1
|
Ren Y, Jahn D, Donner S, Gwinner C, Du W, Wagner DL, Tsitsilonis S, Perka C, Duda G, Kienzle A. The role of PD-1/PD-L1 in overshooting osteoclastogenesis in periprosthetic joint infections. Commun Biol 2025; 8:786. [PMID: 40404949 PMCID: PMC12098725 DOI: 10.1038/s42003-025-08143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
Periprosthetic joint infection (PJI) is a critical complication following arthroplasty, leading to increased prosthesis failure rates post-treatment. This study explores the role of PD-1/PD-L1 signaling in osteoclastogenesis associated with PJI. Peripheral blood, bone, and bone marrow of 65 patients (20 primary osteoarthritis, 21 PJI septic explantation, 24 PJI prosthesis reimplantation) were analyzed for their bone microstructure and cell composition. Immunocytochemistry, RT-qPCR, flow cytometry, bone resorption assay, ELISA, and RNA sequencing were performed to investigate the effects of PD-1 stimulation and blockade on osteoclast formation. PD-1 positive monocytes and sPD-L1 levels were elevated in PJI. Stimulation with PD-L1 enhanced osteoclastogenesis, while PD-1 inhibitor nivolumab reversed these effects. Impact of PD-1 and nivolumab was significantly more pronounced in PJI compared to the control. Our study suggests PD-1/PD-L1 signaling plays a significant role in PJI-related osteoclastogenesis. These findings highlight the potential of PD-1 inhibitors as a novel approach to manage this challenging clinical condition.
Collapse
Affiliation(s)
- Yi Ren
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denise Jahn
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefanie Donner
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Clemens Gwinner
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Weijie Du
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, Berlin, Germany
| | - Dimitrios L Wagner
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Augustenburger Platz 1, Berlin, Germany
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Kienzle
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany.
| |
Collapse
|
2
|
Hu H, Ding H, Lyu J, Chen Y, Huang C, Zhang C, Li W, Fang X, Zhang W. Detection of rare microorganisms in bone and joint infections by metagenomic next-generation sequencing. Bone Joint Res 2024; 13:401-410. [PMID: 39142657 PMCID: PMC11324352 DOI: 10.1302/2046-3758.138.bjr-2023-0420.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Aims This aim of this study was to analyze the detection rate of rare pathogens in bone and joint infections (BJIs) using metagenomic next-generation sequencing (mNGS), and the impact of mNGS on clinical diagnosis and treatment. Methods A retrospective analysis was conducted on 235 patients with BJIs who were treated at our hospital between January 2015 and December 2021. Patients were divided into the no-mNGS group (microbial culture only) and the mNGS group (mNGS testing and microbial culture) based on whether mNGS testing was used or not. Results A total of 147 patients were included in the no-mNGS group and 88 in the mNGS group. The mNGS group had a higher detection rate of rare pathogens than the no-mNGS group (21.6% vs 10.2%, p = 0.016). However, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and higher infection control rates compared with the no-mNGS group (p = 0.017, p = 0.003, and p = 0.028, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.957). In culture-negative cases, the mNGS group had lower rates of antibiotic-related complications, shorter hospital stays, and a higher infection control rate than the no-mNGS group (p = 0.036, p = 0.033, p = 0.022, respectively), while there was no significant difference in the duration of antibiotic use (p = 0.748). Conclusion mNGS improves detection of rare pathogens in BJIs. mNGS testing reduces antibiotic-related complications, shortens hospital stay and antibiotic use duration, and improves treatment success rate, benefits which are particularly evident in culture-negative cases.
Collapse
Affiliation(s)
- Hongxin Hu
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianhua Lyu
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yang Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Changyu Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaofan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenbo Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyu Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wenming Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Orthopaedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Siverino C, Tirkkonen-Rajasalo L, Freitag L, Günther C, Thompson K, Styger U, Zeiter S, Eglin D, Stadelmann VA. Restoring implant fixation strength in osteoporotic bone with a hydrogel locally delivering zoledronic acid and bone morphogenetic protein 2. A longitudinal in vivo microCT study in rats. Bone 2024; 180:117011. [PMID: 38176642 DOI: 10.1016/j.bone.2023.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Osteoporosis poses a major public health challenge, and it is characterized by low bone mass, deterioration of the microarchitecture of bone tissue, causing a consequent increase in bone fragility and susceptibility to fractures and complicating bone fixation, particularly screw implantation. In the present study, our aim was to improve implant stability in osteoporotic bone using a thermoresponsive hyaluronan hydrogel (HA-pNIPAM) to locally deliver the bisphosphonate zoledronic acid (ZOL) to prevent bone resorption and bone morphogenetic protein 2 (BMP2) to induce bone formation. Adult female Wistar rats (n = 36) were divided into 2 treatment groups: one group of SHAM-operated animals and another group that received an ovariectomy (OVX) to induce an osteoporotic state. All animals received a polyetheretherketone (PEEK) screw in the proximal tibia. In addition, subgroups of SHAM or OVX animals received either the HA-pNIPAM hydrogel without or with ZOL/BMP2, placed into the defect site prior to screw implantation. Periprosthetic bone and implant fixation were monitored using longitudinal in vivo microCT scanning post-operatively and at 3, 6, 9, 14, 20 and 28 days. Histological assessment was performed post-mortem. Our data showed that pure hydrogel has no impact of implant fixation The ZOL/BMP2-hydrogel significantly increased bone-implant contact and peri-implant bone fraction, primarily through reduced resorption. STATEMENT OF CLINICAL SIGNIFICANCE: Local delivery of ZOL and BMP2 using a biocompatible hydrogel improved implant stability in osteoporotic bone. This approach could constitute a potent alternative to systemic drug administration and may be useful in avoiding implant loosening in clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Eglin
- AO Research Institute Davos, Davos, Switzerland; Mines Saint-Étienne, Univ Jean Monnet, INSERM, U1059 Sainbiose, Saint-Étienne, France.
