1
|
Briolay A, Duboeuf F, Delplace S, Brizuela L, Peyruchaud O, Magne D, Bougault C. Voluntary exercise in mice triggers an anti-osteogenic and pro-tenogenic response in the ankle joint without affecting long bones. Bone Rep 2024; 23:101810. [PMID: 39493871 PMCID: PMC11530850 DOI: 10.1016/j.bonr.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Biomechanical stimulation is proposed to occupy a central place in joint homeostasis, but the precise contribution of exercise remains elusive. We aimed to characterize in vivo the impact of mechanical stimulation on the cell-controlled regulation of ossification within the ankles of healthy mice undergoing mild physical activity. DBA/1 male mice were subjected to voluntary running exercise for two weeks, and compared to mice housed in standard conditions (n = 20 per group). Free access to activity wheels resulted in a running exercise of 5.5 ± 0.8 km/day at 14.5 ± 0.5 m/min. Serum levels of alkaline phosphatase, IL-6, IL-8/Kc, IL-17a, and TNF-α were measured. No change in systemic inflammation was detected. The bone architecture of the femur and the calcaneus was unchanged, as revealed by μCT and histology of the enthesis of the Achilles tendon. mRNAs were extracted from femurs, tibias, and ankle joints before RT-qPCR analysis. The expression of the mechanosensitive genes Sclerostin (Sost) and Periostin (Postn) was not impacted by the exercise in long bones. Oppositely, Sost and Postn levels were modulated by exercise in joints, and osteogenic markers (Col10a1, Runx2, Osx, and Dmp1) were downregulated in the exercise group. In addition, the tenogenic markers Scx, Mkx, and Tnmd were upregulated by exercise. Thus, voluntary exercise affected the phenotype of joint cells without impacting long bones. As gene expression of Bmp2, Bmp4, and Id1 was also reduced in these cells, an off-regulation of BMP signaling could be partly responsible for their mechanosensitive response. Running exercise seemed to preserve the tendon from its progressive ossification, as seen in numerous enthesopathies. This study paves the way to future experiments for investigating the effects of mechanical stimulation in various mouse models.
Collapse
Affiliation(s)
- Anne Briolay
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - François Duboeuf
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - Séverine Delplace
- Universite Littoral-Côte d'Opale, ULR 4490, MABLab, F-62327 Boulogne/Mer, France
| | - Leyre Brizuela
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Olivier Peyruchaud
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - David Magne
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Carole Bougault
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| |
Collapse
|
2
|
Bian X, Liu X, Zhou M, Tang H, Wang R, Ma L, He G, Xu S, Wang Y, Tan J, Tang K, Guo L. Mechanical stimulation promotes fibrochondrocyte proliferation by activating the TRPV4 signaling pathway during tendon-bone insertion healing: CCN2 plays an important regulatory role. BURNS & TRAUMA 2024; 12:tkae028. [PMID: 39429645 PMCID: PMC11491146 DOI: 10.1093/burnst/tkae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 10/22/2024]
Abstract
Background We previously confirmed that mechanical stimulation is an important factor in the repair of tendon-bone insertion (TBI) injuries and that mechanoreceptors such as transient receptor potential ion-channel subfamily V member 4 (TRPV4; also known as transient receptor potential vanilloid 4) are key to transforming mechanical stimulation into intracellular biochemical signals. This study aims to elucidate the mechanism of mechanical stimulation regulating TRPV4. Methods Immunohistochemical staining and western blotting were used to evaluate cartilage repair at the TBI after injury. The RNA expression and protein expression of mechanoreceptors and key pathway molecules regulating cartilage proliferation were analyzed. TBI samples were collected for transcriptome sequencing to detect gene expression. Calcium-ion imaging and flow cytometry were used to evaluate the function of TPRV4 and cellular communication network factor 2 (CCN2) after the administration of siRNA, recombinant adenovirus and agonists. Results We found that treadmill training improved the quality of TBI healing and enhanced fibrochondrocyte proliferation. The transcriptome sequencing results suggested that the elevated expression of the mechanistically stimulated regulator CCN2 and the exogenous administration of recombinant human CCN2 significantly promoted TRPV4 protein expression and fibrochondrocyte proliferation. In vitro, under mechanical stimulation conditions, small interfering RNA (siRNA)-CCN2 not only inhibited the proliferation of primary fibrochondrocytes but also suppressed TRPV4 protein expression and activity. Subsequently, primary fibrochondrocytes were treated with the TRPV4 agonist GSK1016790A and the recombinant adenovirus TRPV4 (Ad-TRPV4), and GSK1016790A partially reversed the inhibitory effect of siRNA-CCN2. The phosphoinositide 3-kinase/ protein kinase B (PI3K/AKT) signaling pathway participated in the above process. Conclusions Mechanical stimulation promoted fibrochondrocyte proliferation and TBI healing by activating TRPV4 channels and the PI3K/AKT signaling pathway, and CCN2 may be a key regulatory protein in maintaining TRPV4 activation.
