1
|
López-Valverde N, López-Valverde A, Blanco Rueda JA. Role of hyaluronic acid in the treatment of peri-implant diseases: results of a meta-analysis. FRONTIERS IN ORAL HEALTH 2025; 6:1564599. [PMID: 40376205 PMCID: PMC12078234 DOI: 10.3389/froh.2025.1564599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/24/2025] [Indexed: 05/18/2025] Open
Abstract
Peri-implantitis is an infectious-inflammatory disease that affects the tissues surrounding implants and is one of the main causes of implant failure. Hyaluronic acid (HA) is a natural polymer with multiple biomedical and cosmetic applications. The aim of this systematic review and meta-analysis was to evaluate its efficacy in the treatment of peri-implant disease. Methods In accordance with PRISMA, the question was established: is HA treatment effective as a sole or adjunctive therapy for the treatment of peri-implantitis? PubMed/Medline, Embase, Cochrane Central, Dentistry & Oral Sciences Source and Web of Science were searched until December 2024. Inclusion criteria were interventional studies (RCTs and case series), according to the PICOs strategy in subjects with peri-implant pathology (participants), treated with HA (intervention) compared to conventionally treated or untreated patients (control) and assessing response to treatment (outcomes). Results Thirty-two studies were obtained and four were selected. Risk of bias was assessed using the Cochrane Risk of Bias tool and methodological quality using the Joanna Briggs Institute tool. Meta-analysis of parameters was performed for pooled studies and for subgroups. The overall effect was in favour of the experimental group. Conclusions The use of HA as background or adjunctive therapy in peri-implantitis may be effective, although well-designed RCTs are warranted to validate the efficacy of the product. Systematic Review Registration Identifier (INPLANSY 2024100050).
Collapse
Affiliation(s)
| | - Antonio López-Valverde
- Department of Surgery, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | | |
Collapse
|
2
|
Atagün ÖS, Şen SC, Ustaoğlu G, Özcan E. Effects of 0.2% Hyaluronic Acid Gel-Impregnated Dental Floss on Clinical Gingival Parameters: A Randomised Clinical Trial. Int J Dent Hyg 2025; 23:312-318. [PMID: 39473003 PMCID: PMC11982619 DOI: 10.1111/idh.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 10/13/2024] [Indexed: 04/11/2025]
Abstract
OBJECTIVES Gingivitis is a common inflammatory lesion caused by the build-up of oral biofilm and is an essential precursor to periodontitis. For its treatment, oral hygiene habits, such as dental flossing, must be improved, and adjunctive materials, such as hyaluronic acid, may be used to reduce plaque formation and gingival inflammation. This study aimed to assess the effects of 0.2% hyaluronic acid gel-impregnated dental floss on the clinical periodontal markers of patients with gingivitis. MATERIAL AND METHODS This clinical study adopted a split-mouth, randomised controlled trial design. After clinical data were assessed at baseline, and supragingival scaling was performed, bilateral gingivitis regions were randomly allocated to either the hyaluronic acid gel-impregnated floss group or just the floss group using a computer-generated randomisation table. Clinical parameters were recorded at 1, 2 and 4 weeks after treatment. RESULTS Over the 4-week trial period, all patients showed significant improvements in all clinical periodontal markers. The 1-week plaque index, 4-week gingival index and 4-week papillary bleeding index were significantly lower in the test group than in the control group (p < 0.05). CONCLUSIONS The use of hyaluronic acid-impregnated dental floss has resulted in more significant improvements in clinical periodontal parameters compared to dental floss alone. For ease of use, ready-made products with this innovative formulation may be produced. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT06307041.