| | - Vincent A Stadelmann
- AO Research Institute Davos, Davos, Switzerland; Schulthess Klinik, Department of Research and Development, Zürich, Switzerland.
| |
Collapse
|
4
|
Luo W, Jiang Y, Liu J, Sun B, Gao X, Algharib SA, Guo D, Wei J, Wei Y. Antibiofilm activity of polyethylene glycol-quercetin nanoparticles-loaded gelatin-N,O-carboxymethyl chitosan composite nanogels against Staphylococcus epidermidis. J Vet Sci 2024; 25:e30. [PMID: 38568831 PMCID: PMC10990912 DOI: 10.4142/jvs.23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. OBJECTIVES Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. METHODS The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. RESULTS Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. CONCLUSIONS This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.
Collapse
Affiliation(s)
- Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Yongtao Jiang
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Jinhuan Liu
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar 843300, China
- Lab for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 610000, China
| | - Beibei Sun
- Instrumental Analysis Center, Tarim University, Alar 843300, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Samah Attia Algharib
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jie Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830000, China.
| | - Yurong Wei
- Xinjiang Key Laboratory of Animal Infectious Diseases/Institute of Veterinary Medicine, Xinjiang Academy of Animal Sciences, Urumqi 830000, China.
| |
Collapse
|
5
|
Constant C, Moriarty TF, Arens D, Pugliese B, Zeiter S. Peri-anesthetic hypothermia in rodents: A factor to consider for accurate and reproducible outcomes in orthopedic device-related infection studies. J Orthop Res 2023; 41:619-628. [PMID: 35716157 DOI: 10.1002/jor.25397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023]
Abstract
Orthopedic device-related infection (ODRI) preclinical models are widely used in translational research. Most ODRI models require induction of general anesthesia, which frequently results in hypothermia in rodents. This study aimed to evaluate the impact of peri-anesthetic hypothermia in rodents on outcomes in preclinical ODRI studies. A retrospective analysis of all rodents that underwent surgery under general anesthesia to induce an ODRI model with inoculation of Staphylococcus epidermidis between 2016 and 2020 was conducted. A one-way multivariate analysis of covariance (one-way MANCOVA) was used to determine the fixed effect of peri-anesthetic hypothermia (hypothermic defined as rectal temperature <35°C) on the combined harvested tissue and implant colony-forming unit (CFU) counts, and having controlled for the study groups including treatments received, duration of surgery and anesthesia, and study period. The results showed a significant effect of peri-anesthetic hypothermia on the post-mortem combined CFU counts from the harvested tissue and implant(s) (p = 0.01) when comparing normo- versus hypothermic rodents. Using Wilks' Λ as a criterion to determine the contribution of independent variables to the model, peri-anesthetic hypothermia was the most significant, though still a weak predictor, of increased harvested CFU counts. Altogether, the data corroborate the concept that bacterial colonization is affected by abnormal body temperature during general anesthesia at the time of bacterial inoculation in rodents, which needs to be taken into consideration to decrease infection data variability and improve experimental reproducibility.
