1
|
Chen Y, Gao B, Cai W, Lai J, Lai K, Wang Y. Oral mucosa: anti-inflammatory function, mechanisms, and applications. J Mater Chem B 2025; 13:4059-4072. [PMID: 40062381 DOI: 10.1039/d4tb02845g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Large soft tissue injuries require several weeks to heal and frequently leave fibrotic scars that can negatively impact tissue function. However, the applicability of traditional skin and mucous membrane transplantation for the treatment of lesions in the ocular surface and urethra is limited owing to the unique locations and functions of these tissues. Oral mucosa has been widely used in the repair of such injuries owing to its reduced propensity for inducing an inflammatory response, angiogenesis, and scarring. Enhancing chronic wound healing while avoiding scar formation requires a broader understanding of the cellular and molecular pathways that drive wound repair in the oral mucosa. This review integrates current knowledge on the mechanisms underlying the resistance of the oral mucosa to inflammation and its application as a graft material, highlighting its challenges and potential advancements. The aim of this review is to offer insights into future therapeutic strategies for wound healing and related conditions.
Collapse
Affiliation(s)
- Yani Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Bicong Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Junhong Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, P. R. China.
| |
Collapse
|
2
|
Wang Y, Ding H, Bai R, Li Q, Ren B, Lin P, Li C, Chen M, Xu X. Exosomes from adipose-derived stem cells accelerate wound healing by increasing the release of IL-33 from macrophages. Stem Cell Res Ther 2025; 16:80. [PMID: 39984984 PMCID: PMC11846291 DOI: 10.1186/s13287-025-04203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) -derived exosomes, especially adipose-derived mesenchymal stem cell exosomes (ADSC-Exos), have emerged as a promising alternative for skin damage repair with anti-inflammatory, angiogenic and cell proliferation effects while overcoming some of the limitations of MSC. However, the mechanism by which ADSC-Exos regulates inflammatory cells during wound healing remains unclear. This study investigated how ADSC-Exos regulate macrophages to promote wound healing. METHODS ADSC-Exos were isolated using ultracentrifugation, with subsequent quantification of exosomes particle number. To investigate their role in wound healing, the effects of ADSC-Exos on inflammation, angiogenesis, collagen deposition and macrophage polarization were evaluated through immunohistochemical staining, immunofluorescence and western blotting. Changes in gene expression associated with ADSC-Exos-induced macrophage polarization were analyzed using qPCR. RNA sequencing was performed to identify differentially expressed genes affected by ADSC-Exos. The critical role of IL-33 in the wound healing process was further confirmed using Il33-/- mice. Additionally, co-culture experiments were conducted to explore the effects of IL-33 on keratinocyte proliferation, collagen deposition and epithelialization. RESULTS ADSC-Exos inhibited the expression of TNF-α and IL-6, induced M2 macrophage polarization, promoted collagen deposition and angiogenesis, and accelerated wound healing. RNA sequencing identified IL-33 as a key mediator in this process. In Il33-/- mice, impaired wound healing and decreased M2 macrophage polarization were observed. The co-culture experiments showed that IL-33 enhanced keratinocyte function through activation of the Wnt/β-catenin signaling pathway. These findings highlight the therapeutic potential of ADSC-Exos in wound healing by modulating IL-33. CONCLUSIONS ADSC-Exos promote wound healing by regulating macrophage polarization and enhancing IL-33 release which drives keratinocyte proliferation, collagen deposition and epithelialization via the Wnt/β-catenin signaling pathway. These findings provide a mechanistic basis for the therapeutic potential of ADSC-Exos in tissue repair and regeneration.
Collapse
Affiliation(s)
- Yichen Wang
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
- Chinese PLA Medical School , Beijing, 100853, China
| | - Hongfan Ding
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Ruiqi Bai
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Qiang Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Boyuan Ren
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Pianpian Lin
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Chengfei Li
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Minliang Chen
- Senior Department of Burns and Plastic Surgery, the Fourth Medical Center of Chinese PLA General Hospital, No. 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Xiao Xu
- Senior Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, No. 69 Yongding Road, Haidian District, Beijing, 100039, People's Republic of China.