Collapse
Affiliation(s)
- Özlem Saraç Atagün
- Department of Periodontology, Gülhane Faculty of DentistryUniversity of Health SciencesAnkaraTurkey
| | - Seval Ceylan Şen
- Department of Periodontology, Gülhane Faculty of DentistryUniversity of Health SciencesAnkaraTurkey
| | - Gülbahar Ustaoğlu
- Department of Periodontology, Gülhane Faculty of DentistryUniversity of Health SciencesAnkaraTurkey
| | - Erkan Özcan
- Department of Periodontology, Gülhane Faculty of DentistryUniversity of Health SciencesAnkaraTurkey
| |
Collapse
|
3
|
Acar B, Guncu GN. Current status and management of peri-implantitis: A systematic review. Prim Dent J 2024; 13:77-92. [PMID: 39726090 DOI: 10.1177/20501684241270111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
AIM To systematically review the literature on the surgical and non-surgical methods for managing peri-implantitis. MATERIALS AND METHODS An electronic search for randomised controlled trials published between 2019 and 2023 in the English language was performed with the Medline/PubMed database according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The specific search terms were "periimplantitis", "non-surgical treatment", "surgical treatment" and combinations of these terms. RESULTS The initial search yielded 2,704 relevant articles. Most of these articles were excluded based on publication type and year. At this stage, only two articles were excluded from the study because they were not written in English. Of the remaining 98 articles, seven were eliminated because the full text could not be accessed, and the others were excluded because their study topics and types were not within the scope of this review. Six out of the 51 studies, whose full texts were assessed for eligibility, were further excluded. Finally, 45 articles that met the inclusion criteria of this review were evaluated. CONCLUSION Personalised and evidence-based approaches in the treatment of peri-implantitis are at the forefront in achieving the long-term success of peri-implantitis therapy. Further evidence is needed for the outcomes of surgical or non-surgical peri-implantitis treatment methods applied alone or with adjunctive therapies.
Collapse
Affiliation(s)
- Buket Acar
- Buket Acar DDS Assistant Professor, University of Hacettepe, Faculty of Dentistry, Department of Periodontology, Ankara, Turkey
- Guliz N. Guncu DDS, PhD Professor, University of Hacettepe, Faculty of Dentistry, Department of Periodontology, Ankara, Turkey
| | - Guliz N Guncu
- Buket Acar DDS Assistant Professor, University of Hacettepe, Faculty of Dentistry, Department of Periodontology, Ankara, Turkey
- Guliz N. Guncu DDS, PhD Professor, University of Hacettepe, Faculty of Dentistry, Department of Periodontology, Ankara, Turkey
| |
Collapse
|
4
|
Zhu X, Sculean A, Eick S. In-vitro effects of different hyaluronic acids on periodontal biofilm-immune cell interaction. Front Cell Infect Microbiol 2024; 14:1414861. [PMID: 38938883 PMCID: PMC11208323 DOI: 10.3389/fcimb.2024.1414861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Recent studies have demonstrated a positive role of hyaluronic acid (HA) on periodontal clinical outcomes. This in-vitro study aimed to investigate the impact of four different HAs on interactions between periodontal biofilm and immune cells. Methods The four HAs included: high-molecular-weight HA (HHA, non-cross-linked), low-molecular-weight HA (LHA), oligomers HA (OHA), and cross-linked high-molecular-weight HA (CHA). Serial experiments were conducted to verify the influence of HAs on: (i) 12-species periodontal biofilm (formation and pre-existing); (ii) expression of inflammatory cytokines and HA receptors in monocytic (MONO-MAC-6) cells and periodontal ligament fibroblasts (PDLF) with or without exposure to periodontal biofilms; (iii) generation of reactive oxygen species (ROS) in MONO-MAC-6 cells and PDLF with presence of biofilm and HA. Results The results indicated that HHA and CHA reduced the bacterial counts in a newly formed (4-h) biofilm and in a pre-existing five-day-old biofilm. Without biofilm challenge, OHA triggered inflammatory reaction by increasing IL-1β and IL-10 levels in MONO-MAC cells and IL-8 in PDLF in a time-dependent manner, whereas CHA suppressed this response by inhibiting the expression of IL-10 in MONO-MAC cells and IL-8 in PDLF. Under biofilm challenge, HA decreased the expression of IL-1β (most decreasing HHA) and increased IL-10 levels in MONO-MAC-6 cells in a molecular weight dependent manner (most increasing CHA). The interaction between HA and both cells may occur via ICAM-1 receptor. Biofilm stimulus increased ROS levels in MONO-MAC-6 cells and PDLF, but only HHA slightly suppressed the high generation of ROS induced by biofilm stimulation in both cells. Conclusion Overall, these results indicate that OHA induces inflammation, while HHA and CHA exhibit anti-biofilm, primarily anti-inflammatory, and antioxidant properties in the periodontal environment.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Qasim SSB, Trajkovski B, Zafiropoulos GG. The response of human osteoblasts on bovine xenografts with and without hyaluronate used in bone augmentation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:880-897. [PMID: 38346177 DOI: 10.1080/09205063.2024.2311454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