Collapse
Affiliation(s)
- Xuting Bian
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xiao Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Mei Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hong Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Rui Wang
- Chongqing Institute of Bio-Intelligent Manufacturing, No. 60, Xingguang Avenue, Yubei District, Chongqing, 400000, China
| | - Lin Ma
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Gang He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shibo Xu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yunjiao Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jindong Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Kanglai Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lin Guo
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
3
|
Xiao H, Wen B, Yan D, Li Q, Yang Y, Yin X, Chen D, Liu J. Hot spots and frontiers in bone-tendon interface research: a bibliometric analysis and visualization from 2000 to 2023. Front Surg 2024; 10:1326564. [PMID: 38327873 PMCID: PMC10847327 DOI: 10.3389/fsurg.2023.1326564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Objective In this research, we investigated the current status, hotspots, frontiers, and trends of research in the field of bone-tendon interface (BTI) from 2000 to 2023, based on bibliometrics and visualization and analysis in CiteSpace, VOSviewer, and a bibliometric package in R software. Methods We collected and organized the papers in the Web of Science core collection (WoSCC) for the past 23 years (2000-2023), and extracted and analyzed the papers related to BTI. The extracted papers were bibliometrically analyzed using CiteSpace for overall publication trends, authors, countries/regions, journals, keywords, research hotspots, and frontiers. Results A total of 1,995 papers met the inclusion criteria. The number of papers published and the number of citations in the field of BTI have continued to grow steadily over the past 23 years. In terms of research contribution, the United States leads in terms of the number and quality of publications, number of citations, and collaborations with other countries, while the United Kingdom and the Netherlands lead in terms of the average number of citations. The University of Leeds publishes the largest number of papers, and among the institutions hosting the 100 most cited papers Hospital for Special Surgery takes the top spot. MCGONAGLE D has published the highest number of papers (73) in the last 10 years. The top three clusters include #0 "psoriatic arthritis", #1 "rotator cuff repair", and #2 "tissue engineering". The structure and function of the BTI and its key mechanisms in the healing process are the key to research, while new therapies such as mechanical stimulation, platelet-rich plasma, mesenchymal stem cells, and biological scaffolds are hot topics and trends in research. Conclusion Over the past 23 years, global research on the BTI has expanded in both breadth and depth. The focus of research has shifted from studies concentrating on the structure of the BTI and the disease itself to new therapies such as biomaterial-based alternative treatments, mechanical stimulation, platelet-rich plasma, etc.
