1
|
Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol 2024; 226:116386. [PMID: 38909788 DOI: 10.1016/j.bcp.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Taurine is a sulfur-containing amino acid found in many cell organelles that plays a wide range of biological roles, including bile salt production, osmoregulation, oxidative stress reduction, and neuromodulation. Taurine treatments have also been shown to ameliorate the onset and development of many diseases, including hypertension, fatty liver, neurodegenerative diseases and ischemia-reperfusion injury, by exerting antioxidant, anti-inflammatory, and antiapoptotic effects. The endoplasmic reticulum (ER) is a dynamic organelle involved in a wide range of cellular functions, including lipid metabolism, calcium storage and protein stabilization. Under stress, the disruption of the ER environment leads to the accumulation of misfolded proteins and a characteristic stress response called the unfolded protein response (UPR). The UPR protects cells from stress and helps to restore cellular homeostasis, but its activation promotes cell death under prolonged ER stress. Recent studies have shown that ER stress is closely related to the onset and development of many diseases. This article reviews the beneficial effects and related mechanisms of taurine by regulating the ER in different physiological and pathological states, with the aim of providing a reference for further research and clinical applications.
Collapse
Affiliation(s)
- Linfeng Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Mengxian Wu
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Yunayuan Chen
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xin Wang
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China
| | - Xingke Li
- Institute of Microbial Engineering, School of Life Sciences, Henan University, Kaifeng 475004, China; Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng, 475004, China.
| | - Fangli Liu
- College of Nursing and Health, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Maruyama M, Nishida Y, Tanaka H, Minami T, Ogawara KI, Miyake M, Takamura Y, Kakuta H, Higaki K. Analysis of absorption-enhancing mechanisms for combinatorial use of spermine with sodium taurocholate in Caco-2 cells. Eur J Pharm Biopharm 2022; 180:332-343. [PMID: 36307000 DOI: 10.1016/j.ejpb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
|
3
|
Wang GN, Li YP, Yuan SK, Zhang H, Ren J, Ren X, Liu JX. The intestinal absorption mechanism of chicoric acid and its bioavailability improvement with chitosan. Heliyon 2022; 8:e09955. [PMID: 35874082 PMCID: PMC9304723 DOI: 10.1016/j.heliyon.2022.e09955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Chicoric acid (CA), an active phenolic acid of Echinacea purpurea (Linn.) Moench, has been demonstrated to exhibit antioxidative, antiviral and immunological activities. A prior study showed that CA is a water-soluble compound with low bioavailability. The current study was performed to study the intestinal absorption mechanism of CA and improve its bioavailability using natural biodegradable chitosan. A Caco-2 monolayer cell model was established to characterise the mechanisms involved in the intestinal absorption of CA. The bioavailability improvement of CA was studied in Sprague–Dawley rats after oral (20 mg/kg) administration of 0.5% chitosan. In vitro, the results showed that the absorption transport of CA was fairly poor, with Papp values of 8.2 × 10−8 to 2.1 × 10−7 cm/s in the absorption direction and 1.5 × 10−7 to 2.6 × 10−7 cm/s in the secretory direction. The permeability was increased by EDTA and chitosan in both directions. Moreover, the transport through the intestinal monolayer was H+ dependent, and P-glycoprotein and OATP2B1 transporters were involved in the intestinal transport of CA. In vivo, the absorption of CA was increased and accelerated with chitosan in rats because the bioavailability was 1.74-fold that of the prototype drug. The above mentioned results indicated that CA was a poor absorption drug and that paracellular and carrier-mediated trancellular transport both participated in its transport route. Chitosan is an excellent absorption enhancer for CA. The transport characteristics uncovered in this study lay the groundwork for further studies directed toward the development and utilisation of its new formulations.