The aim of the in vitro study was to asses the effect of hyaluronate in conjunction with bovine derived xenografts on the viability, proliferation on day 4, 7 and 10, expression of early osteogenic differentiation marker Alkaline phosphatase on day 14 and 21, collagen, calcium deposition on day 14, 21 and 28 and cellular characteristics, as assessed through live cell image analysis, confocal laser scanning microscopy and scanning electron microscopy, in primary human osteoblasts compared to three bovine xenografts without hyaluronate. All experiments were performed in triplicates. Data were compared between groups and timepoints using one-way analysis of variance (ANOVA). Bonferroni post hoc test were further used for multiple comparison between groups (p < .05) An increase in cell viability (p < .05) and enhanced ALP activity was observed in all xenografts. Specimens containing hyaluronate showed a highest significant difference (23755 ± 29953, p < .0001). The highest levels of calcium (1.60 ± 0.30) and collagen (1.92 ± 0.09, p < .0001) deposition were also observed with hyaluronate loaded groups. The osteoblasts were well attached and spread on all xenograft groups. However, a higher number of cells were observed with hyaluronate functionalized xenograft (76.27 ± 15.11, (p < .0001) in live cell image analysis and they migrated towards the graft boundaries. The biofunctionalization of xenografts with hyaluronate improves their in vitro performance on human osteoblasts. This suggests that hyaluronate might be able to improve the bone regeneration when using such xenografts.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Branko Trajkovski
- Faculty of Dentistry, College of Dentistry, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
6
|
Padial-Molina M, Montalvo-Acosta S, Martín-Morales N, Pérez-Carrasco V, Magan-Fernandez A, Mesa F, O’Valle F, Garcia-Salcedo JA, Galindo-Moreno P. Correlation between Inflammasomes and Microbiota in Peri-Implantitis. Int J Mol Sci 2024; 25:961. [PMID: 38256037 PMCID: PMC10815557 DOI: 10.3390/ijms25020961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The activation of inflammasomes is thought to induce the inflammatory process around dental implants. No information is available on the correlation between microbiota and inflammasomes in clinical samples from patients suffering peri-implantitis. For this cross-sectional study, 30 biofilm samples were obtained from 19 patients undergoing surgical treatment for peri-implantitis because of the presence of bleeding on probing, probing depth higher than 6 mm, and radiographic bone loss higher than 3 mm. Then, soft tissue samples from around the implant were also collected. The relative abundance of bacteria and alpha-diversity indexes were calculated after analyzing the 16S rRNA gene using next-generation sequencing. The soft-tissue samples were processed for evaluation of the inflammasomes NLRP3 and AIM2 as well as caspase-1 and IL-1β. The relative abundance (mean (SD)) of specific species indicated that the most abundant species were Porphyromonas gingivalis (10.95 (14.17)%), Fusobacterium vincentii (10.93 (13.18)%), Porphyromonas endodontalis (5.89 (7.23)%), Prevotella oris (3.88 (4.94)%), Treponema denticola (2.91 (3.19)%), and Tannerella forsythia (2.84 (4.15)%). Several correlations were found between the species and the immunohistochemical detection of the inflammasomes NLRP3 and AIM2 as well as caspase-1 and IL-1β, both in the epithelium and the lamina propria. A network analysis found an important cluster of variables formed by NLRP3 in the lamina propria and AIM2, caspase-1, and IL-1β in the lamina propria and the epithelium with Prevotella dentalis, Prevotella tannerae, Tannerella forsythia, or Selenomonas timonae. Thus, it could be concluded that inflammasomes NLRP3 and AIM2 and their downstream effectors caspase-1 and interleukin-1β can be significantly associated with specific bacteria.
Collapse
Affiliation(s)
- Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Saray Montalvo-Acosta
- PhD Program in Clinical Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Natividad Martín-Morales
- PhD Program in Biomedicine, University of Granada, 18071 Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Virginia Pérez-Carrasco
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centre for Genomics and Oncological Research, Pfizer–University of Granada–Andalusian Regional Government (GENYO), PTS Granada, 18016 Granada, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Antonio Magan-Fernandez
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain (F.M.)
