1
|
Liu J, Sun X, Liang J, Song S. Eugenol alleviates renal ischemia-reperfusion injury induced-endoplasmic reticulum stress via activating Sestrin2. Clinics (Sao Paulo) 2025; 80:100627. [PMID: 40138864 PMCID: PMC11985136 DOI: 10.1016/j.clinsp.2025.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Renal Ischemia-Reperfusion Injury (RIRI) often arises due to heightened oxidative stress, rendering it a central focus of research. Sestrin2 plays a pivotal role in regulating oxidative stress; nevertheless, its impact on the renoprotective properties of Eugenol (EU) during RIRI warrants further investigation. METHODS Mice and TCMK-1 cells were categorically assigned into six groups: Sham/Control, Ischemia-Reperfusion (IR)/HR (Hypoxia-Reoxygenation), IR/HR+EU, Sham/Control+Sestrin2-KO, IR/HR+Sestrin2-KO, and IR/HR+EU+Sestrin2-KO. The effects of EU and the involvement of Sestrin2 in RIRI/HR were evaluated using Urea Nitrogen (BUN), Creatinine (Scr), Superoxide Dismutase (SOD), Glutathione (GSH), Catalase (CAT), and Malondialdehyde (MDA) assay kits; western blotting; cell viability assays; HE-staining; and Reactive Oxygen Species (ROS) detection. RESULTS Following RIRI/HR, a marked deterioration in kidney function and a significant surge in oxidative stress levels were observed. However, EU treatment ameliorated renal injury and inhibited oxidative stress. Additionally, EU upregulated Sestrin2 expression, and the renoprotective effects of EU were reversed upon Sestrin2 knockdown. CONCLUSION The present study posits that EU effectively mitigates RIRI/HRI (Hypoxia-Reoxygenation Injury), and its mechanism of renal protection potentially involves the upregulation of Sestrin2, coupled with the inhibition of oxidative and Endoplasmic Reticulum Stress (ERS).
Collapse
Affiliation(s)
- Jingwei Liu
- Department of Urology, Qingdao Chengyang People's Hospital, Qingdao, Shandong Province, PR China
| | - Xujie Sun
- Department of Urology, Qingdao Chengyang People's Hospital, Qingdao, Shandong Province, PR China
| | - Junfeng Liang
- Department of Urology, Qingdao Chengyang People's Hospital, Qingdao, Shandong Province, PR China
| | - Shiqiang Song
- Department of Urology, Qingdao Chengyang People's Hospital, Qingdao, Shandong Province, PR China.
| |
Collapse
|
2
|
Lu J, Shi Z, Geng L, Ren D, Hou H, Ren G, Yao S, Wang P. Transcriptional Analysis Reveals That the FHL1/JAK-STAT Pathway is Involved in Acute Cartilage Injury in Mice. Cartilage 2025:19476035251323601. [PMID: 40119525 PMCID: PMC11948231 DOI: 10.1177/19476035251323601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/24/2025] Open
Abstract
ObjectiveThis study aimed to identify genes and signaling pathways associated with acute cartilage injury using RNA sequencing (RNA-seq).MethodsKnee joint cartilage samples were collected from normal mice and 2 models of acute cartilage injury (non-invasive and groove models) within an 8-hour time limit. RNA-seq revealed differential gene expression between the injury models and controls, with subsequent validation using real-time quantitative polymerase chain reaction (RT-qPCR) for 9 representative genes.ResultsCompared to controls, the non-invasive model showed 36 differentially expressed genes (DEGs) (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the most significant upregulation and downregulation, respectively. The groove model exhibited 255 DEGs (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the (222 up-regulated, 33 down-regulated). Six overlapping genes were identified between the non-invasive and groove models, including up-regulated genes (Igfn1, Muc6, Hmox1) and down-regulated genes (Pthlh, Cyp1a1, Gm13490), validated by RT-qPCR. Gene ontology (GO) analysis highlighted involvement in environmental information processing and cartilage organ system function, while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis implicated the JAK-STAT signaling pathway. RT-qPCR and immunohistochemistry confirmed downregulation of Fhl1 in the non-invasive model, supported by Western blotting of p-JAK2/t-JAK2 levels.ConclusionsThis study identifies DEGs (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the in acute cartilage injury, suggesting potential therapeutic targets. The role of Fhl1 in cartilage protection via the JAK-STAT pathway warrants further investigation in acute cartilage injury research.
