1
|
de Almeida JM, Turini HD, Matheus HR, Vitória OAP, Piovezan BR, Dalmonica RHB, de Abreu Furquim EM, Ervolino E. Omega-3 attenuates the severity of medication-related osteonecrosis of the jaws in rats treated with zoledronate. PLoS One 2025; 20:e0320413. [PMID: 40138277 PMCID: PMC11940605 DOI: 10.1371/journal.pone.0320413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
This study aimed to evaluate the ability of ω-3 to modulate the tissue response in rats with MRONJ, focusing on histopathological and immunohistochemical parameters. Forty Wistar rats were subjected to bilateral ovariectomy and, three months later, the medication regimen with ZOL (100μg/kg; groups ZOL and ZOL-ω3) of vehicle (VEH and VEH-ω3) was initiated. Following 3 weeks of ZOL or VEH, experimental periodontitis was induced around the mandibular left first molars of all animals. Then, 14 days later (one day before tooth extraction), daily dietary supplementation with ω-3 was given to animals belonging to groups VEH-ω3 or ZOL-ω3. Euthanasia was performed 21 days after tooth extraction. Histologic, histometric (newly-formed bone tissue [NFBT] and non-vital bone tissue [NVBT]), and immunohistochemical (TNF-α, α-SMA, ALP, IL-1β, VEGF, OCN, and TRAP) analyses were performed. Dietary supplementation with ω-3 reduced the amount of NVBT and controlled the intensity and extension of the inflammatory infiltrate in ZOL-ω3, as compared with ZOL. Osteoclast and osteoblast activity were not statistically different between groups ZOL and ZOL-ω3. The structure of the epithelium and the underlining connective tissue were improved by the supplementation with ω-3 in animals under ZOL therapy. Oral supplementation with omega-3 controlled the inflammation and reduced the amount of non-vital bone at the tooth extraction site of ovariectomized rats treated with ZOL and attenuating the severity of MRONJ.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Halef Diego Turini
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Henrique Rinaldi Matheus
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Division of Periodontology, College of Dentistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Otávio Augusto Pacheco Vitória
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Bianca Rafaeli Piovezan
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Ruan Henrique Barra Dalmonica
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Elisa Mara de Abreu Furquim
- Periodontics Division, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| | - Edilson Ervolino
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, São Paulo, Brazil
| |
Collapse
|
2
|
Zhao N, Qin L, Liu Y, Zhai M, Li D. Improved new bone formation capacity of hyaluronic acid-bone substitute compound in rat calvarial critical size defect. BMC Oral Health 2024; 24:994. [PMID: 39182066 PMCID: PMC11344309 DOI: 10.1186/s12903-024-04679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Bone loss of residual alveolar ridges is a great challenge in the field of dental implantology. Deproteinized bovine bone mineral (DBBM) is commonly used for bone regeneration, however, it is loose and difficult to handle in clinical practice. Hyaluronic acid (HA) shows viscoelasticity, permeability and excellent biocompatibility. The aim of this study is to evaluate whether high-molecular-weight (MW) HA combined with DBBM could promote new bone formation in rat calvarial critical size defects (CSDs). MATERIALS AND METHODS Rat calvarial CSDs (5 mm in diameter) were created. Rats (n = 45) were randomly divided into 3 groups: HA-DBBM compound grafting group, DBBM particles only grafting group and no graft group. Defect healing was assessed by hematoxylin-eosin staining and histomorphometry 2, 4 and 8 weeks postop, followed by Micro-CT scanning 8 weeks postop. Statistical analyses were performed by ANOVA followed by Tukey's post hoc test with P < 0.05 indicating statistical significance. RESULTS All rats survived after surgery. Histomorphometric evaluation revealed that at 2, 4 and 8 weeks postop, the percentage of newly formed bone was significantly greater in HA-DBBM compound grafting group than in the other two groups. Consistently, Micro-CT assessment revealed significantly more trabecular bone (BV/TV and Tb.N) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). Moreover, the trabecular bone was significantly more continuous (Tb.Pf) in HA-DBBM compound group than in the other two groups, respectively (P < 0.05). CONCLUSION HA not only significantly promoted new bone formation in rats calvarial CSDs but also improved the handling ability of DBBM.