Collapse
Affiliation(s)
- Geng Nan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Yi Peng Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Si Kun Yuan
- Baoding Institute for Food and Drug Control, Baoding, Hebei, 071000, PR China
| | - Hu Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| | - Ju Xiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei, 071000, PR China
| |
Collapse
|
4
|
Chu F, Wan H, Xiao W, Dong H, Lü M. Ca 2+-Permeable Channels/Ca 2+ Signaling in the Regulation of Ileal Na +/Gln Co-Transport in Mice. Front Pharmacol 2022; 13:816133. [PMID: 35281933 PMCID: PMC8905502 DOI: 10.3389/fphar.2022.816133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Oral glutamine (Gln) has been widely used in gastrointestinal (GI) clinical practice, but it is unclear if Ca2+ regulates intestinal Gln transport, although both of them are essential nutrients for mammals. Chambers were used to determine Gln (25 mM)-induced Isc through Na+/Gln co-transporters in the small intestine in the absence or the presence of selective activators or blockers of ion channels and transporters. Luminal but not serosal application of Gln induced marked intestinal Isc, especially in the distal ileum. Lowering luminal Na+ almost abolished the Gln-induced ileal Isc, in which the calcium-sensitive receptor (CaSR) activation were not involved. Ca2+ removal from both luminal and serosal sides of the ileum significantly reduced Gln- Isc. Blocking either luminal Ca2+ entry via the voltage-gated calcium channels (VGCC) or endoplasmic reticulum (ER) release via inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) attenuated the Gln-induced ileal Isc, Likewise, blocking serosal Ca2+ entry via the store-operated Ca2+ entry (SOCE), TRPV1/2 channels, and Na+/Ca2+ exchangers (NCX) attenuated the Gln-induced ileal Isc. In contrast, activating TRPV1/2 channels enhanced the Gln-induced ileal Isc. We concluded that Ca2+ signaling is critical for intestinal Gln transport, and multiple plasma membrane Ca2+-permeable channels and transporters play roles in this process. The Ca2+ regulation of ileal Na+/Gln transport expands our understanding of intestinal nutrient uptake and may be significant in GI health and disease.
Collapse
Affiliation(s)
- Fenglan Chu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Muhan Lü
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Birch D, Diedrichsen RG, Christophersen PC, Mu H, Nielsen HM. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium. Eur J Pharm Sci 2018. [DOI: 10.1016/j.ejps.2018.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae. Int J Pharm 2018; 539:11-22. [DOI: 10.1016/j.ijpharm.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
|
7
|
Brayden DJ, Maher S, Bahar B, Walsh E. Sodium caprate-induced increases in intestinal permeability and epithelial damage are prevented by misoprostol. Eur J Pharm Biopharm 2015; 94:194-206. [PMID: 26026287 DOI: 10.1016/j.ejpb.2015.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 01/28/2023]
Abstract
Epithelial damage caused by intestinal permeation enhancers is a source of debate concerning safety. The medium chain fatty acid, sodium caprate (C10), causes reversible membrane perturbation at high dose levels required for efficacy in vivo, so the aim was to model it in vitro. Exposure of Caco-2 monolayers to 8.5mM C10 for 60min followed by incubation in fresh buffer led to (i) recovery in epithelial permeability (i.e. transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [(14)C]-mannitol), (ii) recovery of cell viability parameters (monolayer morphology, plasma membrane potential, mitochondrial membrane potential, and intracellular calcium) and (iii) reduction in mRNA expression associated with inflammation (IL-8). Pre-incubation of monolayers with a mucosal prostaglandin cytoprotectant was attempted in order to further decipher the mechanism of C10. Misoprostol (100nM), inhibited C10-induced changes in monolayer parameters, an effect that was partially attenuated by the EP1 receptor antagonist, SC51322. In rat isolated intestinal tissue mucosae and in situ loop instillations, C10-induced respective increases in the [(14)C]-mannitol Papp and the AUC of FITC-dextran 4000 (FD-4) were similarly inhibited by misoprostol, with accompanying morphological damage spared. These data support a temporary membrane perturbation effect of C10, which is linked to its capacity to mainly increase paracellular flux, but which can be prevented by pre-exposure to misoprostol.
Collapse
Affiliation(s)
- David J Brayden
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Sam Maher
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Bojlul Bahar
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edwin Walsh
- School of Veterinary Medicine and Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Brayden DJ, Cryan SA, Dawson KA, O'Brien PJ, Simpson JC. High-content analysis for drug delivery and nanoparticle applications. Drug Discov Today 2015; 20:942-57. [PMID: 25908578 DOI: 10.1016/j.drudis.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/16/2022]
Abstract
High-content analysis (HCA) provides quantitative multiparametric cellular fluorescence data. From its origins in discovery toxicology, it is now addressing fundamental questions in drug delivery. Nanoparticles (NPs), polymers, and intestinal permeation enhancers are being harnessed in drug delivery systems to modulate plasma membrane properties and the intracellular environment. Identifying comparative mechanistic cytotoxicity on sublethal events is crucial to expedite the development of such systems. NP uptake and intracellular routing pathways are also being dissected using chemical and genetic perturbations, with the potential to assess the intracellular fate of targeted and untargeted particles in vitro. As we discuss here, HCA is set to make a major impact in preclinical delivery research by elucidating the intracellular pathways of NPs and the in vitro mechanistic-based toxicology of formulation constituents.