Collapse
Affiliation(s)
- Hao Xiao
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Boyuan Wen
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Dong Yan
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Quansi Li
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yujie Yang
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Xianye Yin
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Deyu Chen
- School of Journalism and Communication, Hunan University, Changsha, China
| | - Jiachen Liu
- XiangYa School of Medicine, Central South University, Changsha, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of System Biology and Data Information, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Liu X, Zhou M, Tan J, Ma L, Tang H, He G, Tao X, Guo L, Kang X, Tang K, Bian X. Inhibition of CX3CL1 by treadmill training prevents osteoclast-induced fibrocartilage complex resorption during TBI healing. Front Immunol 2024; 14:1295163. [PMID: 38283363 PMCID: PMC10811130 DOI: 10.3389/fimmu.2023.1295163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The healing of tendon-bone injuries is very difficult, often resulting in poor biomechanical performance and unsatisfactory functional recovery. The tendon-bone insertion has a complex four distinct layers structure, and previous studies have often focused on promoting the regeneration of the fibrocartilage layer, neglecting the role of its bone end repair in tendon-bone healing. This study focuses on the role of treadmill training in promoting bone regeneration at the tendon-bone insertion and its related mechanisms. Methods After establishing the tendon-bone insertion injury model, the effect of treadmill training on tendon-bone healing was verified by Micro CT and HE staining; then the effect of CX3CL1 on osteoclast differentiation was verified by TRAP staining and cell culture; and finally the functional recovery of the mice was verified by biomechanical testing and behavioral test. Results Treadmill training suppresses the secretion of CX3CL1 and inhibits the differentiation of local osteoclasts after tendon-bone injury, ultimately reducing osteolysis and promoting tendon bone healing. Discussion Our research has found the interaction between treadmill training and the CX3CL1-C3CR1 axis, providing a certain theoretical basis for rehabilitation training.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mei Zhou
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jindong Tan
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Ma
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hong Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang He
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xu Tao
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Guo
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kanglai Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuting Bian
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Diao L, Peng Y, Wang J, Chen J, Wang G, Jia S, Zheng C. Eccentric Contraction Enhances Healing of the Bone-Tendon Interface After Rotator Cuff Repair in Mice. Am J Sports Med 2023; 51:3835-3844. [PMID: 37861235 DOI: 10.1177/03635465231202901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
BACKGROUND Various muscle contraction modalities have differing effects on the musculoskeletal system. To understand the magnitude of these effects, the authors investigated the effects of eccentric and concentric contractions on the bone-tendon interface after rotator cuff repair in mice. HYPOTHESIS Eccentric contraction promotes healing of the bone-tendon interface after rotator cuff repair in mice better than other muscle contraction patterns. STUDY DESIGN Controlled laboratory study. METHODS The authors performed acute supraspinatus tendon repair of the right shoulder in 104 C57BL/6 mice. Animals were randomized into 4 groups postoperatively: control group (Con group), horizontal running group (Horz group), +15° uphill running group (Up group), and -15° downhill running group (Down group), with 26 animals in each group. At 4 and 8 weeks postoperatively, the authors removed the eyeball, collected blood samples, and extracted the supraspinatus tendon-humerus complex for histological, immunological, bone morphological, and biomechanical tests. RESULTS At 4 and 8 weeks postoperatively, the Down group exhibited a better collagen cell arrangement and fibrocartilage layer than the other 3 groups. At 4 weeks postoperatively, anti-inflammatory macrophages (M2 macrophages) were observed at the repair site in all groups except for the Con group. At 8 weeks postoperatively, M2 macrophages were withdrawn from the tendon site in all groups. The transforming growth factor β1 concentration in the Down group was greater than that in the other 3 groups at 4 weeks postoperatively, and it was higher than that in the Con group at 8 weeks postoperatively. The bone volume fraction, number of trabeculae, and thickness of trabeculae at the repair site in the Down group, as well as the ultimate strength and failure load in the biomechanical tests, were greater than those in the other 3 groups at 8 weeks postoperatively. CONCLUSION Eccentric contraction promotes healing of the bone-tendon interface after rotator cuff repair in mice better than other muscle contraction patterns. CLINICAL RELEVANCE After clinical rotator cuff repair, patients can be rehabilitated by eccentric training to speed up the functional recovery of the shoulder joint.
Collapse
Affiliation(s)
- Luyu Diao
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Yundong Peng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Juan Wang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jian Chen
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- Hubei Key Laboratory of Sport Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
6
|
Xie S, Guan C, Huang T, Yang G, Hu J, Sun D, Lu H. Activating Mitochondrial Sirtuin 3 in Chondrocytes Alleviates Aging-Induced Fibrocartilage Layer Degeneration and Promotes Healing of Degenerative Rotator Cuff Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:939-949. [PMID: 37068637 DOI: 10.1016/j.ajpath.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
The present study aimed to examine the impact of mitochondrial sirtuin 3 (SIRT3) on the degenerative rotator cuff injury, which is a prevalent issue among the elderly population primarily due to aging-related tissue degradation. The study hypothesized that SIRT3, as a major deacetylase in mitochondria, is a significant factor in controlling the quality of mitochondria and the deterioration of fibrocartilage, a crucial component of the rotator cuff. Results showed that the aging process led to weakened biomechanical properties and degeneration of the fibrocartilage layer in mice, accompanied by a decrease in SIRT3 expression. SIRT3 activation ameliorated the aging-related disruption of chondrocyte phenotype and fibrocartilage degradation. SIRT3 activator honokiol improved the phenotype of senescent chondrocytes and promoted rotator cuff healing in aged mice through SIRT3 activation. In conclusion, the findings suggested that the decline in SIRT3 levels with age contributes to rotator cuff degeneration and chondrocyte senescence, and that SIRT3 activation through the use of honokiol is an effective approach for promoting rotator cuff healing in the elderly population.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Tingmo Huang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Guang Yang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China; Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; Mobile Health Ministry of Education-China Mobile Joint Laboratory, Changsha, China
| | - Deyi Sun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China; Hunan Engineering Research Center of Sports and Health, Changsha, China; Xiangya Hospital-International Chinese Musculeskeletal Research Society Sports Medicine Research Centre, Changsha, China.