Collapse
Affiliation(s)
- Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
- Department of Implant Dentistry, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Lei Qin
- DeLun Dental, Baiyun District, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Min Zhai
- Department of Stomatology, General Hospital of the Tibet Military Area Command, Lhasa, Tibet, 850007, People's Republic of China
| | - Dehua Li
- State Key Laboratory of Military Stomatology, Department of Oral Implants, School of Stomatology, Fourth Military Medical University, No. 145 Changle West Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
3
|
Guastaldi FPS, Matheus HR, Hadad H, Randolph MA, Redmond RW. A regenerative approach for temporomandibular joint repair: An in vitro and ex vivo study. J Oral Rehabil 2024; 51:1521-1529. [PMID: 38717007 DOI: 10.1111/joor.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Current clinical approaches to regenerate temporomandibular joint (TMJ) articulating cartilage defects only treat the symptoms (i.e. pain and dysfunction) and do not seek to restore joint integrity for long-term relief. Therefore, we investigated a novel self-assembling tissue-engineered cartilage to overcome this significant clinical issue for TMJ regenerative purposes. OBJECTIVES Examine the maturation of dynamic self-regenerating cartilage (dSRC) using auricular chondrocytes and evaluate a novel combinatorial approach with fractional laser treatment and dSRC implantation for TMJ cartilage repair. MATERIALS AND METHODS A suspension of 107 freshly harvested rabbit ear chondrocytes was cultured under a continuous reciprocating motion to form the dSRC. After 2, 4 and 8 weeks of culture, dSRC samples were stained with H&E, Safranin-O and Toluidine Blue. Immunohistochemistry (IHC) was performed for collagens type I and II. Channels (300-500 μm diameter and 1.2-1.5 mm depth) were created in six freshly harvested condyles using a fractional Erbium laser. Two groups were tested: dSRC in a laser-ablated lesion (experimental) and an empty laser-ablated channel (control). TMJ condyles were cultured for up to 8 weeks and analysed as described above. RESULTS H&E staining showed a high cell density in dSRC compared to native cartilage. All dSRC groups demonstrated intense Safranin-O staining, indicating high glycosaminoglycan (GAG) production and intense Toluidine Blue staining showed high proteoglycan content. IHC confirmed that dSRC consisted predominantly of collagen type II. The experimental group showed improved cartilage repair at both time points compared to the empty channels. CONCLUSION dSRC viability and successful matrix formation were demonstrated in vitro. The combination of fractional laser ablation and dSRC implantation enhanced cartilage repair.
Collapse
Affiliation(s)
- Fernando P S Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Henrique R Matheus
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Henrique Hadad
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Diagnosis and Surgery, Oral & Maxillofacial Surgery Division, São Paulo State University (UNESP), School of Dentistry, Araçatuba, SP, Brazil
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert W Redmond
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Lei H, Sun J, Dai Z, Wo K, Zhang J, Wang Y, Zhao B, Fan W, Wang J, Shi Y, Yang C, Su B, Luo Z, Wu J, Chen L, Chu Y. Remote coupling of electrical and mechanical cues by diurnal photothermal irradiation synergistically promotes bone regeneration. J Nanobiotechnology 2024; 22:410. [PMID: 38992774 PMCID: PMC11238389 DOI: 10.1186/s12951-024-02671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Recapitulating the natural extracellular physical microenvironment has emerged as a promising method for tissue regeneration, as multiple physical interventions, including ultrasound, thermal and electrical therapy, have shown great potential. However, simultaneous coupling of multiple physical cues to highly bio-mimick natural characteristics for improved tissue regeneration still remains formidable. Coupling of intrinsic electrical and mechanical cues has been regarded as an effective way to modulate tissue repair. Nevertheless, precise and convenient manipulation on coupling of mechano-electrical signals within extracellular environment to facilitate tissue regeneration remains challengeable. Herein, a photothermal-sensitive piezoelectric membrane was designed for simultaneous integration of electrical and mechanical signals in response to NIR irradiation. The high-performance mechano-electrical coupling under NIR exposure synergistically triggered the promotion of osteogenic differentiation of stem cells and enhances bone defect regeneration by increasing cellular mechanical sensing, attachment, spreading and cytoskeleton remodeling. This study highlights the coupling of mechanical signals and electrical cues for modulation of osteogenesis, and sheds light on alternative bone tissue engineering therapies with multiple integrated physical cues for tissue repair.
Collapse
Affiliation(s)
- Haoqi Lei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhiyin Dai
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Keqi Wo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Baoying Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junjie Wu
- Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'An, 710032, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Yingying Chu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
5
|
Domic D, Bertl K, Lang T, Pandis N, Ulm C, Stavropoulos A. Hyaluronic acid in tooth extraction: a systematic review and meta-analysis of preclinical and clinical trials. Clin Oral Investig 2023; 27:7209-7229. [PMID: 37963982 PMCID: PMC10713798 DOI: 10.1007/s00784-023-05227-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/16/2023] [Indexed: 11/16/2023]
Abstract
OBJECTIVES To assess whether in animals or patients with ≥ 1 tooth extracted, hyaluronic acid (HyA) application results in superior healing and/or improved complication management compared to any other treatment or no treatment. MATERIALS AND METHODS Three databases were searched until April 2022. The most relevant eligibility criteria were (1) local application of HyA as adjunct to tooth extraction or as treatment of alveolar osteitis, and (2) reporting of clinical, radiographic, histological, or patient-reported data. New bone formation and/or quality were considered main outcome parameters in preclinical studies, while pain, swelling, and trismus were defined as main outcome parameters in clinical studies. RESULTS Five preclinical and 22 clinical studies (1062 patients at final evaluation) were included. In preclinical trials, HyA was applied into the extraction socket. Although a positive effect of HyA was seen in all individual studies on bone formation, this effect was not confirmed by meta-analysis. In clinical studies, HyA was applied into the extraction socket or used as spray or mouthwash. HyA application after non-surgical extraction of normally erupted teeth may have a positive effect on soft tissue healing. Based on meta-analyses, HyA application after surgical removal of lower third molars (LM3) resulted in significant reduction in pain perception 7 days postoperatively compared to either no additional wound manipulation or the application of a placebo/carrier. Early post-operative pain, trismus, and extent of swelling were unaffected. CONCLUSIONS HyA application may have a positive effect in pain reduction after LM3 removal, but not after extraction of normally erupted teeth. CLINICAL RELEVANCE HyA application may have a positive effect in pain reduction after surgical LM3 removal, but it does not seem to have any impact on other complications or after extraction of normally erupted teeth. Furthermore, it seems not to reduce post-extraction alveolar ridge modeling, even though preclinical studies show enhanced bone formation.