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain (F.M.)
| | - Francisco O’Valle
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, 18071 Granada, Spain
| | - Jose Antonio Garcia-Salcedo
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Centre for Genomics and Oncological Research, Pfizer–University of Granada–Andalusian Regional Government (GENYO), PTS Granada, 18016 Granada, Spain
- Microbiology Unit, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
7
|
Li X, Yu C, Zhang B, Shan X, Mao W, Zhang Z, Wang C, Jin X, Wang J, Zhao H. The recovery of the microbial community after plaque removal depends on periodontal health status. NPJ Biofilms Microbiomes 2023; 9:75. [PMID: 37805507 PMCID: PMC10560279 DOI: 10.1038/s41522-023-00441-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Plaque accumulation and microbial community changes are important causes of periodontal disease. Cleaned plaque microorganisms will reattach to form biofilms, but the recovery and outcome of plaque microbial communities in different periodontal health states remain unknown. In this study, we tracked the biofilm remodeling process in 206 dental plaque samples from 40 healthy periodontal, gingivitis and periodontitis volunteers at 6 time points before and after supragingival scaling. We found that microbial communities of different periodontal states changed asynchronously during the process, and the more severe the periodontal disease condition, the more lagged the recovery of plaque microorganisms to their original state after cleaning; this reflected a higher degree of plaque development in periodontitis samples. The plaque index and bleeding index were significantly correlated with plaque recovery, especially the recovery of bacteria such as Abiotrophia and Capnocytophaga. Meanwhile, we found that the microbial community structure of different periodontal health states was most similar at the Day 3 after plaque cleaning, and the communities gradually differentiated and developed in different directions. Abiotrophia and other bacteria might play an important role in determining the development trend of plaque biofilms. The discovery of specific time points and bacteria was of great value in clarifying the pathogenesis of periodontal disease and in seeking targets for prevention and treatment.
Collapse
Affiliation(s)
- Xiaoqing Li
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Cheng Yu
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
- Jiangyin Stomatological Hospital/Jiangyin Oral Disease Preventive Treatment, Jiangyin, Jiangsu, China
| | - Bing Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Shan
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Wenjun Mao
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Zicheng Zhang
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China
| | - Chunyan Wang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaoxia Jin
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Hui Zhao
- The Third Clinical Institute Affiliated to Wenzhou Medical University/Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China.
| |
Collapse
|
8
|
Tahmasebi E, Mohammadi M, Alam M, Abbasi K, Gharibian Bajestani S, Khanmohammad R, Haseli M, Yazdanian M, Esmaeili Fard Barzegar P, Tebyaniyan H. The current regenerative medicine approaches of craniofacial diseases: A narrative review. Front Cell Dev Biol 2023; 11:1112378. [PMID: 36926524 PMCID: PMC10011176 DOI: 10.3389/fcell.2023.1112378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Craniofacial deformities (CFDs) develop following oncological resection, trauma, or congenital disorders. Trauma is one of the top five causes of death globally, with rates varying from country to country. They result in a non-healing composite tissue wound as they degenerate in soft or hard tissues. Approximately one-third of oral diseases are caused by gum disease. Due to the complexity of anatomical structures in the region and the variety of tissue-specific requirements, CFD treatments present many challenges. Many treatment methods for CFDs are available today, such as drugs, regenerative medicine (RM), surgery, and tissue engineering. Functional restoration of a tissue or an organ after trauma or other chronic diseases is the focus of this emerging field of science. The materials and methodologies used in craniofacial reconstruction have significantly improved in the last few years. A facial fracture requires bone preservation as much as possible, so tiny fragments are removed initially. It is possible to replace bone marrow stem cells with oral stem cells for CFDs due to their excellent potential for bone formation. This review article discusses regenerative approaches for different types of craniofacial diseases.