| |
Collapse
|
3
|
Xu C, Cao JF, Pei Y, Kim Y, Moon H, Fan CQ, Liao MC, Wang XY, Yao F, Zhang YJ, Zhang SH, Zhang J, Li JZ, Kim JS, Ma L, Xie ZJ. Injectable hydrogel harnessing foreskin mesenchymal stem cell-derived extracellular vesicles for treatment of chronic diabetic skin wounds. J Control Release 2024; 370:339-353. [PMID: 38685383 DOI: 10.1016/j.jconrel.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Chronic skin wounds are a serious complication of diabetes with a high incidence rate, which can lead to disability or even death. Previous studies have shown that mesenchymal stem cells derived extracellular vesicles (EVs) have beneficial effects on wound healing. However, the human foreskin mesenchymal stem cell (FSMSCs)-derived extracellular vesicle (FM-EV) has not yet been isolated and characterized. Furthermore, the limited supply and short lifespan of EVs also hinder their practical use. In this study, we developed an injectable dual-physical cross-linking hydrogel (PSiW) with self-healing, adhesive, and antibacterial properties, using polyvinylpyrrolidone and silicotungstic acid to load FM-EV. The EVs were evenly distributed in the hydrogel and continuously released. In vivo and vitro tests demonstrated that the synergistic effect of EVs and hydrogel could significantly promote the repair of diabetic wounds by regulating macrophage polarization, promoting angiogenesis, and improving the microenvironment. Overall, the obtained EVs-loaded hydrogels developed in this work exhibited promising applicability for the repair of chronic skin wounds in diabetes patients.
Collapse
Affiliation(s)
- Chang Xu
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Jin-Feng Cao
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China
| | - Yue Pei
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Huiyeon Moon
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chui-Qin Fan
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Mao-Chuan Liao
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Xing-Yu Wang
- Department of Emergency, ChangYang Tujia Autonomous County People's Hospital, Yichang 443000, China
| | - Fei Yao
- Eye Center of Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yu-Jun Zhang
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China
| | - Shao-Hui Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian-Zhang Li
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Lian Ma
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China; Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China; Department of Pediatrics, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Zhong-Jian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Clinical Medical College of Southern University of Science and Technology, Shenzhen 518038, China; Shenzhen International Institute for Biomedical Research, Shenzhen 518116, Guangdong, China.
| |
Collapse
|
4
|
Taş D, Kurgan Ş, Güney Z, Serdar MA, Tatakis DN. The effect of smoking on clinical and biochemical early healing outcomes of coronally advanced flap with connective tissue graft: Prospective cohort study. J Periodontol 2024; 95:17-28. [PMID: 37436705 DOI: 10.1002/jper.23-0214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND This study aimed to determine the effects of smoking on early (≤3 months) clinical outcomes and relevant molecular biomarkers following root coverage surgery. METHODS Eighteen smokers and 18 nonsmokers, status biochemically verified, with RT1 gingival recession defects were recruited and completed study procedures. All patients received coronally advanced flap plus connective tissue graft. Baseline and 3 month recession depth (RD), recession width (RW), keratinized tissue width (KTW), clinical attachment level (CAL), and gingival phenotype (GP) were recorded. Root coverage (RC) percentage and complete root coverage (CRC) were calculated. Recipient (gingival crevicular fluid) and donor (wound fluid) site VEGF-A, HIF-1α, 8-OHdG, and ANG levels were determined. RESULTS There were no significant intergroup differences for any baseline or postoperative clinical parameters (P > 0.05), except for whole mouth gingival index (increased in nonsmokers at 3 months; P < 0.05). Compared to baseline, RD, RW, CAL, KTW, and GP significantly improved postoperatively, without significant intergroup differences. There were no significant intergroup differences for RC (smokers = 83%, nonsmokers = 91%, P = 0.069), CRC (smokers = 50%, nonsmokers = 72%, P = 0.177), and CAL gain (P = 0.193). The four biomarker levels significantly increased postoperatively (day 7; P ≤ 0.042) in both groups and returned to baseline (day 28) without significant intergroup differences (P > 0.05). Similarly, donor site parameters were not different between groups. Strong correlations, consistent over time, were found between biomarkers implicated in angiogenesis (VEGF-A, HIF-1α, and ANG). CONCLUSIONS The early (3 month) clinical and molecular changes after root coverage surgery utilizing a coronally advanced flap plus connective tissue graft are similar between smokers and nonsmokers.