Collapse
Affiliation(s)
- Danijel Domic
- Division of Oral Surgery, University Clinic of Dentistry, Medical University Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Kristina Bertl
- Department of Periodontology, Dental Clinic, Faculty of Medicine, Sigmund Freud University, Freudplatz 3, 1020, Vienna, Austria
- Periodontology, Faculty of Odontology, University of Malmö, Carl Gustafs Väg 34, 205 06, Malmö, Sweden
| | - Tobias Lang
- Division of Oral Surgery, University Clinic of Dentistry, Medical University Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Christian Ulm
- Division of Oral Surgery, University Clinic of Dentistry, Medical University Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Andreas Stavropoulos
- Periodontology, Faculty of Odontology, University of Malmö, Carl Gustafs Väg 34, 205 06, Malmö, Sweden.
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| |
Collapse
|
6
|
Oliveira FLP, Matheus HR, Ervolino E, Novaes VCN, Piovezan BR, Furquim EMDA, Fiorin LG, de Almeida JM. Sodium alendronate is an effective adjunctive therapy for treating periodontitis in male rats treated with anticancer chemotherapy. Arch Oral Biol 2023; 155:105794. [PMID: 37633028 DOI: 10.1016/j.archoralbio.2023.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVES To assess sodium alendronate as a local adjunctive therapy for treating experimental periodontitis in male rats treated with chemotherapy. DESIGN One-hundred-eighty male rats were randomly divided into two groups (n = 90) based on the systemic treatments: PSS, physiological saline solution; and 5-Fluorouracil, and then, subdivided into three subgroups (n = 30): NT, no treatment; scaling and root planing; and sodium alendronate. Treatments were performed 7 days after induction of experimental periodontitis. Specimens were collected at 14, 22, and 37 days after induction. Alveolar bone level, percentage of bone in the furcation, percentage of non-vital bone in the furcation, histopathologic features, and immunolabeling pattern for tartrate-resistant acid phosphatase (TRAP) and osteocalcin (OCN) were evaluated. RESULTS The lowest amount of alveolar bone and highest amount of non-vital bone was found in group 5-Fluorouracil when no treatment was performed. In animals receiving 5-Flurouracil and subjected to periodontal treatment, adjunctive sodium alendronate resulted in higher percentage of bone in the furcation and higher alveolar bone loss, when compared with scaling and root planing alone. Better structural and cellularity patterns were found in the periodontal tissues when sodium alendronate was used, regardless of systemic treatment. Higher TRAP-expression was found when no treatment was performed. Sodium alendronate didn't affect the immunolabeling pattern of osteocalcin in the presence of 5-Fluorouracil. CONCLUSION Adjunctive therapy with local sodium alendronate prevented alveolar bone loss and improved the histopathological features of the periodontal tissues following scaling and root planing in male rats with experimental periodontitis receiving anticancer chemotherapy with 5-Fluorouracil.
Collapse
Affiliation(s)
- Fred Lucas Pinto Oliveira
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University "Júlio de Mesquita Filho", UNESP, Araçatuba, Brazil; Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, Sao Paulo, State University (Unesp), Aracatuba, SP, Brazil
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University "Júlio de Mesquita Filho", UNESP, Araçatuba, Brazil; Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, Sao Paulo, State University (Unesp), Aracatuba, SP, Brazil
| | - Edilson Ervolino
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, Sao Paulo, State University (Unesp), Aracatuba, SP, Brazil; Department of Basics Sciences, Sao Paulo State University-Unesp Araçatuba School of Dentistry Sao Paulo, UNESP, Araçatuba, Brazil
| | - Vivian Cristina Noronha Novaes
- Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, Sao Paulo, State University (Unesp), Aracatuba, SP, Brazil
| | - Bianca Rafaeli Piovezan
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University "Júlio de Mesquita Filho", UNESP, Araçatuba, Brazil; Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, Sao Paulo, State University (Unesp), Aracatuba, SP, Brazil
| | - Elisa Mara de Abreu Furquim
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University "Júlio de Mesquita Filho", UNESP, Araçatuba, Brazil; Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, Sao Paulo, State University (Unesp), Aracatuba, SP, Brazil
| | - Luiz Guilherme Fiorin
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University "Júlio de Mesquita Filho", UNESP, Araçatuba, Brazil; Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, Sao Paulo, State University (Unesp), Aracatuba, SP, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, Division of Periodontics, São Paulo State University "Júlio de Mesquita Filho", UNESP, Araçatuba, Brazil; Nucleus of Study and Research in Periodontics and Implantology (NEPPI), School of Dentistry, Sao Paulo, State University (Unesp), Aracatuba, SP, Brazil.