Collapse
|
6
|
Ren Y, Bäcker H, Müller M, Kienzle A. The role of myeloid derived suppressor cells in musculoskeletal disorders. Front Immunol 2023; 14:1139683. [PMID: 36936946 PMCID: PMC10020351 DOI: 10.3389/fimmu.2023.1139683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The immune system is closely linked to bone homeostasis and plays a pivotal role in several pathological and inflammatory conditions. Through various pathways it modulates various bone cells and subsequently sustains the physiological bone metabolism. Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous immature myeloid-derived cells that can exert an immunosuppressive function through a direct cell-to-cell contact, secretion of anti-inflammatory cytokines or specific exosomes. These cells mediate the innate immune response to chronic stress on the skeletal system. In chronic inflammation, MDSCs act as an inner offset to rebalance overactivation of the immune system. Moreover, they have been found to be involved in processes responsible for bone remodeling in different musculoskeletal disorders, autoimmune diseases, infection, and cancer. These cells can not only cause bone erosion by differentiating into osteoclasts, but also alleviate the immune reaction, subsequently leading to long-lastingly impacted bone remodeling. In this review, we discuss the impact of MDSCs on the bone metabolism under several pathological conditions, the involved modulatory pathways as well as potential therapeutic targets in MDSCs to improve bone health.
Collapse
Affiliation(s)
- Yi Ren
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Henrik Bäcker
- Department of Orthopedics, Auckland City Hospital, Auckland, New Zealand
| | - Michael Müller
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Arne Kienzle
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité — Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Arne Kienzle,
| |
Collapse
|
7
|
Li J, Wong RMY, Chung YL, Leung SSY, Chow SKH, Ip M, Cheung WH. Fracture-related infection in osteoporotic bone causes more severe infection and further delays healing. Bone Joint Res 2022; 11:49-60. [PMID: 35100815 PMCID: PMC8882324 DOI: 10.1302/2046-3758.112.bjr-2021-0299.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aims With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI). Methods A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Staphylococcus aureus at 4 × 104 colony-forming units (CFU)/ml was inoculated. Rats were euthanized at four and eight weeks post-surgery. Radiography, micro-CT, haematoxylin-eosin, mechanical testing, immunohistochemistry (IHC), gram staining, agar plating, crystal violet staining, and scanning electron microscopy were performed. Results Agar plating analysis revealed a higher bacterial load in bone (p = 0.002), and gram staining showed higher cortical bone colonization (p = 0.039) in OVX-Inf compared to Sham-Inf. OVX-Inf showed significantly increased callus area (p = 0.013), but decreased high-density bone volume (p = 0.023) compared to Sham-Inf. IHC staining showed a significantly increased expression of TNF-α in OVX-Inf compared to OVX (p = 0.049). Significantly reduced bacterial load on bone (p = 0.001), enhanced ultimate load (p = 0.001), and energy to failure were observed in Sham-Inf-A compared to Sham-Inf (p = 0.028), but not in OVX-Inf-A compared to OVX-Inf. Conclusion In osteoporotic bone with FRI, infection was more severe with more bone lysis and higher bacterial load, and fracture-healing was further delayed. Systemic antibiotics significantly reduced bacterial load and enhanced callus quality and strength in normal bone with FRI, but not in osteoporotic bone. Cite this article: Bone Joint Res 2022;11(2):49–60.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Simon Kwoon-Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Margaret Ip
- Department of Microbiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Siverino C, Freitag L, Arens D, Styger U, Richards RG, Moriarty TF, Stadelmann VA, Thompson K. Titanium Wear Particles Exacerbate S. epidermidis-Induced Implant-Related Osteolysis and Decrease Efficacy of Antibiotic Therapy. Microorganisms 2021; 9:microorganisms9091945. [PMID: 34576840 PMCID: PMC8468325 DOI: 10.3390/microorganisms9091945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Total joint arthroplasty (TJA) surgeries are common orthopedic procedures, but bacterial infection remains a concern. The aim of this study was to assess interactions between wear particles (WPs) and immune cells in vitro and to investigate if WPs affect the severity, or response to antibiotic therapy, of a Staphylococcus epidermidis orthopedic device-related infection (ODRI) in a rodent model. Biofilms grown on WPs were challenged with rifampin and cefazolin (100 µg/mL) to determine antibiotic efficacy. Neutrophils or peripheral blood mononuclear cells (PBMCs) were incubated with or without S. epidermidis and WPs, and myeloperoxidase (MPO) and cytokine release were analyzed, respectively. In the ODRI rodent model, rats (n = 36) had a sterile or S. epidermidis-inoculated screw implanted in the presence or absence of WPs, and a subgroup was treated with antibiotics. Bone changes were monitored using microCT scanning. The presence of WPs decreased antibiotic efficacy against biofilm-resident bacteria and promoted MPO and pro-inflammatory cytokine production in vitro. WPs exacerbated osteolytic responses to S. epidermidis infection and markedly reduced antibiotic efficacy in vivo. Overall, this work shows that the presence of titanium WPs reduces antibiotic efficacy in vitro and in vivo, induces proinflammatory cytokine release, and exacerbates S. epidermidis-induced osteolysis.
