pathway in tissue repair. • Evidence indicates that sericin enhances collagen synthesis,shapes tendon fiber structure, and diminishes histopathological degeneration. • Sericin's antioxidant properties were reaffirmed in its AT treatment application.
Collapse
Affiliation(s)
- Dilek Sayin
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Ozgen Kilic-Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | - Hatice Siyzen Coban
- Department of Histology and Embryology, Zeynep Kamil Women and Children Diseases Training and Research Hospital, Istanbul, Turkey
| | - Gulcin Abban-Mete
- Department of Histology and Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
4
|
Dziemidowicz K, Kellaway SC, Guillemot-Legris O, Matar O, Trindade RP, Roberton VH, Rayner MLD, Williams GR, Phillips JB. Development of ibuprofen-loaded electrospun materials suitable for surgical implantation in peripheral nerve injury. BIOMATERIALS ADVANCES 2023; 154:213623. [PMID: 37837905 DOI: 10.1016/j.bioadv.2023.213623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/16/2023]
Abstract
The development of nerve wraps for use in the repair of peripheral nerves has shown promise over recent years. A pharmacological effect to improve regeneration may be achieved by loading such materials with therapeutic agents, for example ibuprofen, a non-steroidal anti-inflammatory drug with neuroregenerative properties. In this study, four commercially available polymers (polylactic acid (PLA), polycaprolactone (PCL) and two co-polymers containing different ratios of PLA to PCL) were used to fabricate ibuprofen-loaded nerve wraps using blend electrospinning. In vitro surgical handling experiments identified a formulation containing a PLA/PCL 70/30 molar ratio co-polymer as the most suitable for in vivo implantation. In a rat model, ibuprofen released from electrospun materials significantly improved the rate of axonal growth and sensory recovery over a 21-day recovery period following a sciatic nerve crush. Furthermore, RT-qPCR analysis of nerve segments revealed that the anti-inflammatory and neurotrophic effects of ibuprofen may still be observed 21 days after implantation. This suggests that the formulation developed in this work could have potential to improve nerve regeneration in vivo.
Collapse
Affiliation(s)
- Karolina Dziemidowicz
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland.
| | - Simon C Kellaway
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Owein Guillemot-Legris
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Omar Matar
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Rita Pereira Trindade
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Victoria H Roberton
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Melissa L D Rayner
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - Gareth R Williams
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| | - James B Phillips
- Centre for Nerve Engineering, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland; Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
5
|
Mandalia K, Mousad A, Welborn B, Bono O, Le Breton S, MacAskill M, Forlizzi J, Ives K, Ross G, Shah S. Scaffold- and graft-based biological augmentation of rotator cuff repair: an updated systematic review and meta-analysis of preclinical and clinical studies for 2010-2022. J Shoulder Elbow Surg 2023; 32:1784-1800. [PMID: 37178960 DOI: 10.1016/j.jse.2023.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/05/2023] [Accepted: 03/22/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Despite advancements in the surgical techniques of rotator cuff repair (RCR), there remains a high retear rate. Biological augmentation of repairs with overlaying grafts and scaffolds may enhance healing and strengthen the repair construct. This study aimed to investigate the efficacy and safety of scaffold-based (nonstructural) and overlay graft-based (structural) biological augmentation in RCR (excluding superior capsule reconstruction and bridging techniques) in both preclinical and clinical studies. METHODS This systematic review was performed in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, as well as guidelines outlined by The Cochrane Collaboration. A search of the PubMed, Embase, and Cochrane Library databases from 2010 until 2022 was conducted to identify studies reporting the clinical, functional, and/or patient-reported outcomes of ≥1 biological augmentation method in either animal models or humans. The methodologic quality of included primary studies was appraised using the Checklist to Evaluate a Report of a Non-pharmacological Trial (CLEAR-NPT) for randomized controlled trials and using the Methodological Index for Non-randomized Studies (MINORS) for nonrandomized studies. RESULTS A total of 62 studies (Level I-IV evidence) were included, comprising 47 studies reporting outcomes in animal models and 15 clinical studies. Of the 47 animal-model studies, 41 (87.2%) demonstrated biomechanical and histologic enhancement with improved RCR load to failure, stiffness, and strength. Of the 15 clinical studies, 10 (66.7%) illustrated improvement in postoperative clinical, functional, and patient-reported outcomes (eg, retear rate, radiographic thickness and footprint, and patient functional scores). No study reported a significant detriment to repair with augmentation, and all studies endorsed low complication rates. A meta-analysis of pooled retear rates demonstrated significantly lower odds of retear after treatment with biological augmentation of RCR compared with treatment with non-augmented RCR (odds ratio, 0.28; P < .00001), with low heterogeneity (I2 = 0.11). CONCLUSIONS Graft and scaffold augmentations have shown favorable results in both preclinical and clinical studies. Of the investigated clinical grafts and scaffolds, acellular human dermal allograft and bovine collagen demonstrate the most promising preliminary evidence in the graft and scaffold categories, respectively. With a low risk of bias, meta-analysis revealed that biological augmentation significantly lowered the odds of retear. Although further investigation is warranted, these findings suggest graft and scaffold biological augmentation of RCR to be safe.