| |
Collapse
|
7
|
Tella EA, Aldahlawi SA, Azab ET, Yaghmoor WE, Fansa HA. Evaluation of hyaluronic acid gel with or without acellular dermal matrix allograft in the treatment of class II furcation defects in dogs: A histologic and histomorphometric study. Saudi Dent J 2023; 35:845-853. [PMID: 38025597 PMCID: PMC10658385 DOI: 10.1016/j.sdentj.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/17/2023] [Accepted: 07/02/2023] [Indexed: 12/01/2023] Open
Abstract
Aim To evaluate the histologic and histomorphometric effects of hyaluronic acid (HA) gel with or without acellular dermal matrix allograft (ADMA) on periodontal regeneration in Class II furcation defects in dogs. Materials and methods Class II furcation defects were surgically created in the mandibular first and second premolars bilaterally in eight beagle dogs. The Class II furcation defects were assigned randomly, using the split-mouth design, into the test and control sides. The teeth on the test sides were equally and randomly divided into the HA/ADMA group (n = 8) treated with 0.8% HA gel followed by ADMA, and the HA-only group (n = 8) treated with 0.8% HA only. The furcation defects of the control sides (n = 16) were subjected to open flap debridement (OFD group). The animals were euthanized for histologic and histomorphometric analyses after one month (n = 4) and three months (n = 4). Results At one month, the newly formed bone area (NFBA) was larger in the HA/ADMA (6.23 ± 1.41 mm2) and HA-only (5.90 ± 1.43 mm2) groups than in the OFD group (2.42 ± 1.62 mm2) (p < 0.05). The newly formed cementum (NFAC) and periodontal ligament (NFPL) were similar in the HA/ADMA and HA-only groups but significantly lesser in the OFD group (p < 0.05.) At three months, the NFBA, NFAC, and NFPL were greater in the HA/ADMA group than in the HA-only group (p < 0.05). New regenerative tissue was significantly greater in both the test groups than in the OFD group (p < 0.05), while epithelial downgrowth predominated the healing in the latter. Conclusions These results suggest that HA with ADMA positively affects the periodontal regeneration and wound healing in Class II furcation defects.
Collapse
Affiliation(s)
- Eman A. Tella
- Department of Basic and Clinical Oral Sciences, Faculty of Dental Medicine, Umm Al-Qura University, Saudi Arabia
| | - Salwa A. Aldahlawi
- Department of Basic and Clinical Oral Sciences, Faculty of Dental Medicine, Umm Al-Qura University, Saudi Arabia
| | - Ehab T. Azab
- Department of Basic and Clinical Oral Sciences, Faculty of Dental Medicine, Umm Al-Qura University, Saudi Arabia
| | - Wael E. Yaghmoor
- Department of Basic and Clinical Oral Sciences, Faculty of Dental Medicine, Umm Al-Qura University, Saudi Arabia
| | - Hoda A. Fansa
- Department of Basic and Clinical Oral Sciences, Faculty of Dental Medicine, Umm Al-Qura University, Saudi Arabia
- Department of Oral Biology, Faculty of Dentistry, Alexandra University, Egypt
| |
Collapse
|
8
|
de Souza Santos AM, dos Santos Pereira R, Montemezzi P, Mello-Machado RC, Okamoto R, Sacco R, Noronha Lisboa-Filho P, Messora MR, Mourão CF, Hochuli-Vieira E. The Interplay of Raloxifene and Sonochemical Bio-Oss in Early Maxillary Sinus Bone Regeneration: A Histological and Immunohistochemical Analysis in Rabbits. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1521. [PMID: 37763640 PMCID: PMC10534759 DOI: 10.3390/medicina59091521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
The study aimed to assess the efficacy of using Raloxifene with ultrasonic processing to enhance Bio-Oss®, a bone graft substitute, for maxillary sinus bone height reconstruction. A total of 24 rabbit maxillary sinuses were distributed into three groups, each receiving different treatments: Bio-Oss® only, sonicated Bio-Oss, and sonicated Bio-Oss® with Raloxifene. Surgical procedures and subsequent histomorphometric and immunohistochemistry analyses were conducted to evaluate the bone formation, connective tissue, and remaining biomaterial, as well as the osteoblastic differentiation and maturation of collagen fibers. Results indicated that the sonicated Bio-Oss® and Bio-Oss® groups showed similar histological behavior and bone formation, but the Raloxifene group displayed inflammatory infiltrate, low bone formation, and disorganized connective tissue. The statistical analysis confirmed significant differences between the groups in terms of bone formation, connective tissue, and remaining biomaterial. In conclusion, the study found that while sonicated Bio-Oss® performed comparably to Bio-Oss® alone, the addition of Raloxifene led to an unexpected delay in bone repair. The findings stress the importance of histological evaluation for accurate bone repair assessment and the necessity for further investigation into the local application of Raloxifene. Future research may focus on optimizing bone substitutes with growth factors to improve bone repair.