| |
Collapse
|
7
|
Tan J, Liu X, Zhou M, Wang F, Ma L, Tang H, He G, Kang X, Bian X, Tang K. Effect of treadmill training on fibrocartilage complex repair in tendon-bone insertion healing in the postinflammatory stage. Bone Joint Res 2023; 12:339-351. [PMID: 37219405 PMCID: PMC10204653 DOI: 10.1302/2046-3758.125.bjr-2022-0340.r2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Aims Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. Methods A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments. Results Our results showed a significantly higher tendon-bone insertion histomorphological score in the training group, and the messenger RNA and protein expression levels of type II collagen (COL2A1), SOX9, and type X collagen (COL10A1) were significantly elevated. Additionally, tendon-bone insertion resulted in less scar hyperplasia after treadmill training, the bone mineral density (BMD) and bone volume/tissue volume (BV/TV) were significantly improved, and the force required to induce failure became stronger in the training group. Functionally, the motor ability, limb stride length, and stride frequency of mice with tendon-bone insertion injuries were significantly improved in the training group compared with the control group. Conclusion Treadmill training initiated on postoperative day 7 is beneficial to tendon-bone insertion healing, promoting biomechanical strength and motor function. Our findings are expected to guide clinical rehabilitation training programmes.
Collapse
Affiliation(s)
- Jindong Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiao Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Mei Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Feng Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Lin Ma
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hong Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Gang He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xia Kang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xuting Bian
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kanglai Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopaedics/Sports Medicine Center, First Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Wang L, Li S, Xiao H, Zhang T, Liu Y, Hu J, Xu D, Lu H. TGF-β1 derived from macrophages contributes to load-induced tendon-bone healing in the murine rotator cuff repair model by promoting chondrogenesis. Bone Joint Res 2023; 12:219-230. [PMID: 37051812 PMCID: PMC10032229 DOI: 10.1302/2046-3758.123.bjr-2022-0368.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs. Mechanical stimulation promoted macrophage M2 polarization in vivo and in vitro. The conditioned media from mechanically stimulated BMDMs (MS-CM) enhanced MSC chondrogenic differentiation, and mechanically stimulated BMDMs generated more TGF-β1. Further, neutralizing TGF-β1 in MS-CM can attenuate its pro-chondrogenic effect. In vivo, mechanical stimulation promoted TGF-β1 generation, MSC chondrogenesis, and T-B healing, which were abolished following macrophage depletion. Macrophages subjected to appropriate mechanical stimulation could polarize toward the M2 phenotype and secrete TGF-β1 to promote MSC chondrogenesis, which subsequently augments T-B healing.