Collapse
Affiliation(s)
- Krishna Mandalia
- Tufts University School of Medicine, Boston, MA, USA; New England Shoulder and Elbow Center, Boston, MA, USA.
| | - Albert Mousad
- Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | - Glen Ross
- New England Baptist Hospital, Boston, MA, USA
| | - Sarav Shah
- New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Adjei-Sowah E, Benoit DSW, Loiselle AE. Drug Delivery Approaches to Improve Tendon Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:369-386. [PMID: 36888543 PMCID: PMC10442691 DOI: 10.1089/ten.teb.2022.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/18/2023] [Indexed: 03/09/2023]
Abstract
Tendon injuries disrupt the transmission of forces from muscle to bone, leading to chronic pain, disability, and a large socioeconomic burden. Tendon injuries are prevalent; there are over 300,000 tendon repair procedures a year in the United States to address acute trauma or chronic tendinopathy. Successful restoration of function after tendon injury remains challenging clinically. Despite improvements in surgical and physical therapy techniques, the high complication rate of tendon repair procedures motivates the use of therapeutic interventions to augment healing. While many biological and tissue engineering approaches have attempted to promote scarless tendon healing, there is currently no standard clinical treatment to improve tendon healing. Moreover, the limited efficacy of systemic delivery of several promising therapeutic candidates highlights the need for tendon-specific drug delivery approaches to facilitate translation. This review article will synthesize the current state-of-the-art methods that have been used for tendon-targeted delivery through both systemic and local treatments, highlight emerging technologies used for tissue-specific drug delivery in other tissue systems, and outline future challenges and opportunities to enhance tendon healing through targeted drug delivery.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
- Department of Chemical Engineering, University of Rochester, Rochester, New York, USA
- Materials Science Program, University of Rochester, Rochester, New York, USA
- Knight Campus Department of Bioengineering, University of Oregon, Eugene, Oregan, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering and University of Rochester, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Cell Biology of Disease Program, University of Rochester, Rochester, New York, USA
| |
Collapse
|
7
|
Freedman BR, Adu-Berchie K, Barnum C, Fryhofer GW, Salka NS, Shetye S, Soslowsky LJ. Nonsurgical treatment reduces tendon inflammation and elevates tendon markers in early healing. J Orthop Res 2022; 40:2308-2319. [PMID: 34935170 PMCID: PMC9209559 DOI: 10.1002/jor.25251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
Operative treatment is assumed to provide superior outcomes to nonoperative (conservative) treatment following Achilles tendon rupture, however, this remains controversial. This study explores the effect of surgical repair on Achilles tendon healing. Rat Achilles tendons (n = 101) were bluntly transected and were randomized into groups receiving repair or non-repair treatments. By 1 week after injury, repaired tendons had inferior mechanical properties, which continued to 3- and 6-week post-injury, evidenced by decreased dynamic modulus and failure stress. Transcriptomics analysis revealed >7000 differentially expressed genes between repaired and non-repaired tendons after 1-week post-injury. While repaired tendons showed enriched inflammatory gene signatures, non-repaired tendons showed increased tenogenic, myogenic, and mechanosensitive gene signatures, with >200-fold enrichment in Tnmd expression. Analysis of gastrocnemius muscle revealed elevated MMP activity in tendons receiving repair treatment, despite no differences in muscle fiber morphology. Transcriptional regulation analysis highlighted that the highest expressed transcription factors in repaired tendons were associated with inflammation (Nfκb, SpI1, RelA, and Stat1), whereas non-repaired tendons expressed markers associated with tissue development and mechano-activation (Smarca1, Bnc2, Znf521, Fbn1, and Gli3). Taken together, these data highlight distinct differences in healing mechanism occurring immediately following injury and provide insights for new therapies to further augment tendons receiving repaired and non-repaired treatments.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Kwasi Adu-Berchie