Collapse
Affiliation(s)
- Anderson Maikon de Souza Santos
- Department of Diagnostic and Surgery, Araçatuba School of Dentistry, Sao Paulo State University, Sao Paulo 16066-840, Brazil
| | - Rodrigo dos Santos Pereira
- Department of Oral & Maxillofacial Surgery, University of Grande Rio—UNIGRANRIO, Rio de Janeiro 25071-202, Brazil
| | | | | | - Roberta Okamoto
- Department of Basic Sciences, Araçatuba School of Dentistry, Sao Paulo State University, Sao Paulo 16066-805, Brazil
| | - Roberto Sacco
- Department of Oral Surgery, Division of Dentistry, School of Medical Science, The University of Manchester, Manchester M13 9PL, UK
| | | | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Eduardo Hochuli-Vieira
- Department of Diagnostic and Surgery, Araraquara School of Dentistry, Sao Paulo State University, Sao Paulo 14801-385, Brazil
| |
Collapse
|
9
|
Li L, Lee J, Cho YD, Kim S, Seol YJ, Lee YM, Koo KT. The optimal dosage of hyaluronic acid for bone regeneration in rat calvarial defects. J Periodontal Implant Sci 2023; 53:259-268. [PMID: 36468487 PMCID: PMC10465808 DOI: 10.5051/jpis.2203000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 10/19/2022] [Indexed: 08/29/2023] Open
Abstract
PURPOSE Hyaluronic acid (HA) affects angiogenesis and promotes the migration and differentiation of mesenchymal cells, thereby activating the osteogenic ability of osteoblasts. Although studies on the action of HA during bone regeneration are being actively conducted, the optimal dose of HA required for bone regeneration remains unclear. Therefore, the purpose of this study was to elucidate the most effective HA dose for bone formation using a rat critical-size defect model. METHODS Thirty rats were randomly divided into 5 groups, with 6 rats in each group. An absorbable collagen sponge soaked with HA or saline was used to fill an 8-mm defect, which was then covered with a collagen membrane. Different treatments were performed for each group as follows: (1) saline control, (2) 1 mg/mL HA, (3) 25 mg/mL HA, (4) 50 mg/mL HA, or (5) 75 mg/mL HA. After a healing period of 4 weeks, micro-computed tomography and histological analysis were performed. The obtained values were analyzed using analysis of variance and the Tukey test (P<0.05). RESULTS At week 4, the 75 mg/mL HA group had the highest bone volume/total volume ratio, new bone, and bone fill among the 5 groups, and these values were significantly different from those observed in the control group (P<0.01) and 1 mg/mL HA group (P<0.001). More active bone formation was observed in the higher-dose HA groups (25 mg/mL, 50 mg/mL, and 75 mg/mL HA), which included a large amount of woven bone. CONCLUSIONS The 75 mg/mL HA group showed better bone formation than the other groups (1, 25, and 50 mg/mL HA and control).
Collapse
Affiliation(s)
- Ling Li
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jungwon Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Young-Dan Cho
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Sungtae Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.
| |
Collapse
|
10
|
Alshehri FA, Alharbi MS. The Effect of Adjunctive Use of Hyaluronic Acid on Prevalence of Porphyromonas gingivalis in Subgingival Biofilm in Patients with Chronic Periodontitis: A Systematic Review. Pharmaceutics 2023; 15:1883. [PMID: 37514069 PMCID: PMC10385933 DOI: 10.3390/pharmaceutics15071883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative anaerobic bacterium that plays an important role in the development and progression of periodontitis. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that has previously demonstrated antibacterial potential in vitro against multiple bacterial species, including P. gingivalis. The purpose of this systematic review is to evaluate the effectiveness of HA as an adjunctive topical antibacterial agent to non-surgical mechanical therapy of periodontitis in reducing the prevalence of P. gingivalis in subgingival biofilms. Five clinical studies were identified that satisfied the eligibility criteria. Only three trials were suitable for the meta-analysis as they provided data at three and six months. Data on the prevalence of P. gingivalis in each study were collected. The odds ratio (OR) for measuring the effect size with a 95% confidence interval (CI) was applied to the available data. The results did not favor the use of HA during non-surgical mechanical therapy to reduce the prevalence of P. gingivalis in subgingival biofilm (odd ratio = 0.95 and 1.11 at three and six months, consecutively). Within their limitations, the current data do not indicate an advantage for using HA during mechanical periodontal therapy to reduce the prevalence of P. gingivalis.