Collapse
Affiliation(s)
- Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadi
- School of Dentistry, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Gharibian Bajestani
- Student Research Committee, Dentistry Research Center, Research Institute of Dental Sciences, Dental School, Shahid Behesti University of Medical Sciences, Tehran, Iran
| | - Rojin Khanmohammad
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Haseli
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
9
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
10
|
Yabuuchi S, Oiki S, Minami S, Takase R, Watanabe D, Hashimoto W. Enhanced propagation of Granulicatella adiacens from human oral microbiota by hyaluronan. Sci Rep 2022; 12:10948. [PMID: 35768476 PMCID: PMC9243090 DOI: 10.1038/s41598-022-14857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Host determinants for formation/composition of human oral microbiota remain to be clarified, although microorganisms entering the mouth cannot necessarily colonize the oral environment. Here we show that human oral-abundant bacteria degraded host glycosaminoglycans (GAGs) in saliva and gingiva, and certain bacteria significantly grew on hyaluronan (HA), a kind of GAGs. Microbial communities from teeth or gingiva of healthy donors assimilated HA. Metagenomic analysis of human oral microbiota under different carbon sources revealed HA-driven Granulicatella growth. HA-degrading bacterial strains independently isolated from teeth and gingiva were identified as Granulicatella adiacens producing extracellular 130 kDa polysaccharide lyase as a HA-degrading enzyme encoded in a peculiar GAG genetic cluster containing genes for isomerase KduI and dehydrogenase DhuD. These findings demonstrated that GAGs are one of the host determinants for formation/composition of oral microbiota not only for colonization but also for the adaptation to the host niche. Especially, HA enhanced the G. adiacens propagation.
Collapse
Affiliation(s)
- Shun Yabuuchi
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shuma Minami
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Ryuichi Takase
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Daisuke Watanabe
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
11
|
The Main Bacterial Communities Identified in the Sites Affected by Periimplantitis: A Systematic Review. Microorganisms 2022; 10:microorganisms10061232. [PMID: 35744750 PMCID: PMC9228476 DOI: 10.3390/microorganisms10061232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Periimplantitis is an infectious condition that affects the periimplant tissue and is of bacterial etiology. However, to date, the exact bacterial flora involved in its occurrence is not known. The aim of this literature review was to summarize the articles published on this topic and to identify the main bacterial species isolated in periimplantitis. (2) Methods: The articles published in three databases were researched: Pubmed, Embase and Web of Science using Prisma guides and combinations of MeSH terms. We selected 25 items from the 980 found by applying the inclusion and exclusion criteria. (3) Results: We quantified the results of the 25 studies included in this review. In general, the most commonly identified bacterial species were Gram-negative anaerobic species, as Prevotella, Streptococcus, Fusobacterium and Treponema. (4) Conclusion: The most frequent bacteria in the periimplantitis sites identified in this review are Gram-negative anaerobic species, also involved in the pathogenesis of the periodontal disease.
Collapse
|
12
|
Soriano-Lerma A, García-Burgos M, Alférez MJM, Pérez-Carrasco V, Sanchez-Martin V, Linde-Rodríguez Á, Ortiz-González M, Soriano M, García-Salcedo JA, López-Aliaga I. Gut microbiome-short-chain fatty acids interplay in the context of iron deficiency anaemia. Eur J Nutr 2022; 61:399-412. [PMID: 34383140 DOI: 10.1007/s00394-021-02645-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE Anaemia is a global health concern, with iron deficiency anaemia (IDA) causing approximately 50% of cases. Affecting mostly the elderly, pregnant and adult women and children, physiopathology of IDA in relation to the gut microbiome is poorly understood. Therefore, the objective of this study is to analyse, in an animal model, the effect of IDA on the gut microbiome along the gastrointestinal tract, as well as to relate intestinal dysbiosis to changes in microbial metabolites such as short chain fatty acids (SCFA). METHODS IDA was experimentally induced through an iron deficient diet for a period of 40 days, with twenty weaned male Wistar rats being randomly divided into control or anaemic groups. Blood samples were collected to control haematological parameters, and so were faecal and intestinal content samples to study gut microbial communities and SCFA, using 16S rRNA sequencing and HPLC-UV respectively. RESULTS An intestinal dysbiosis was observed as a consequence of IDA, especially towards the distal segments of the gastrointestinal tract and the colon. An increase in SCFA was also noticed during IDA, with the major difference appearing in the colon and correlating with changes in the composition of the gut microbiome. Clostridium_sensu_stricto_1 and Clostridium_sensu_stricto_4 showed the greatest correlation with variations in butyric and propionic concentrations in the colon of anaemic animals. CONCLUSIONS Composition of intestinal microbial communities was affected by the generation of IDA. An enrichment in certain SCFA-producing genera and SCFA concentrations was found in the colon of anaemic animals, suggesting a trade-off mechanism against disease.