Collapse
Affiliation(s)
- Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Han Xiao
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Liu Y, Wang L, Li S, Zhang T, Chen C, Hu J, Sun D, Lu H. Mechanical stimulation improves rotator cuff tendon-bone healing via activating IL-4/JAK/STAT signaling pathway mediated macrophage M2 polarization. J Orthop Translat 2022; 37:78-88. [PMID: 36262964 PMCID: PMC9550856 DOI: 10.1016/j.jot.2022.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background It is well known that appropriate mechanical stimulation benefits tendon-bone (T-B) healing, however, the mechanisms behind this are still uncovered completely. Here, we aimed to explore whether the IL-4/JAK/STAT signaling pathway mediated macrophage polarization was involved in mechanical stimulation induced T-B healing. Method C57BL/6 mice rotator cuff (RC) repair model was established, and the mice were randomly allocated to the following group. 1. Mice were allowed for free cage activities after surgery (FC group); 2. Mice received treadmill running initiated on postoperative day 7 (TR group); 3. Mice only received a local injection of hydrogel containing IL-4 neutralizing antibody without postoperative intervention (FC + AF-404-SP group); 4. Mice received a local injection of hydrogel containing IL-4 neutralizing antibody and postoperative treadmill running (TR + AF-404-SP group). The expression of IL-4 within supraspinatus tendon (SST) enthesis was measured by Enzyme-linked immunosorbent assay (ELISA). In addition, the activation of JAK/STAT signaling pathway in macrophages and identification of macrophage phenotype at the RC insertion site was detected by Flow cytometry and qRT-PCR. T-B healing quality in this RC repair model was evaluated by histological staining, Micro-computed tomography (Micro-CT) scanning, and biomechanical testing. Result In this study, using the RC repair model, we confirmed that generation of IL-4, activation of the JAK/STAT signaling pathway in macrophages, the ability of macrophages to polarize towards M2 subtype, and T-B healing quality were significantly enhanced in TR group compared to FC group. When comparing FC + AF-404-SP group with TR + AF-404-SP group, it was found that the mechanical stimulation induced this effect was depleted following the blockade of the IL-4/JAK/STAT signaling pathway. Conclusion Our finding suggested that mechanical stimulation could accelerate T-B healing via activating the IL-4/JAK/STAT signaling pathway that modulates macrophages to polarize towards M2 subtype. The translational potential of this article This is the first study to reveal a significant role of mechanical stimulation in the IL-4/JAK/STAT signaling pathway activation and macrophage polarization during RC T-B healing, which highlights the IL-4/JAK/STAT signaling pathway as a potential target to mediate macrophage M2 polarization and improves T-B healing for RC repair.
Collapse
Affiliation(s)
- Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Linfeng Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Can Chen
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Spine Surgery and Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Deyi Sun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Xie S, Guan C, Huang T, Liu Y, Yuan F, Xu D. Intermittent fasting promotes repair of rotator cuff injury in the early postoperative period by regulating the gut microbiota. J Orthop Translat 2022; 36:216-224. [PMID: 36263387 PMCID: PMC9574345 DOI: 10.1016/j.jot.2022.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
Background The repair of rotator cuff injury is affected by lifestyle and metabolic factors. Intermittent fasting (IF) can promote repair of damaged tissue by regulating intestinal flora, which provides an idea of therapy for rotator cuff injury. The aim of this study was to investigate the effects of fasting on rotator cuff repair after injury, and the role of intestinal flora or a single strain in this process. Methods Mice underwent rotator cuff injury were treated with intermittent fasting or fed ad libitum. Fasting began one month before surgery and continued until euthanasia. Fresh feces were collected at 2 weeks before surgery, on the day of surgery, and 2, 4, 8 weeks postoperatively for 16S rRNA microbiome sequencing. Supraspinatus tendon-humerus (SSTH) complex was collected at 2, 4 and 8 weeks after surgery. Live parabacteroides distasonis (Parabacteroides distasonis) was used for repair of rotator cuff injury, with equal amount of pasteurized P. distasonis (KPD) or sterile anaerobic phosphate buffer saline (PBS) as control. Biomechanical, radiological, histological analysis were used to assess the effect of rotator cuff repair. Results Biomechanical, radiological and histological analysis indicated that intermittent fasting significantly promoted the repair of rotator cuff injury in the early postoperative period (P < 0.05), but significantly inhibited the repair of rotator cuff injury at 4 weeks postoperatively (P < 0.05). 