Collapse
Affiliation(s)
- Fahad A Alshehri
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 12372, Saudi Arabia
| | - Meshal S Alharbi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 12372, Saudi Arabia
- Qassim Health Cluster, Ministry of Health, Buraydah 52367, Saudi Arabia
| |
Collapse
|
11
|
Townsend JM, Kiyotake EA, Easley J, Seim HB, Stewart HL, Fung KM, Detamore MS. Comparison of a Thiolated Demineralized Bone Matrix Hydrogel to a Clinical Product Control for Regeneration of Large Sheep Cranial Defects. MATERIALIA 2023; 27:101690. [PMID: 36743831 PMCID: PMC9897238 DOI: 10.1016/j.mtla.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Regeneration of calvarial bone remains a major challenge in the clinic as available options do not sufficiently regenerate bone in larger defect sizes. Calvarial bone regeneration cases involving secondary medical conditions, such as brain herniation during traumatic brain injury (TBI) treatment, further exacerbate treatment options. Hydrogels are well-positioned for severe TBI treatment, given their innate flexibility and potential for bone regeneration to treat TBI in a single-stage surgery. The current study evaluated a photocrosslinking pentenoate-modified hyaluronic acid polymer with thiolated demineralized bone matrix (i.e., TDBM hydrogel) capable of forming a completely interconnected hydrogel matrix for calvarial bone regeneration. The TDBM hydrogel demonstrated a setting time of 120 s, working time of 3 to 7 days, negligible change in setting temperature, physiological setting pH, and negligible cytotoxicity, illustrating suitable performance for in vivo application. Side-by-side ovine calvarial bone defects (19 mm diameter) were employed to compare the TDBM hydrogel to the standard-of-care control material DBX®. After 16 weeks, the TDBM hydrogel had comparable healing to DBX® as demonstrated by mechanical push-out testing (~800 N) and histology. Although DBX® had 59% greater new bone volume compared to the TDBM hydrogel via micro-computed tomography, both demonstrated minimal bone regeneration overall (15 to 25% of defect volume). The current work presents a method for comparing the regenerative potential of new materials to clinical products using a side-by-side cranial bone defect model. Comparison of novel biomaterials to a clinical product control (i.e., standard-of-care) provides an important baseline for successful regeneration and potential for clinical translation.
Collapse
Affiliation(s)
| | - Emi A. Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Jeremiah Easley
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Howard B. Seim
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Holly L. Stewart
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO 80523
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
12
|
de Almeida JM, de Araujo NJ, Matheus HR, de Abreu Furquim EM, Piovezan BR, Fiorin LG, Ervolino E. Hand instrumentation provides improved tissue response over ultrasonic scaler and substantiates safe dental practice: An in vivo study in rats. PLoS One 2023; 18:e0284497. [PMID: 37167233 PMCID: PMC10174520 DOI: 10.1371/journal.pone.0284497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/02/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the effectiveness of hand debridement (HD) versus ultrasonic dental scaler (UDS) for the treatment of experimental periodontitis (EP) in rats. MATERIAL AND METHODS Thirty 3-month-old male rats were used. EP was induced around the mandibular first molars (right and left). Seven days after induction, the treatments with either HD (n = 30) or UDS (n = 30) were randomly performed in each molar. Euthanasia were performed at 7, 15, and 30 days after treatment. Histometric (percentage of bone in the furcation [PBF]), histopathological, and immunohistochemical (for detection of tartrate-resistant acid phosphatase [TRAP] and osteocalcin [OCN]). Parametric data (PBF and TRAP) was analyzed by One-way ANOVA followed by Tukey's post-test. OCN was analyzed by Kruskal-Wallis followed by Student-Newman-Keuls post-test. The level of significance was 5%. RESULTS Group HD presented higher PBF and lower TRAP-immunolabeling at 30 days as compared with UDS in the same period (p≤0.05). Group HD presented higher OCN immunolabeling at 30 days as compared with 7 and 15 days (p≤0.05). Persistent and exacerbated inflammatory process was observed in some specimens from group UDS at 30 days, as well as the bone trabeculae presented irregular contour, surrounded by many active osteoclasts. CONCLUSION Nonsurgical periodontal therapy with HD resulted in higher PBF and lower expression of TRAP as compared with UDS. Also, HD increased the expression of OCN over time.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- Nucleus of Study and Research in Periodontology and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Nathália Januario de Araujo
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- Nucleus of Study and Research in Periodontology and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- Nucleus of Study and Research in Periodontology and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Elisa Mara de Abreu Furquim
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- Nucleus of Study and Research in Periodontology and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Bianca Rafaeli Piovezan
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- Nucleus of Study and Research in Periodontology and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Luiz Guilherme Fiorin
- Department of Diagnosis and Surgery-Periodontics Division, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- Nucleus of Study and Research in Periodontology and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Edilson Ervolino