Collapse
Affiliation(s)
- Duygu Taş
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Şivge Kurgan
- Department of Periodontology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Zeliha Güney
- Department of Periodontology, Faculty of Dentistry, Ankara Medipol University, Ankara, Turkey
| | - Muhittin A Serdar
- Department of Medical Biochemistry, School of Medicine, Acıbadem University, Ankara, Turkey
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Engel A, Ludwig N, Grandke F, Wagner V, Kern F, Fehlmann T, Schmartz GP, Aparicio-Puerta E, Henn D, Walch-Rückheim B, Hannig M, Rupf S, Meese E, Laschke MW, Keller A. Skin treatment with non-thermal plasma modulates the immune system through miR-223-3p and its target genes. RNA Biol 2024; 21:31-44. [PMID: 38828710 PMCID: PMC11152102 DOI: 10.1080/15476286.2024.2361571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/05/2024] Open
Abstract
Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.
Collapse
Affiliation(s)
- Annika Engel
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
- Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Friederike Grandke
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Viktoria Wagner
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics (CLIB), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Georges P. Schmartz
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Dominic Henn
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Barbara Walch-Rückheim
- Center of Human und Molecular Biology (ZHMB), Virology & Immunology, Saarland University, Homburg/Saar, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Clinical Bioinformatics (CLIB), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| |
Collapse
|
6
|
Zhu W, Huang X. Mural cell composition and functional analysis in the healing process of human gingiva from periodontal intrabony defects. Arch Oral Biol 2023; 150:105687. [PMID: 36947913 DOI: 10.1016/j.archoralbio.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE To evaluate the composition and function of mural cell populations in human gingival tissues DESIGN: A cross-sectional study was conducted on seven periodontitis (stage Ⅲ) patients. Gingival tissues were collected two months after scaling and root planing and divided into 3 groups: 1, h_h group (horizontal bone resorption, residual pocket depth ≤3 mm); 2, v_h group (vertical bone resorption >4 mm, residual pocket depth ≤3 mm); 3, v_i group (vertical bone resorption >4 mm, residual pocket depth ≥6 mm). Single-cell RNA sequencing (10X genomics) and subsequent bioinformatics analysis were performed. Protein expression of selected genes was confirmed by histological staining. RESULTS Two mural cell clusters, RGS5+THY1+ and ACTA2+MYH11+ subpopulations, were identified and confirmed by histological staining and cross-validation with three different single-cell RNA sequencing datasets in the GEO database. RGS5+THY1+ cluster in perivascular areas possessed cellular protrusions and exhibited immunomodulatory and synthetic phenotypes. In contrast, the ACTA2+MYH11+ cluster strictly distributed around vessel walls was characterized by a contractile phenotype. Mural cells closely interacted with endothelial cells through PDGF and NOTCH3 signaling. Mural cell loss was detected in the v_i group and in hopeless periodontal teeth, which might be caused by tumor necrosis factor-alpha induced apoptosis. CONCLUSIONS Gingival mural cells can be classified into two distinct clusters according to their gene signatures and cell morphology. The loss of mural cells may indicate periodontitis progression.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Xin Huang
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
7
|
Deka Dey A, Yousefiasl S, Kumar A, Dabbagh Moghaddam F, Rahimmanesh I, Samandari M, Jamwal S, Maleki A, Mohammadi A, Rabiee N, Cláudia Paiva‐Santos A, Tamayol A, Sharifi E, Makvandi P. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med 2023; 8:e10343. [PMID: 36684081 PMCID: PMC9842058 DOI: 10.1002/btm2.10343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/25/2023] Open
Abstract
MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.