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Carrie Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George W Fryhofer
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nabeel S Salka
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Snehal Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Yang J, Kang Y, Zhao W, Jiang J, Jiang Y, Zhao B, Jiao M, Yuan B, Zhao J, Ma B. Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies. Bioact Mater 2022; 10:474-491. [PMID: 34901561 PMCID: PMC8633530 DOI: 10.1016/j.bioactmat.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Based on the published animal studies, we systematically evaluated the outcomes of various materials for rotator cuff repair in animal models and the potentials of their clinical translation. 74 animal studies were finally included, of which naturally derived biomaterials were applied the most widely (50.0%), rats were the most commonly used animal model (47.0%), and autologous tissue demonstrated the best outcomes in all animal models. The biomechanical properties of naturally derived biomaterials (maximum failure load: WMD 18.68 [95%CI 7.71-29.66]; P = 0.001, and stiffness: WMD 1.30 [95%CI 0.01-2.60]; P = 0.048) was statistically significant in the rabbit model. The rabbit model showed better outcomes even though the injury was severer compared with the rat model.
Collapse
Affiliation(s)
- Jinwei Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Reproductive Medicine Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730050, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wanlu Zhao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yanbiao Jiang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bing Zhao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingyue Jiao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yuan
- College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- National Engineering Research Center for Biomaterials, Chengdu, 610064, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, 730000, China
| |
Collapse
|
9
|
Lim TK, Dorthé E, Williams A, D'Lima DD. Nanofiber Scaffolds by Electrospinning for Rotator Cuff Tissue Engineering. Chonnam Med J 2021; 57:13-26. [PMID: 33537215 PMCID: PMC7840345 DOI: 10.4068/cmj.2021.57.1.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Rotator cuff tears continue to be at risk of retear or failure to heal after surgical repair, despite the use of various surgical techniques, which stimulate development of novel scaffolding strategies. They should be able to address the known causes of failure after the conventional rotator cuff repair: (1) failure to reproduce the normal tendon healing process, (2) resultant failure to reproduce four zones of the enthesis, and (3) failure to attain sufficient mechanical strength after repair. Nanofiber scaffolds are suited for this application because they can be engineered to mimic the ultrastructure and properties of the native rotator cuff tendon. Among various methods for tissue-engineered nanofibers, electrospinning has recently been highlighted in the rotator cuff field. Electrospinning can create fibrous and porous structures that resemble natural tendon's extracellular matrix. Other advantages include the ability to create relatively large surface-to-volume ratios, the ability to control fiber size from the micro to the nano scale, and the flexibility of material choices. In this review, we will discuss the anatomical and mechanical features of the rotator cuff tendon, their potential impacts on improper healing after repair, and the current knowledge of the use of electrospinning for rotator cuff tissue engineering.
Collapse
Affiliation(s)
- Tae Kang Lim
- Department of Orthopaedic Surgery, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, Korea.,Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Erik Dorthé
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Austin Williams
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research & Education at Scripps Clinic, CA, USA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|