- Nucleus of Study and Research in Periodontology and Implantology (NEPPI), School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| |
Collapse
|
13
|
Pomini KT, Buchaim DV, Bighetti ACC, Andreo JC, Rosso MPDO, Escudero JSB, Della Coletta BB, Alcalde MP, Duarte MAH, Pitol DL, Issa JPM, Ervolino E, Moscatel MBM, Bellini MZ, de Souza AT, Soares WC, Buchaim RL. Use of Photobiomodulation Combined with Fibrin Sealant and Bone Substitute Improving the Bone Repair of Critical Defects. Polymers (Basel) 2022; 14:4170. [PMID: 36236116 PMCID: PMC9572221 DOI: 10.3390/polym14194170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this preclinical protocol, an adjunct method is used in an attempt to overcome the limitations of conventional therapeutic approaches applied to bone repair of large bone defects filled with scaffolds. Thus, we evaluate the effects of photobiomodulation therapy (PBMT) on the bone repair process on defects filled with demineralized bovine bone (B) and fibrin sealant (T). The groups were BC (blood clot), BT (B + T), BCP (BC + PBMT), and BTP (B + T + PBMT). Microtomographically, BC and BCP presented a hypodense cavity with hyperdense regions adjacent to the border of the wound, with a slight increase at 42 days. BT and BTP presented discrete hyperdensing areas at the border and around the B particles. Quantitatively, BCP and BTP (16.96 ± 4.38; 17.37 ± 4.38) showed higher mean bone density volume in relation to BC and BT (14.42 ± 3.66; 13.44 ± 3.88). Histologically, BC and BCP presented deposition of immature bone at the periphery and at 42 days new bone tissue became lamellar with organized total collagen fibers. BT and BTP showed inflammatory infiltrate along the particles, but at 42 days, it was resolved, mainly in BTP. In the birefringence analysis, BT and BTP, the percentage of red birefringence increased (9.14% to 20.98% and 7.21% to 27.57%, respectively), but green birefringence was similar in relation to 14 days (3.3% to 3.5% and 3.5% to 4.2%, respectively). The number of osteocytes in the neoformed bone matrix proportionally reduced in all evaluated groups. Immunostaining of bone morphogenetic protein (BMP—2/4), osteocalcin (OCN), and vascular endothelial growth factor (VEGF) were higher in BCP and BTP when compared to the BC and BT groups (p < 0.05). An increased number of TRAP positive cells (tartrate resistant acid phosphatase) was observed in BT and BTP. We conclude that PBMT positively influenced the repair of bone defects filled with B and T.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Ana Carolina Cestari Bighetti
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Jesus Carlos Andreo
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | - José Stalin Bayas Escudero
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Bruna Botteon Della Coletta
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Murilo Priori Alcalde
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Marco Antonio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (FOB/USP), Bauru 17012-901, Brazil
| | - Dimitrius Leonardo Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, Brazil
| | - João Paulo Mardegan Issa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Ribeirão Preto 14040-904, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16066-840, Brazil
| | | | - Márcia Zilioli Bellini
- Pro-Rectory of Research and Graduate Studies, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | | | - Wendel Cleber Soares
- Vice-Rector/President, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil
| |
Collapse
|
14
|
High Molecular Weight Hyaluronic Acid Reduces the Expression of Virulence Genes fimA, mfa1, hagA, rgpA, and kgp in the Oral Pathogen Porphyromonas gingivalis. Pharmaceutics 2022; 14:pharmaceutics14081628. [PMID: 36015254 PMCID: PMC9415305 DOI: 10.3390/pharmaceutics14081628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a cornerstone pathogen in the development and progression of periodontal and peri-implant tissue destruction. It is capable of causing dysbiosis of the microbial biofilm and modulation of the host immune system. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan found in all living organisms. It is well known and has been used for improving tissue healing. In addition, some studies have suggested that there may be an antimicrobial potential to HA. The aim of this study was to evaluate the effect of hyaluronic acid, azithromycin (AZM), and chlorhexidine (CHX) on the expression of genes (i.e., fimA, mfa1, hagA, rgpA, rgpB, and kgp) related to the virulence and adhesion of P. gingivalis. The study groups were divided into four: (1) HA treated group; (2) AZM treated group; (3) CHX treated group; and (4) untreated group to serve as a negative control. P. gingivalis ATCC 33277 was cultured and then exposed to four different concentrations (100% MIC, 50% MIC, 25% MIC, and 12.5% MIC) of HA, AZM, and CHX for 24 h. The expression levels of the aforementioned genes were measured using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Relative fold-change values were calculated and compared between groups. The fold-change values of all genes combined were 0.46 ± 0.33, 0.31 ± 0.24, and 0.84 ± 0.77 for HA, AZM, and CHX, respectively. HA has downregulated all the genes by mostly a half-fold: 0.35 ± 0.20, 0.47 ± 0.35, 0.44 ± 0.25, 0.67 ± 0.46, 0.48 ± 0.33 and 0.35 ± 0.22 with fimA, mfa1, hagA, rgpA, rgpB and kgp, respectively. The effect of HA was significant on all genes except rgpB compared to the untreated control. Lower concentrations of HA tended to exhibit greater downregulation with 1 mg/mL being the most effective. High molecular weight (1.5 MDa) hyaluronic acid has a potent effect on P. gingivalis by downregulating fimA, mfa1, hagA, rgpA, and kgp. The effect of HA was generally less than that of AZM but greater than that of CHX.