Collapse
Affiliation(s)
- Jian Lu
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, People’s Republic of China
| | - Lindan Geng
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Dong Ren
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Haowei Hou
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Guowei Ren
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Shuangquan Yao
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Pengcheng Wang
- Department of Orthopedic Surgery, Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Liu H, Wang Y, Wang S, Yang B, Sun D, Han S. STUDY ON THE ROLE AND MECHANISM OF MICRORNA-650/WNT1 IN THE REPAIR OF ARTICULAR CARTILAGE INJURY. ACTA ORTOPEDICA BRASILEIRA 2024; 32:e278218. [PMID: 39386291 PMCID: PMC11460656 DOI: 10.1590/1413-785220243204e278218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 10/12/2024]
Abstract
Objectives Osteoarthritis (OA) is a degenerative disease associated with chondrocyte injury. This study investigated the dysregulation of microRNA-650 (miR-650) in cartilage tissues of patients with OA. Its function and mechanism were also investigated in OA cell models. Methods miR-650 levels were examined in 15 OA cartilage tissues and ten healthy cartilage tissues. SW1353 cells were used for cell function experiments and IL-1β was applied to the cells to mimic OA conditions in vitro. Cell functions such as proliferation, apoptosis, and inflammation were detected. The downstream target gene of miR-650 was identified and confirmed by bioinformatic analysis and luciferase activity assay. Rescue experiments were performed to verify the mechanism. Results Suppressed expression of miR-650 was tested in patients with OA and cell models. Overexpression of miR-650 increased cell proliferation but suppressed apoptosis and inflammation of SW1353. As the target gene of miR-650, WNT1 overexpression counteracted the role of miR-650 in the function of SW1353. Conclusion miR-650 can protect against articular cartilage injury in OA by targeting WNT1. Level of Evidence I, Experimental Study.
Collapse
Affiliation(s)
- Hui Liu
- Peking University Third Hospital, Qinhuangdao Hospital, Department of Nursing, Qinhuangdao, Hebei Province, China
| | - Yue Wang
- Peking University Third Hospital, Qinhuangdao Hospital, Department of Nursing, Qinhuangdao, Hebei Province, China
| | - Shuyuan Wang
- Peking University Third Hospital, Qinhuangdao Hospital, Department of Nursing, Qinhuangdao, Hebei Province, China
| | - Bo Yang
- Peking University Third Hospital, Qinhuangdao Hospital, Department of Nursing, Qinhuangdao, Hebei Province, China
| | - Di Sun
- Peking University Third Hospital, Qinhuangdao Hospital, Department of Orthopedics, Qinhuangdao, Hebei Province, China
| | - Shuangyang Han
- Peking University Third Hospital, Qinhuangdao Hospital, Department of Orthopedics, Qinhuangdao, Hebei Province, China
| |
Collapse
|
4
|
Yu S, Shu X, Wang X, Sheng Y, Li S, Wang Y, Zhang Y, Tao J, Jiang X, Wu C. The novel HSP90 monoclonal antibody 9B8 ameliorates articular cartilage degeneration by inhibiting glycolysis via the HIF-1 signaling pathway. Heliyon 2024; 10:e35603. [PMID: 39229534 PMCID: PMC11369415 DOI: 10.1016/j.heliyon.2024.e35603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic degenerative disease that affects the bones and joints, particularly in middle-aged and elderly individuals. It is characterized by progressive joint pain, swelling, stiffness, and deformity. Notably, treatment with a heat shock protein 90 (HSP90) inhibitor has significantly curtailed cartilage destruction in a rat model of OA. Although the monoclonal antibody 9B8 against HSP90 is recognized for its anti-tumor properties, its potential therapeutic impact on OA remains uncertain. This study investigated the effects of 9B8 on OA and its associated signaling pathways in interleukin-1β (IL-1β)-stimulated human chondrocytes and a rat anterior cruciate ligament transection (ACLT) model. A specific concentration of 9B8 preserved cell viability against IL-1β-induced reduction. In