Collapse
Affiliation(s)
| | - Satar Yousefiasl
- School of DentistryHamadan University of Medical SciencesHamadanIran
| | - Arun Kumar
- Chitkara College of PharmacyChitkara UniversityPunjabIndia
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
- Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100RomeItaly
| | - Ilnaz Rahimmanesh
- Applied Physiology Research CenterCardiovascular Research Institute, Isfahan University of Medical SciencesIsfahanIran
| | | | - Sumit Jamwal
- Department of Psychiatry, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of PharmacyZanjan University of Medical SciencesZanjanIran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical SciencesZanjanIran
- Cancer Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | | | - Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ana Cláudia Paiva‐Santos
- Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
- LAQV, REQUIMTE, Department of Pharmaceutical TechnologyFaculty of Pharmacy of the University of Coimbra, University of CoimbraCoimbraPortugal
| | - Ali Tamayol
- Department of Biomedical EngineeringUniversity of ConnecticutFarmingtonConnecticutUSA
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials InterfacesPontederaItaly
- School of Chemistry, Damghan UniversityDamghanIran
| |
Collapse
|
8
|
Chen J, Wang J, Hart DA, Ahmed AS, Ackermann PW. Complement factor D as a predictor of Achilles tendon healing and long-term patient outcomes. FASEB J 2022; 36:e22365. [PMID: 35596679 DOI: 10.1096/fj.202200200rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Dense connective tissue healing, such as tendon, is protracted leading to highly variable and unsatisfactory patient outcomes. Biomarkers prognostic of long-term clinical outcomes is, however, unknown. The present study was designed to investigate the proteomic profile of healing, identify potential biomarkers, and assess their association with the patient's long-term outcomes after ATR. Quantitative mass spectrometry analysis demonstrated 1423 proteins in healing and contralateral healthy Achilles tendons of 28 ATR patients. Comparing healing at 2 weeks and healthy protein profiles, we identified 821 overlapping, 390 upregulated, and 17 downregulated proteins. Upregulated proteins are related mainly to extracellular matrix organization and metabolism, while downregulated pathways were associated with exocytosis in immune modulation and thrombosis formation. Further proteomic profiling in relation to validated patient outcomes revealed the downregulated pro-inflammatory complement factor D (CFD) as the most reliable predictive biomarker of successful tendon healing. Our finding showed a comprehensive proteomic landscape and bioinformatics on human connective tissue, indicating subtype-specific and shared biological processes and proteins in healing and healthy Achilles tendons, as well as in tendons related to good and poor patient outcomes. Inflammatory protein CFD and serpin family B member 1 were finally identified as potential predictive biomarkers of effective healing outcomes when combined the proteomic profiles with a validated clinical database. Following the future elucidation of the mechanisms associated with the identified biomarkers as predictors of good outcomes, our findings could lead to improved prognostic accuracy and development of targeted treatments, thus improving the long-term healing outcomes for all patients.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jin Wang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.,Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - David A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Canada
| | - Aisha S Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul W Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Chen Y, Sun D, Shang D, Jiang Z, Miao P, Gao J. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endometrial epithelial cells. Open Med (Wars) 2022; 17:518-526. [PMID: 35350836 PMCID: PMC8919841 DOI: 10.1515/med-2022-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023] Open
Abstract
Intrauterine adhesion (IUA) is the clinical manifestation of endometrial fibrosis. The dysregulation of microRNAs (miRNAs) has been confirmed to implicate in a diversity of human diseases, including IUA. Nevertheless, the specific function of miR-223-3p in IUA remains to be clarified. Reverse transcription quantitative polymerase chain reaction analysis displayed the downregulation of miR-223-3p in IUA tissues and endometrial epithelial cells (EECs). Results from wound healing assay, Transwell assay and western blotting showed that TGF-β facilitated the migration and invasion of EECs and induced epithelial-mesenchymal transition (EMT) process as well as extracellular matrix (ECM) deposition. Overexpression of miR-223-3p in EECs was shown to suppress the effects induced by TGF-β. Bioinformatics analysis and luciferase reporter assay revealed the binding relation between miR-223-3p and SP3. SP3 was highly expressed in IUA and its expression was inversely correlated with miR-223-3p expression in IUA tissue samples. Additionally, upregulation of SP3 reversed the influence of miR-223-3p on the phenotypes of EECs. In conclusion, miR-223-3p alleviates TGF-β-induced cell migration, invasion, EMT process and ECM deposition in EECs by targeting SP3.
Collapse
Affiliation(s)
- Yanling Chen
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Dongyan Sun
- Department of Gynecology, Maternity and Child Health Care Hospital of Hubei Province, 745 Wuluo Road, Wuchang District, Wuhan 430000, Hubei, China
| | - Di Shang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Zhihe Jiang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Pan Miao
- Yangtze University Health Science Center, Jingzhou 430199, Hubei, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| |
Collapse
|