Collapse
Affiliation(s)
- Ana Soriano-Lerma
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
| | - María García-Burgos
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
| | - María J M Alférez
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
| | - Virginia Pérez-Carrasco
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute Ibs. GRANADA, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Victoria Sanchez-Martin
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute Ibs. GRANADA, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Ángel Linde-Rodríguez
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute Ibs. GRANADA, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Matilde Ortiz-González
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04001, Almería, Spain
| | - Miguel Soriano
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04001, Almería, Spain.
| | - José Antonio García-Salcedo
- GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain.
- Microbiology Unit, Biosanitary Research Institute Ibs. GRANADA, University Hospital Virgen de las Nieves, 18014, Granada, Spain.
| | - Inmaculada López-Aliaga
- Department of Physiology (Faculty of Pharmacy, Cartuja University Campus), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
| |
Collapse
|
13
|
Polymeric Scaffolds for Dental, Oral, and Craniofacial Regenerative Medicine. Molecules 2021; 26:molecules26227043. [PMID: 34834134 PMCID: PMC8621873 DOI: 10.3390/molecules26227043] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/10/2023] Open
Abstract
Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clinical indications of polymeric scaffold materials and extracellular matrix technologies for DOC regenerative medicine. More specifically, this review outlines the key properties, advantages and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin, fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of polymeric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric materials used in clinical procedures are discussed including alveolar ridge preservation, vertical and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodontal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition, polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.
Collapse
|
14
|
Kida D, Zakrzewska A, Zborowski J, Szulc M, Karolewicz B. Polymer-Based Carriers in Dental Local Healing-Review and Future Challenges. MATERIALS 2021; 14:ma14143948. [PMID: 34300865 PMCID: PMC8308048 DOI: 10.3390/ma14143948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/01/2023]
Abstract
Polymers in drug formulation technology and the engineering of biomaterials for the treatment of oral diseases constitute a group of excipients that often possess additional properties in addition to their primary function, i.e., biological activity, sensitivity to stimuli, mucoadhesive properties, improved penetration of the active pharmaceutical ingredient (API) across biological barriers, and effects on wound healing or gingival and bone tissue regeneration. Through the use of multifunctional polymers, it has become possible to design carriers and materials tailored to the specific conditions and site of application, to deliver the active substance directly to the affected tissue, including intra-periodontal pocket delivery, and to release the active substance in a timed manner, allowing for the improvement of the form of application and further development of therapeutic strategies. The scope of this review is polymeric drug carriers and materials developed from selected multifunctional groups of natural, semi-synthetic, and synthetic polymers for topical therapeutic applications. Moreover, the characteristics of the topical application and the needs for the properties of carriers for topical administration of an active substance in the treatment of oral diseases are presented to more understand the difficulties associated with the design of optimal active substance carriers and materials for the treatment of lesions located in the oral cavity.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-0315
| | - Aneta Zakrzewska
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Jacek Zborowski
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Małgorzata Szulc
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland; (A.Z.); (J.Z.); (M.S.)
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland;
| |
Collapse
|
15
|
Biomaterials for Periodontal and Peri-Implant Regeneration. MATERIALS 2021; 14:ma14123319. [PMID: 34203989 PMCID: PMC8232756 DOI: 10.3390/ma14123319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Periodontal and peri-implant regeneration is the technique that aims to restore the damaged tissue around teeth and implants. They are surrounded by a different apparatus, and according to it, the regenerative procedure can differ for both sites. During the last century, several biomaterials and biological mediators were proposed to achieve a complete restoration of the damaged tissues with less invasiveness and a tailored approach. Based on relevant systematic reviews and articles searched on PubMed, Scopus, and Cochrane databases, data regarding different biomaterials were extracted and summarized. Bone grafts of different origin, membranes for guided tissue regeneration, growth factors, and stem cells are currently the foundation of the routinary clinical practice. Moreover, a tailored approach, according to the patient and specific to the involved tooth or implant, is mandatory to achieve a better result and a reduction in patient morbidity and discomfort. The aim of this review is to summarize clinical findings and future developments regarding grafts, membranes, molecules, and emerging therapies. In conclusion, tissue engineering is constantly evolving; moreover, a tailor-made approach for each patient is essential to obtain a reliable result and the combination of several biomaterials is the elective choice in several conditions.