Collapse
Affiliation(s)
- David J Brayden
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland; UCD Conway Institute, Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland
| | - Kenneth A Dawson
- UCD Centre for Bionano Interactions, School of Chemistry and Chemical Biology, Belfield, Dublin 4, Ireland
| | - Peter J O'Brien
- University College Dublin (UCD) School of Veterinary Medicine, Dublin 2, Ireland
| | - Jeremy C Simpson
- UCD School of Biology and Environmental Sciences, Belfield, Dublin 4, Ireland; UCD Conway Institute, Dublin 2, Ireland
| |
Collapse
|
9
|
Inami Y, Andoh T, Sasaki A, Kuraishi Y. Topical surfactant-induced pruritus: involvement of histamine released from epidermal keratinocytes. J Pharmacol Exp Ther 2013; 344:459-66. [PMID: 23220712 DOI: 10.1124/jpet.112.200063] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Surfactants, an important component of cleansers, often cause itch in humans. Topical application of sodium laurate and N-lauroylsarcosine sodium salt to the skin of mice immediately (for 1-1.5 hours) increased scratching, and the former increased scratching again between 2 and 3 hours after application. Thus, we examined the mechanisms of sodium laurate-induced delayed scratching. Sodium laurate (0.1%-10%) increased delayed scratching and skin surface pH in a concentration-dependent manner. N-lauroylsarcosine sodium salt had no effect on these parameters, and sodium hydroxide solution did not increase delayed scratching. Sodium laurate-induced delayed scratching was markedly inhibited by the H(1) histamine receptor antagonist terfenadine, but it was not affected by mast cell deficiency. Sodium laurate application had no effect on the number of total and degranulated mast cells, and did not induce plasma extravasation or the infiltration of inflammatory cells in the skin. Sodium laurate application increased the histamine content of the epidermis, but not that of the dermis, in normal and mast cell-deficient mice. Sodium laurate application increased the ratio of 53-kDa l-histidine decarboxylase (HDC, a key enzyme for histamine production) to 74-kDa HDC in the mouse epidermis and in a human keratinocyte culture. Sodium laurate increased histamine in the human keratinocyte culture, without affecting cell viability. The present results suggest that sodium laurate induced delayed scratching at an alkaline pH through the increased production of histamine in keratinocytes, which may be due to enhanced processing of 74-kDa to 53-kDa HDC.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Department of Applied Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-1094, Japan
| | | | | | | |
Collapse
|
10
|
|
11
|
Aungst BJ. Absorption enhancers: applications and advances. AAPS JOURNAL 2011; 14:10-8. [PMID: 22105442 DOI: 10.1208/s12248-011-9307-4] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/20/2011] [Indexed: 11/30/2022]
Abstract
Absorption enhancers are functional excipients included in formulations to improve the absorption of a pharmacologically active drug. The term absorption enhancer usually refers to an agent whose function is to increase absorption by enhancing membrane permeation, rather than increasing solubility, so such agents are sometimes more specifically termed permeation enhancers. Absorption enhancers have been investigated for at least two decades, particularly in efforts to develop non-injection formulations for peptides, proteins, and other pharmacologically active compounds that have poor membrane permeability. While at least one product utilizing an absorption enhancer for transdermal use has reached the market, quite a few more appear to be at the threshold of becoming products, and these include oral and transmucosal applications. This paper will review some of the most advanced absorption enhancers currently in development and the formulation technologies employed that have led to their success. In addition, a more basic review of the barriers to absorption and the mechanisms by which those barriers can be surmounted is presented. Factors influencing the success of absorption-enhancing formulations are discussed. If ultimately successful, the products now in development should offer non-injection alternatives for several peptide or protein drugs currently only administered by injection. The introduction of new absorption enhancers as accepted pharmaceutical excipients, and the development of formulation technologies that afford the greatest benefit/risk ratio for their use, may create opportunities to apply these enabling technologies more broadly to existing drugs with non-optimal delivery properties.
Collapse
|
12
|
Gao X, Yang X, Zhang B. Neuroprotection of taurine against bilirubin-induced elevation of apoptosis and intracellular free calcium ion in vivo. Toxicol Mech Methods 2011; 21:383-7. [PMID: 21250777 DOI: 10.3109/15376516.2010.546815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous work has shown that taurine protected neurons against unconjugated bilirubin (UCB)-induced neurotoxicity by preventing cell apoptosis and maintaining intracellular Ca²⁺ homeostasis in primary neuron culture. This study investigates the neurotoxicity of hyperbilirubinemia and neuroprotection of taurine in a clinically relevant murine model in vivo. A hyperbilirubinemia baby mice model was established by intraperitoneal injection with UCB. After 24 h, the neural apoptotic level, transcriptional activity of caspase-3, and iCa²⁺ concentration were detected. It was found that UCB injection significantly increased both intracellular free Ca²⁺ concentrations and the activities of proapoptosis protease caspase-3, which is related to the elevation of neural apoptosis level. When baby mice were pretreated with 7.5 or 15 mg/kg body weight (bw) taurine for 4 h and then exposed to UCB, apoptotic death was significantly attenuated through down-regulation of activity of caspase-3 and i[Ca²⁺] in the brain. From these observations, it was concluded that taurine limits bilirubin-induced neural damage by inhibiting iCa²⁺ overload as well as decreasing activation of proapoptotic proteases caspase-3. This study might contribute to the development of taurine as a broad-spectrum agent for preventing and/or treating neural damage in neonatal jaundice.