16S rRNA Microbiome sequencing result showed that P. distasonis was the species with the most obvious changes in intestinal flora of mice after fasting. The results of tensile test, X-ray analysis and histological analysis indicated that the live P. distasonis (LPD) significantly impaired the biomechanical properties, bone regeneration and fibrocartilage regeneration of enthesis postoperatively (P < 0.05). Conclusion Intermittent fasting promoted repair of rotator cuff injury in the early postoperative period by regulating the gut microbiota, in which P. distasonis played an important role. The translational potential of this article Intermittent fasting (IF) may be a beneficial lifestyle for the repair of rotator cuff injury in the early postoperative period in clinical, and the influence of a certain strain on the repair of rotator cuff injury may also provide an idea for the treatment of rotator cuff injury in the future.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Tingmo Huang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Yuqian Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Feifei Yuan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Corresponding author. Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
Peng Y, Li X, Wu W, Ma H, Wang G, Jia S, Zheng C. Effect of Mechanical Stimulation Combined With Platelet-Rich Plasma on Healing of the Rotator Cuff in a Murine Model. Am J Sports Med 2022; 50:1358-1368. [PMID: 35188809 DOI: 10.1177/03635465211073339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mechanical stimulation and platelet-rich plasma (PRP) have been shown to be beneficial for healing of the bone-tendon interface (BTI), but few studies have explored the efficacy of a combination of these applications. We investigated the effect of mechanical stimulation combined with PRP on rotator cuff repair in mice. HYPOTHESIS Mechanical stimulation combined with PRP can enhance BTI healing in a murine model of rotator cuff repair. STUDY DESIGN Controlled laboratory study. METHODS A total of 160 C57BL/6 mice were used. Overall, 40 mice were used to prepare PRP, while 120 mice underwent acute supraspinatus tendon (SST) repair. The animals were randomly assigned to 4 groups: control group, mechanical stimulation group, PRP group, and mechanical stimulation combined with PRP group (combination group). At 4 and 8 weeks postoperatively, animals were sacrificed, the eyeballs were removed to collect blood, and the SST-humeral complexes were collected. Histological, biomechanical, immunological, and bone morphometric tests were performed. RESULTS Histologically, at 4 and 8 weeks after surgery, the area of the fibrocartilage layer at the BTI in the combination group was larger than in the other groups. The content and distribution of proteoglycans in this layer in the combination group were significantly greater than in the other groups. At 8 weeks postoperatively, trabecular number, and trabecular bone thickness of the subchondral bone area of interest at the BTI of the combination group were greater than those of the other groups, bone volume fraction of the combination group was greater than the control group. On biomechanical testing at 4 and 8 weeks after surgery, the failure load and ultimate strength of the SST-humeral complex in the combination group were higher than in the other groups. Enzyme-linked immunosorbent assay results showed that, at 4 weeks postoperatively, the serum concentrations of transforming growth factor beta 1 and platelet-derived growth factor (PDGF) in the combination group were significantly higher than in the other groups; at 8 weeks, the PDGF-AB concentration in the combination group was higher than in the control and mechanical stimulation groups. CONCLUSION Mechanical stimulation combined with PRP can effectively promote the early stage of healing after a rotator cuff injury. CLINICAL RELEVANCE These findings imply that mechanical stimulation combined with PRP can serve as a potential therapeutic strategy for rotator cuff healing.
Collapse
Affiliation(s)
- Yundong Peng
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaomei Li
- College of Health Science, Wuhan Sports University, Wuhan, China.,Medical College, Huainan Union University, Huainan, China
| | - Wenxia Wu
- College of Health Science, Wuhan Sports University, Wuhan, China.,Department of Rehabilitation Therapy, Jinci College of Shanxi Medical University, Taiyuan, China
| | - Haozhe Ma
- College of International Education, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
12
|
Chen Y, Zhang T, Wan L, Wang Z, Li S, Hu J, Xu D, Lu H. Early treadmill running delays rotator cuff healing via Neuropeptide Y mediated inactivation of the Wnt/β-catenin signaling. J Orthop Translat 2021; 30:103-111. [PMID: 34722153 PMCID: PMC8517718 DOI: 10.1016/j.jot.2021.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background Defining the optimal rehabilitation programs for rotator cuff healing remains a challenge. Early treadmill running may have negative effects on tendon-bone interface (TBI) healing with increased expression of Neuropeptide Y (NPY). However, the underlying mechanism is still unknown. Methods The mice were randomly assigned to four groups: control group, treadmill group, treadmill + BIBO3304 group and BIBO3304 group alone. Specifically, the control group was allowed free cage activity without any treatment after surgery. The treadmill group received early treadmill running initiated from postoperative day 2. The treadmill + BIBO3304 group received treadmill running combined with intra-articular injection of BIBO3304 postoperatively. The BIBO3304 group only received type 1 NPY receptor (Y1 receptor, Y1R) antagonist BIBO3304 postoperatively. Healing outcomes of the rotator cuff were evaluated by histological