Collapse
|
16
|
Díaz-Faes L, Soriano-Lerma A, Magan-Fernandez A, López M, Gijon J, García-Salcedo JA, Soriano M, Mesa F. Structural and functional microbial patterns in cohabitating family members with history of periodontitis. Oral Dis 2021; 28:824-828. [PMID: 33512056 DOI: 10.1111/odi.13786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/14/2020] [Accepted: 01/24/2021] [Indexed: 12/27/2022]
Affiliation(s)
- Lucía Díaz-Faes
- Department of Periodontics, Faculty of Dentistry, University of Granada, Granada, Spain
| | - Ana Soriano-Lerma
- Department of Physiology (Faculty of Pharmacy, Campus Universitario de Cartuja), Institute of Nutrition and Food Technology "José Mataix", University of Granada, Granada, Spain.,GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | | | - María López
- Department of Periodontics, Faculty of Dentistry, University of Granada, Granada, Spain
| | - Juan Gijon
- Department of Periodontics, Faculty of Dentistry, University of Granada, Granada, Spain
| | - Jose Antonio García-Salcedo
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Microbiology Unit, Biosanitary Research Institute ibs. GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - Miguel Soriano
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAMBITAL), University of Almeria, Almería, Spain
| | - Francisco Mesa
- Department of Periodontics, Faculty of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
17
|
Sánchez-Fernández E, Magán-Fernández A, O'Valle F, Bravo M, Mesa F. Hyaluronic acid reduces inflammation and crevicular fluid IL-1β concentrations in peri-implantitis: a randomized controlled clinical trial. J Periodontal Implant Sci 2021; 51:63-74. [PMID: 33634616 PMCID: PMC7920839 DOI: 10.5051/jpis.1903660183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose This study investigated the effects of hyaluronic acid (HA) on peri-implant clinical variables and crevicular concentrations of the proinflammatory biomarkers interleukin (IL)-1β and tumor necrosis factor (TNF)-α in patients with peri-implantitis. Methods A randomized controlled trial was conducted in peri-implantitis patients. Patients were randomized to receive a 0.8% HA gel (test group), an excipient-based gel (control group 1), or no gel (control group 2). Clinical periodontal variables and marginal bone loss after 0, 45, and 90 days of treatment were assessed. IL-1β and TNF-α levels in crevicular fluid were measured by enzyme-linked immunosorbent assays at baseline and after 45 days of treatment. Clustering analysis was performed, considering the possibility of multiple implants in a single patient. Results Sixty-one patients with 100 dental implants were assigned to the test group, control group 1, or control group 2. Probing pocket depth (PPD) was significantly lower in the test group than in both control groups at 45 days (control 1: 95% CI, −1.66, −0.40 mm; control 2: 95% CI, −1.07, −0.01 mm) and 90 days (control 1: 95% CI, −1.72, −0.54 mm; control 2: 95% CI, −1.13, −0.15 mm). There was a trend towards less bleeding on probing in the test group than in control group 2 at 90 days (P=0.07). Implants with a PPD ≥5 mm showed higher levels of IL-1β in the control group 2 at 45 days than in the test group (P=0.04). Conclusions This study demonstrates for the first time that the topical application of a HA gel in the peri-implant pocket and around implants with peri-implantitis may reduce inflammation and crevicular fluid IL-1β levels. Trial Registration ClinicalTrials.gov Identifier: NCT03157193
Collapse
Affiliation(s)
- Elena Sánchez-Fernández
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | | | - Francisco O'Valle
- Department of Pathology and History of Science, School of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute (ibs.Granada), University of Granada, Granada, Spain
| | - Manuel Bravo
- Department of Preventive and Community Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| |
Collapse
|
18
|