Collapse
|
15
|
Yun J, Lee J, Kim S, Koo KT, Seol YJ, Lee YM. The effect of hard-type crosslinked hyaluronic acid with particulate bone substitute on bone regeneration: positive or negative? J Periodontal Implant Sci 2022; 52:312-324. [PMID: 36047584 PMCID: PMC9436643 DOI: 10.5051/jpis.2104700235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Purpose Methods Results Conclusions
Collapse
Affiliation(s)
- Junseob Yun
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jungwon Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
- One-Stop Specialty Center, Seoul National University Dental Hospital, Seoul, Korea
| | - Sungtae Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Ki-Tae Koo
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yang-Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Antineoplastic agents aggravate the damages caused by nicotine on the peri-implant bone: an in vivo histomorphometric and immunohistochemical study in rats. Clin Oral Investig 2021; 26:1477-1489. [PMID: 34386857 DOI: 10.1007/s00784-021-04121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To assess the interaction between chemotherapy and normal tissues is critical to assure quality of life during and after the treatment of cancer. This study evaluated the influence of cisplatin (CIS) and 5-fluorouracil (5-FU) over the peri-implant tissues around osseointegrated titanium implants in animals previously exposed to nicotine. Materials and methods One hundred twenty male rats were divided into two groups, receiving via subcutaneous injection, either physiological saline solution (PSS) (n = 30) or nicotine hemissulfate (NIC) (n = 90) for 30 days prior to implants' placement. One titanium implant (4.0 × 2.2 mm) was installed in each tibia of all animals. PSS and NIC were continued for 30 days after surgery. Five days after cessation, rats were subdivided into three subgroups in accordance with systemic treatments with either PSS, CIS, or 5-FU. Euthanasia was performed at 50, 65, and 95 days post-surgery. Histometric, histopathological, and immunohistochemical analyses were performed. RESULTS NIC-CIS and NIC-5FU presented lower BIC (50, 65, and 95 days) and bone area fraction occupancy (BAFO) (65 and 95 days) than group NIC. Intense inflammatory infiltration, severe tissue breakdown, reduced expression of bone formation biomarkers, and upregulation of TRAP were observed in NIC-CIS and NIC-5FU when compared with group NIC. TRAP expression was significantly higher in NIC-5FU as compared with NIC-CIS at 50 and 95 days. Groups NIC, NIC-CIS, and NIC-5FU presented statistically significant negative impact in all outcome parameters than group PSS. CONCLUSION CIS and 5-FU severely disrupted the peri-implant tissues around osseointegrated implants in animals previously exposed to nicotine. CLINICAL RELEVANCE Assessing the interaction between chemotherapy and normal tissues is critical to assure quality of life during and after the cancer treatment.
Collapse
|
17
|
Soares DG, Bordini EAF, Bronze-Uhle ES, Cassiano FB, Silva ISP, Gallinari MO, Matheus HR, Almeida JM, Cintra LTA, Hebling J, de Souza Costa CA. Chitosan-Calcium-Simvastatin Scaffold as an Inductive Cell-Free Platform. J Dent Res 2021; 100:1118-1126. [PMID: 34315311 DOI: 10.1177/00220345211024207] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The development of biomaterials based on the combination of biopolymers with bioactive compounds to develop delivery systems capable of modulating dentin regeneration mediated by resident cells is the goal of current biology-based strategies for regenerative dentistry. In this article, the bioactive potential of a simvastatin (SV)-releasing chitosan-calcium-hydroxide (CH-Ca) scaffold was assessed. After the incorporation of SV into CH-Ca, characterization of the scaffold was performed. Dental pulp cells (DPCs) were seeded onto scaffolds for the assessment of cytocompatibility, and odontoblastic differentiation was evaluated in a microenvironment surrounded by dentin. Thereafter, the cell-free scaffold was adapted to dentin discs positioned in artificial pulp chambers in direct contact with a 3-dimensional (3D) culture of DPCs, and the system was sealed to simulate internal pressure at 20 cm/H2O. In vivo experiments with cell-free scaffolds were performed in rats' calvaria defects. Fourier-transform infrared spectroscopy spectra proved incorporation of Ca and SV into the scaffold structure. Ca and SV were released upon immersion in a neutral environment. Viable DPCs were able to spread and proliferate on the scaffold over 14 d. Odontoblastic differentiation occurred in the DPC/scaffold constructs in contact with dentin, in which SV supplementation promoted odontoblastic marker overexpression and enhanced mineralized matrix deposition. The chemoattractant potential of the CH-Ca scaffold was improved by SV, with numerous viable and dentin sialoprotein-positive cells from the 3D culture being observed on its surface. Cells at 3D culture featured increased gene expression of odontoblastic markers in contact with the SV-enriched CH-Ca scaffold. CH-Ca-SV led to intense mineralization in vivo, presenting mineralization foci inside its structure. In conclusion, the CH-Ca-SV scaffold induces differentiation of DPCs into a highly mineralizing phenotype in the presence of dentin, creating a microenvironment capable of attracting pulp cells to its surface and inducing the overexpression of odontoblastic markers in a cell-homing strategy.
Collapse
Affiliation(s)
- D G Soares
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - E A F Bordini
- Department of Physiology and Pathology, University of Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, SP, Brazil
| | - E S Bronze-Uhle
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - F B Cassiano
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - I S P Silva
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - M O Gallinari
- Department of Operative Dentistry, Endodontics and Dental Materials, São Paulo University-USP, Bauru School of Dentistry, Bauru, SP, Brazil
| | - H R Matheus
- Department of Diagnosis and Surgery-Periodontics Division. São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - J M Almeida
- Department of Diagnosis and Surgery-Periodontics Division. São Paulo State University (Unesp), School of Dentistry, Araçatuba, SP, Brazil
| | - L T A Cintra
- Department of Preventive and Operative Dentistry, University of Estadual Paulista-UNESP, Araçatuba School of Dentistry, Araçatuba, SP, Brazil
| | - J Hebling
- Department of Orthodontics and Pediatric Dentistry, University of Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, SP, Brazil
| | - C A de Souza Costa
- Department of Physiology and Pathology, University of Estadual Paulista-UNESP, Araraquara School of Dentistry, Araraquara, SP, Brazil
| |
Collapse
|