analysis, synchrotron radiation micro-computed tomography (SR-μCT) scanning, and biomechanical testing at 4 and 8 weeks after surgery. The expression of NPY and its Y1 receptor during the treadmill running were tested by immunofluorescence. In addition, the related signaling pathway of Neuropeptide Y among all groups was detected by immunohistochemistry and western-blot. Results Immunofluorescence results show that early treadmill training could lead to a significant increase in the expression of NPY at the healing site, and Y1R was widely expressed in both normal or injured rotator cuff without statistical difference. At the same time, early treadmill running delayed the healing of rotator cuff, as indicated with unsatisfactory outcomes, including a significantly lower histological score, decreased bone formation and inferior biomechanical properties at postoperative week 4 and 8. Moreover, the use of BIBO3304 could partly alleviate the negative effects of early treadmill running on the healing of rotator cuff and promote the natural healing process of rotator cuff, as evidenced by significant differences observed between the treadmill and treadmill + BIBO3304 groups, as well as observed between the control and BIBO3304 groups. On the other hand, the expressions of Wnt3a and β-catenin in the treadmill group were significantly lower compared with the other groups, while the expression in the BIBO3304 group was the highest, as evaluated by immunohistochemistry and western-blot. Conclusions Early treadmill running increased the expression of NPY at the RC healing site, which might burden the expression of Wnt3a/β-catenin and delay the healing process, inhibition of Y1 receptor with BIBO3304 could promote bone-tendon healing through the Wnt/β-catenin signaling. The translational potential of this article: This is the first study to evaluate the specific role of the NPY-Y1R axis and its underlying mechanism by which early treadmill running delays bone-tendon healing. Further, our study may provide references of precise and individualized exercise-based rehabilitation strategies for TBI healing in clinic. The translational potential of this article This is the first study to evaluate the specific role of the NPY-Y1R axis and its underlying mechanism by which early treadmill running delays bone-tendon healing. Further, our study may provide references of precise and individualized exercise-based rehabilitation strategies for TBI healing in clinic.
Collapse
Affiliation(s)
- Yang Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Liyang Wan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Zhanwen Wang
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Jianzhong Hu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China
| |
Collapse
|
13
|
Li S, Xu Z, Wang Z, Xiang J, Zhang T, Lu H. Acceleration of Bone-Tendon Interface Healing by Low-Intensity Pulsed Ultrasound Is Mediated by Macrophages. Phys Ther 2021; 101:6131760. [PMID: 33561257 DOI: 10.1093/ptj/pzab055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Low-intensity pulsed ultrasound (LIPUS) has been proven to facilitate bone-tendon interface (BTI) healing and regulate some inflammatory cytokines. However, the role of macrophages, a key type of inflammatory cell, during treatment remains unknown. This study aimed to investigate the role of macrophages in the treatment of BTI injury with LIPUS in a rotator cuff tear animal model. METHODS In this experimental and comparative study, a total of 160 C57BL/6 mature male mice that underwent supraspinatus tendon detachment and repair were randomly assigned to 4 groups: daily ultrasonic treatment and liposomal clodronate (LIPUS+LC), daily ultrasonic treatment and liposomes (LIPUS), daily mock sonication and liposomal clodronate (LC), and daily mock sonication and liposomes (control [CTL]). LIPUS treatment was initiated immediately postoperatively and continued daily until the end of the experimental period. RESULTS The failure load and stiffness of the supraspinatus tendon-humerus junction were significantly higher in the LIPUS group than in the other groups at postoperative weeks 2 and 4, whereas those in the LIPUS+LC and LC groups were lower than those in the CTL group at postoperative week 4. The LIPUS, LIPUS+LC, and LC groups exhibited significantly more fibrocartilage than the CTL group at 2 weeks. Only the LIPUS group had more fibrocartilage than the CTL group at 4 weeks. Micro-computed tomography results indicated that LIPUS treatment could improve the bone quality of the attachment site after both 2 and 4 weeks. When macrophages were depleted by LC, the bone quality-promoting effect of LIPUS treatment was significantly reduced. CONCLUSION The enhancement of BTI healing by LIPUS might be mediated by macrophages. IMPACT In our study, LIPUS treatment appeared to accelerate BTI healing, which was associated with macrophages based on our murine rotator cuff repair model. The expressions of macrophage under LIPUS treatment may offer a potential mechanism to explain BTI healing and the effects of LIPUS on BTI healing.
Collapse
Affiliation(s)
- Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Zihan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Zhanwen Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Jie Xiang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, PR China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| |
Collapse
|