vitro, 9B8 significantly reduced the expression of extracellular matrix-degrading enzyme such as disintegrin and metallopeptidase-4 (ADAMTS4) of thrombospondin motifs, matrix metalloproteinase-13 (MMP-13), as well as cellular inflammatory factors such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which were upregulated by IL-1β. In vivo, 9B8 effectively protected the articular cartilage and subchondral bone of the rat tibial plateau from ACLT-induced damage. Additionally, gene microarray analysis revealed that IL-1β substantially increased the expression of SLC2A1, PFKP, and ENO2 within the HIF-1 signaling pathway, whereas 9B8 suppressed the expression of these genes. Thus, 9B8 effectively mitigates ACLT-induced osteoarthritis in rats by modulating the HIF-1 signaling pathway, thereby inhibiting overexpression involved in glycolysis. These results collectively indicate that 9B8 is a promising novel drug for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Shunan Yu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xiong Shu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xinyu Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Shan Li
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Ying Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Yanzhuo Zhang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Jiangfeng Tao
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| | - Xu Jiang
- Department of Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, PR China
| | - Chengai Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, National Center for Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, PR China
| |
Collapse
|
5
|
Zhang YZ, Wei ZJ, Yu SN, Wang XY, Wang Y, Wu CA, Jiang X. Dihydrotanshinone I protects human chondrocytes and alleviates damage from spontaneous osteoarthritis in a guinea pig model. Sci Rep 2023; 13:21355. [PMID: 38049518 PMCID: PMC10696037 DOI: 10.1038/s41598-023-48902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. Currently, no satisfactory pharmacological treatment exists for OA. The potential anti-inflammatory properties of Dihydrotanshinone I (DHT) have been reported, but its effects on OA are unclear. In this study, we assess the impact of DHT on the viability of human chondrocytes in vitro. We then use a guinea pig model to investigate the effects of DHT on knee osteoarthritis progression. Twelve-week-old Dunkin Hartley guinea pigs spontaneously developing OA were intraperitoneally injected with different doses of DHT for eight weeks. Micro-CT analysis was performed on the subchondral bone in the knee, and histological assessment of the knee joint was done using stained sections, the ratio of hyaline to calcified cartilage, and Mankin scores. DHT successfully restored IL-1β-induced decreases in cell viability in human primary chondrocytes. In the guinea pig model, intraperitoneal injections of DHT ameliorated age-induced OA, effectively reduced the expression level of two cartilage metabolism-related genes (ADAMTS4 and MMP13) and decreased the inflammatory biomarker IL-6 in the serum of guinea pigs developing spontaneous osteoarthritis. These findings demonstrate DHT's protective effects on chondrocytes and suggest that it alleviates cartilage degradation and proteoglycan loss in OA.
Collapse
Affiliation(s)
- Yan-Zhuo Zhang
- National Center for Orthopaedics, Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Zhen-Jie Wei
- National Center for Orthopaedics, Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Shu-Nan Yu
- National Center for Orthopaedics, Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Xin-Yu Wang
- National Center for Orthopaedics, Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Ying Wang
- National Center for Orthopaedics, Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Cheng-Ai Wu
- National Center for Orthopaedics, Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Xu Jiang
- National Center for OrthopaedicsDepartment of Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China.
| |
Collapse
|