Soriano-Lerma A, Pérez-Carrasco V, Sánchez-Marañón M, Ortiz-González M, Sánchez-Martín V, Gijón J, Navarro-Mari JM, García-Salcedo JA, Soriano M. Influence of 16S rRNA target region on the outcome of microbiome studies in soil and saliva samples. Sci Rep 2020; 10:13637. [PMID: 32788589 PMCID: PMC7423937 DOI: 10.1038/s41598-020-70141-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Next generation sequencing methods are widely used in evaluating the structure and functioning of microbial communities, especially those centered on 16S rRNA subunit. Since Illumina Miseq, the most used sequencing platform, does not allow the full sequencing of 16S rRNA gene, this study aims to evaluate whether the choice of different target regions might affect the outcome of microbiome studies regarding soil and saliva samples. V1V3, V3V4, V4V5 and V6V8 domains were studied, finding that while some regions showed differences in the detection of certain bacterial taxa and in the calculation of alpha diversity, especially in soil samples, the overall effect did not compromise the differentiation of any sample type in terms of taxonomic analysis at the genus level. 16S rRNA target regions did affect the detection of specific bacteria related to soil quality and development, and microbial genera used as health biomarkers in saliva. V1V3 region showed the closest similarity to internal sequencing control mock community B, suggesting it might be the most preferable choice regarding data reliability.
Collapse
Affiliation(s)
- Ana Soriano-Lerma
- Department of Physiology (Faculty of Pharmacy, Campus Universitario de Cartuja), Institute of Nutrition and Food Technology "José Mataix", University of Granada, 18071, Granada, Spain
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
| | - Virginia Pérez-Carrasco
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Manuel Sánchez-Marañón
- Department of Soil Science and Agricultural Chemistry, University of Granada, 18071, Granada, Spain
| | - Matilde Ortiz-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04001, Almería, Spain
| | - Victoria Sánchez-Martín
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - Juan Gijón
- Department of Periodontics, School of Dentistry, University of Granada, Granada, Spain
| | - José María Navarro-Mari
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, 18014, Granada, Spain
| | - José Antonio García-Salcedo
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain.
- Microbiology Unit, Biosanitary Research Institute IBS.Granada, University Hospital Virgen de las Nieves, 18014, Granada, Spain.
| | - Miguel Soriano
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016, Granada, Spain.
- Center for Intensive Mediterranean Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, 04001, Almería, Spain.
| |
Collapse
|
19
|
Abdelsalam NA, Ramadan AT, ElRakaiby MT, Aziz RK. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Front Pharmacol 2020; 11:390. [PMID: 32372951 PMCID: PMC7179069 DOI: 10.3389/fphar.2020.00390] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
The harmful impact of xenobiotics on the environment and human health is being more widely recognized; yet, inter- and intraindividual genetic variations among humans modulate the extent of harm, mostly through modulating the outcome of xenobiotic metabolism and detoxification. As the Human Genome Project revealed that host genetic, epigenetic, and regulatory variations could not sufficiently explain the complexity of interindividual variability in xenobiotics metabolism, its sequel, the Human Microbiome Project, is investigating how this variability may be influenced by human-associated microbial communities. Xenobiotic-microbiome relationships are mutual and dynamic. Not only does the human microbiome have a direct metabolizing potential on xenobiotics, but it can also influence the expression of the host metabolizing genes and the activity of host enzymes. On the other hand, xenobiotics may alter the microbiome composition, leading to a state of dysbiosis, which is linked to multiple diseases and adverse health outcomes, including increased toxicity of some xenobiotics. Toxicomicrobiomics studies these mutual influences between the ever-changing microbiome cloud and xenobiotics of various origins, with emphasis on their fate and toxicity, as well the various classes of microbial xenobiotic-modifying enzymes. This review article discusses classic and recent findings in toxicomicrobiomics, with examples of interactions between gut, skin, urogenital, and oral microbiomes with pharmaceutical, food-derived, and environmental xenobiotics. The current state and future prospects of toxicomicrobiomic research are discussed, and the tools and strategies for performing such studies are thoroughly and critically compared.
Collapse
Affiliation(s)
| | - Ahmed Tarek Ramadan
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| | - Marwa Tarek ElRakaiby
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ramy Karam Aziz
- The Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|