Collapse
Affiliation(s)
- Claudia Siverino
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - Linda Freitag
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - Daniel Arens
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - Ursula Styger
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - R. Geoff Richards
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - T. Fintan Moriarty
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
| | - Vincent A. Stadelmann
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
- Department of Teaching, Research and Development, Schulthess Clinic, 8008 Zürich, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos-Platz, Switzerland; (C.S.); (L.F.); (D.A.); (U.S.); (R.G.R.); (T.F.M.); (V.A.S.)
- Correspondence: ; Tel.: +41-81-414-2325
| |
Collapse
|
9
|
Ohnishi T, Ogawa Y, Suda K, Komatsu M, Harmon SM, Asukai M, Takahata M, Iwasaki N, Minami A. Molecular Targeted Therapy for the Bone Loss Secondary to Pyogenic Spondylodiscitis Using Medications for Osteoporosis: A Literature Review. Int J Mol Sci 2021; 22:ijms22094453. [PMID: 33923233 PMCID: PMC8123121 DOI: 10.3390/ijms22094453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Pyogenic spondylodiscitis can cause severe osteolytic and destructive lesions in the spine. Elderly or immunocompromised individuals are particularly susceptible to infectious diseases; specifically, infections in the spine can impair the ability of the spine to support the trunk, causing patients to be bedridden, which can also severely affect the physical condition of patients. Although treatments for osteoporosis have been well studied, treatments for bone loss secondary to infection remain to be elucidated because they have pathological manifestations that are similar to but distinct from those of osteoporosis. Recently, we encountered a patient with severely osteolytic pyogenic spondylodiscitis who was treated with romosozumab and exhibited enhanced bone formation. Romosozumab stimulated canonical Wnt/β-catenin signaling, causing robust bone formation and the inhibition of bone resorption, which exceeded the bone loss secondary to infection. Bone loss due to infections involves the suppression of osteoblastogenesis by osteoblast apoptosis, which is induced by the nuclear factor-κB and mitogen-activated protein kinase pathways, and osteoclastogenesis with the receptor activator of the nuclear factor-κB ligand-receptor combination and subsequent activation of the nuclear factor of activated T cells cytoplasmic 1 and c-Fos. In this study, we review and discuss the molecular mechanisms of bone loss secondary to infection and analyze the efficacy of the medications for osteoporosis, focusing on romosozumab, teriparatide, denosumab, and bisphosphonates, in treating this pathological condition.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
- Correspondence: ; Tel.: +11-81-126-63-2151
| | - Yuki Ogawa
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Kota Suda
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Miki Komatsu
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Satoko Matsumoto Harmon
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Mitsuru Asukai
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| | - Masahiko Takahata
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (M.T.); (N.I.)
| | - Akio Minami
- Department of Orthopaedic Surgery, Hokkaido Spinal Cord Injury Center, Bibai 072-0015, Japan; (Y.O.); (K.S.); (M.K.); (S.M.H.); (M.A.); (A.M.)
| |
Collapse
|
10
|
Mu Y, Zeng H, Chen W. Quercetin Inhibits Biofilm Formation by Decreasing the Production of EPS and Altering the Composition of EPS in Staphylococcus epidermidis. Front Microbiol 2021; 12:631058. [PMID: 33763049 PMCID: PMC7982815 DOI: 10.3389/fmicb.2021.631058] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen, and its biofilm formation ability is an important virulent factor. Quercetin, a typical flavonoid ubiquitously used in dietary supplementation, is known for its antioxidant property, but its anti-biofilm activity against S. epidermidis remains unknown. In this study, the anti-biofilm activity of quercetin was investigated using S. epidermidis ATCC35984, a strong biofilm-positive strain. An attempt was made to disclose the mechanisms of the anti-biofilm activity of quercetin. S. epidermidis exhibited a less cell surface hydrophobicity after quercetin treatment. Also, quercetin effectively inhibited S. epidermidis cells from adhering to the glass slides. Quercetin downregulated the intercellular adhesion (ica) locus and then polysaccharide intercellular adhesin (PIA) production was reduced. Therefore, S. epidermidis cells became less hydrophobic, which supported quercetin’s anti-biofilm effect. Our study suggests that quercetin from plants be given further attention as a potential anti-biofilm agent against the biofilm formation of S. epidermidis, even biofilm infections of other bacteria.
Collapse
Affiliation(s)
- Yongqi Mu
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China.,College of Life Sciences, Tarim University, Alar, China
| | - Hong Zeng
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China.,College of Life Sciences, Tarim University, Alar, China
| | - Wei Chen
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim University, Alar, China.,College of Life Sciences, Tarim University, Alar, China.,College of Animal Sciences Tarim University, Alar, China.,Key Laboratory of Tarim Animal Husbandry and Science Technology of Xinjiang Production and Construction Corps, Tarim University, Alar, China.,Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control of Xinjiang Production and Construction Corps, Tarim University, Alar, China
| |
Collapse
|