Collapse
Affiliation(s)
- Xiaoling Gao
- Molecular Immunology, Center of Clinical laboratory, People's Hospital of Gansu Province, Gansu, P.R. China
| | | | | |
Collapse
|
13
|
Taha R, Seidman E, Mailhot G, Boudreau F, Gendron FP, Beaulieu JF, Ménard D, Delvin E, Amre D, Levy E. Oxidative stress and mitochondrial functions in the intestinal Caco-2/15 cell line. PLoS One 2010; 5:e11817. [PMID: 20676402 PMCID: PMC2910735 DOI: 10.1371/journal.pone.0011817] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/02/2010] [Indexed: 12/15/2022] Open
Abstract
Background Although mitochondrial dysfunction and oxidative stress are central mechanisms in various pathological conditions, they have not been extensively studied in the gastrointestinal tract, which is known to be constantly exposed to luminal oxidants from ingested foods. Key among these is the simultaneous consumption of iron salts and ascorbic acid, which can cause oxidative damage to biomolecules. Methodology/Principal Findings The objective of the present work was to evaluate how iron-ascorbate (FE/ASC)-mediated lipid peroxidation affects mitochondrion functioning in Caco-2/15 cells. Our results show that treatment of Caco-2/15 cells with FE/ASC (0.2 mM/2 mM) (1) increased malondialdehyde levels assessed by HPLC; (2) reduced ATP production noted by luminescence assay; (3) provoked dysregulation of mitochondrial calcium homeostasis as evidenced by confocal fluorescence microscopy; (4) upregulated the protein expression of cytochrome C and apoptotic inducing factor, indicating exaggerated apoptosis; (5) affected mitochondrial respiratory chain complexes I, II, III and IV; (6) elicited mtDNA lesions as illustrated by the raised levels of 8-OHdG; (7) lowered DNA glycosylase, one of the first lines of defense against 8-OHdG mutagenicity; and (8) altered the gene expression and protein mass of mitochondrial transcription factors (mtTFA, mtTFB1, mtTFB2) without any effects on RNA Polymerase. The presence of the powerful antioxidant BHT (50 µM) prevented the occurrence of oxidative stress and most of the mitochondrial abnormalities. Conclusions/Significance Collectively, our findings indicate that acute exposure of Caco-2/15 cells to FE/ASC-catalyzed peroxidation produces harmful effects on mitochondrial functions and DNA integrity, which are abrogated by the powerful exogenous BHT antioxidant. Functional derangements of mitochondria may have implications in oxidative stress-related disorders such as inflammatory bowel diseases.
Collapse
Affiliation(s)
- Rame Taha
- Department of Nutrition, Research Center, CHU-Sainte-Justine, Université de Montréal, Montreal, Canada
| | - Ernest Seidman
- Research Institute, McGill University, Montreal, Canada
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Genevieve Mailhot
- Department of Nutrition, Research Center, CHU-Sainte-Justine, Université de Montréal, Montreal, Canada
| | - François Boudreau
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Fernand-Pierre Gendron
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Jean-François Beaulieu
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Daniel Ménard
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Edgard Delvin
- Department of Biochemistry, Research Center, CHU-Sainte-Justine, Université de Montréal, Montreal, Canada
| | - Devendra Amre
- Department of Pediatrics, Research Center, CHU-Sainte-Justine, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Department of Nutrition, Research Center, CHU-Sainte-Justine, Université de Montréal, Montreal, Canada
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- * E-mail:
| |
Collapse
|
14
|
Takayama C, Mukaizawa F, Fujita T, Ogawara KI, Higaki K, Kimura T. Amino acids suppress apoptosis induced by sodium laurate, an absorption enhancer. J Pharm Sci 2010; 98:4629-38. [PMID: 19630065 DOI: 10.1002/jps.21757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formulation containing sodium laurate (C12), an absorption enhancer, and several amino acids such as taurine (Tau) and L-glutamine (L-Gln) is a promising preparation that can safely improve the intestinal absorption of poorly absorbable drugs. The safety for intestinal mucosa is achieved because the amino acids prevent C12 from causing mucosal damages via several mechanisms. In the present study, the possible involvement of apoptosis, programmed cell death, in mucosal damages caused by C12 and cytoprotection by amino acids was examined. C12 induced DNA fragmentation, a typical phenomenon of apoptosis, in rat large-intestinal epithelial cells while the addition of amino acids significantly attenuated it. C12 alone significantly increased the release of cytochrome C, an apoptosis-inducing factor, from mitochondria, which could be via the decrease in the level of Bcl-2, an inhibiting factor of cytochrome C release. The enhancement of cytochrome C release by C12 led to the activation of caspase 9, an initiator enzyme, and the subsequent activation of caspase 3, an effector enzyme. On the other hand, Tau or L-Gln significantly suppressed the release of cytochrome C from mitochondria and attenuated the activities of both caspases, which could be attributed to the maintenance of Bcl-2 expression.
Collapse
Affiliation(s)
- Chie Takayama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
15
|
KIMURA T. Analysis of Factors Governing Drug Absorption and Their Improvement. YAKUGAKU ZASSHI 2009; 129:911-23. [DOI: 10.1248/yakushi.129.911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Mukaizawa F, Taniguchi K, Miyake M, Ogawara KI, Odomi M, Higaki K, Kimura T. Novel oral absorption system containing polyamines and bile salts enhances drug transport via both transcellular and paracellular pathways across Caco-2 cell monolayers. Int J Pharm 2008; 367:103-8. [PMID: 18929635 DOI: 10.1016/j.ijpharm.2008.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/10/2008] [Accepted: 09/18/2008] [Indexed: 11/19/2022]
Abstract
The combinatorial use of spermine (SPM), a typical polyamine, and sodium taurocholate (STC), a typical bile salt, was found to be a promising safe preparation for improving the oral absorption of poorly water-soluble and/or poorly absorbable drug in our previous studies utilizing rats and dogs. To clarify the mechanisms behind the synergistic enhancement effect of the polyamine and bile salt, the transport of rebamipide, which is classified into Biopharmaceutics Classification System Class IV, was investigated in Caco-2 cell monolayers. The synergistic enhancement of rebamipide transport by SPM and STC was certainly observed in Caco-2 cells as well, while the separate use of either SPM or STC did not significantly improve the transport of rebamipide. The combinatorial use of SPM and STC significantly decreased the transepithelial electrical resistance (TEER) in Caco-2 cell monolayers, suggesting that the opening of paracellular pathway. On the other hand, it was also confirmed that the decrease in TEER was transient and reversible after removal of SPM and STC and that cell viability was maintained. Voltage-clamp study clearly showed that their combinatorial use improved rebamipide transport via both paracellular and transcellular pathways, and that the contribution of transcellular route could be larger than paracellular route.
Collapse
Affiliation(s)
- Fuyuki Mukaizawa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Higaki K. [Safe improvement of drug absorption by combinatorial use of sodium laurate with amino acids: cytoprotection by amino acids and its mechanisms]. YAKUGAKU ZASSHI 2007; 127:589-99. [PMID: 17409688 DOI: 10.1248/yakushi.127.589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of combinatorial chemistry and high-throughput screening techniques has made it possible to generate many new drug candidates very rapidly, but it has also resulted in a number of poorly soluble and/or poorly absorbable candidates. A new trend in drug development based on pharmacogenomics or the development of molecular-targeted drugs is also spurring the tendency, and it does not necessarily lead to good output in terms of the development of new drugs. It is attractive to improve membrane permeability as well as solubility by using adjuvants, because this method could be applicable for various drugs. However, the practical use of absorption-enhancing adjuvants has been limited because of the potential local toxicity. Therefore suppressing the potential local toxicity would lead to the successful development of safe preparations with improved absorption using adjuvants. Our biochemical and histopathologic studies showed that several amino acids such as taurine and L-glutamine had cytoprotective activity, and it has been found that the combinatorial use of sodium laurate (C12) with these amino acids could maintain the absorption-enhancing ability of C12. A suppository preparation containing C12 and taurine remarkably improved the rectal absorption of rebamipide, classified as BCS class IV, and the preparation was safe to the rectal mucosa. For the mechanisms of cytoprotective action by these amino acids, it has been found that they suppress the intracellular calcium level, induce the expression of heat-shock protein 70, and inhibit the release of histamine and apoptosis.
Collapse
Affiliation(s)
- Kazutaka Higaki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| |
Collapse
|