1
|
Guo Z, Wang H, Sun J, Ma Y, Cui X, Kou S, Jiang Z, Zhang L, Wang X, Wang T, Sun L, Huang X. The intestinal absorption of triptolide for the treatment of rheumatoid arthritis is mediated by transporters. Int Immunopharmacol 2024; 143:113440. [PMID: 39471693 DOI: 10.1016/j.intimp.2024.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Tripterygium wilfordii Hook. f. is a traditional Chinese herb that is used to treat rheumatoid arthritis (RA). Triptolide (TP), an epoxidized diterpene lactone extracted from this herb, has been suggested to be the primary active and toxic component. In this work, the material basis and molecular mechanism of toxicity induced by T. wilfordii preparations in RA were investigated. Female rats with collagen-induced arthritis were given 500 μg·kg-1 TP intragastrically or intravenously. Compared with that in the control group, the AUClast in the CIA group was 1.7-fold greater after intragastric administration, while this value decreased 22.6 % after intravenous administration, suggesting that the absorption of TP was significantly greater in the CIA group. The results from RT-PCR and probe substrate perfusion indicated that Oatp1a5 expression was upregulated while P-glycoprotein (P-gp) expression was downregulated in the duodenums of CIA rats. Naringin, an inhibitor of Oatp1a5, decreased the Peff of TP in the rat duodenum by 27.9 %, whereas verapamil hydrochloride, an inhibitor of P-gp, increased the Peff by 50.8 %, suggesting that Oatp1a5 and P-gp mediate the uptake and efflux of TP in the rat duodenum, respectively. Furthermore, among the upstream nuclear receptors, the mRNA expression levels and protein expression levels of FXR and VDR were noticeably decreased. In the present study, the absorption of TP in the duodenums of CIA rats significantly increased due to the upregulation of Oatp1a5 expression and the downregulation of P-gp expression, leading to an increase in TP plasma exposure after intragastric administration. The altered expression of Oatp1a5 and P-gp may be related to FXR and VDR.
Collapse
Affiliation(s)
- Ziyu Guo
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, Guangdong 518057, China
| | - Hefei Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Ma
- Foreign Language Teaching Department, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xueyang Cui
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shanshan Kou
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinzhi Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lixin Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Huang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
2
|
Slc25a39 and Slc25a40 Expression in Mice with Bile Duct Ligation or Lipopolysaccharide Treatment. Int J Mol Sci 2022; 23:ijms23158573. [PMID: 35955707 PMCID: PMC9369313 DOI: 10.3390/ijms23158573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
SLC25A39/40, involved in mitochondrial GSH (mGSH) import from the cytoplasm, is essential for protection against oxidative stress and mitochondrial dysfunction. We examined the effects of cholestasis, through bile duct ligation (BDL) and lipopolysaccharide (LPS)-induced inflammation in mice, on Slc25a39/40 expression. Additionally, we used human clear cell renal carcinoma (KMRC-1) cells to elucidate the mechanism of regulation of SLC25A39/40 expression in the kidneys after LPS treatment. BDL resulted in a decrease in Slc25a39 mRNA in the liver and a decrease in Slc25a39/40 mRNA and protein in the kidneys. Consequently, there was a significant decrease in mGSH levels in the kidneys of BDL mice compared with those in sham mice. LPS treatment resulted in increased Slc25a40 expression in the kidneys. In KMRC-1 cells, the combination treatment of LPS-RS or FPS-ZM1 with LPS suppressed the LPS-induced increase in SLC25A40, suggesting that SLC25A40 expression could be regulated by the signaling pathway via toll-like receptor 4 and the receptor for advanced glycation end products, respectively. Our findings contribute to understanding the role of mGSH in the maintenance of the mitochondrial redox state. To the best of our knowledge, this is the first study that demonstrates the changes in Slc25a39/40 expression in mice with cholestasis-associated renal injury and LPS-induced inflammation.
Collapse
|
3
|
Saib S, Hodin S, Mercier C, Paul M, Bin V, Ollier E, Delavenne X. TNF-α and IL-1β Exposure Modulates the Expression and Functionality of P-Glycoprotein in Intestinal and Renal Barriers. Mol Pharm 2022; 19:2327-2334. [PMID: 35674492 DOI: 10.1021/acs.molpharmaceut.2c00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inflammation is characterized by an increased secretion of proinflammatory cytokines known to alter the expression and functionality of drug transporters. Since P-glycoprotein (P-gp) plays a key role in the pharmacokinetics of several drugs, these modulations could further affect drug exposure. In this context, this study aims to investigate the impact of in vitro cytokine exposure on the expression and activity of P-gp using the intestinal model Caco-2 and the human renal cells RPTEC/TERT1. Cells were exposed to various concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β for 24 or 72 h. Gene expression was then assessed by RT-qPCR followed by absolute quantification of P-gp using liquid chromatography coupled with mass spectrometry. Then, the activity of P-gp was assessed by the intracellular accumulation of rhodamine 123. TNF-α increased both the gene expression and P-gp activity by 15-40% in each model. Minor modulations were observed at the protein level with increases of up to 8% for RPTEC/TERT1 cells and 24% for Caco-2 cells. Conversely, IL-1β led to a downregulation of gene, protein, and functionality by 48 and 25% in intestinal and renal cells, respectively. Taken together, these data highlighted that gene expression levels and functional activity of P-gp are altered by the pro-inflammatory cytokines in intestinal and renal cells. Such pronounced changes in human P-gp could result in altered exposure to drug substrates. Further in vivo studies are needed to confirm the impact of inflammation on drug pharmacokinetics.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Sophie Hodin
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Clément Mercier
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Mireille Paul
- INSERM U1059, Laboratoire de Biologie Intégrative du Tissu Osseux (LBTO), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Valérie Bin
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Edouard Ollier
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et Hémostase (DVH), Université Jean Monnet, Saint-Etienne F-42023, France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang, CHU de Saint-Etienne, Saint-Etienne CS 82301, France
| |
Collapse
|
4
|
Fujino C, Ueshima S, Katsura T. Changes in the expression of drug-metabolising enzymes and drug transporters in mice with collagen antibody-induced arthritis. Xenobiotica 2022; 52:758-766. [PMID: 36278306 DOI: 10.1080/00498254.2022.2137442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. We investigated the changes in the expression of drug-metabolising enzymes and drug transporters in the liver, small intestine and kidney of mice with collagen antibody-induced arthritis (CAIA) to determine whether changes in these expressions affect pharmacokinetics of drugs in patients with rheumatoid arthritis.2. mRNA expression levels of cytochrome P450 (Cyp) 2b10, Cyp2c29 and Cyp3a11 were observed to be lower in the liver and small intestine of CAIA mice than in control mice. Compared with control mice, mRNA expression levels of multidrug resistance 1 b, peptide transporter 2 and organic anion transporter (Oat) 2 were high in the liver of CAIA mice. Changes in these expression levels were different among organs. However, elevated expression of Oat2 mRNA was not associated with an increase in protein expression and transport activity evaluated using [3H]cGMP as a substrate.3. These results suggest that arthritis can change the expression of pharmacokinetics-related genes, but the changes may not necessarily be linked to the pharmacokinetics in patients with rheumatoid arthritis. On the other hand, we found Oat2 mRNA expression level was positively correlated with plasma interleukin-6 level, indicating that transcriptional activation of Oat2 may occur in inflammatory state.
Collapse
Affiliation(s)
- Chieri Fujino
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Satoshi Ueshima
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Toshiya Katsura
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
5
|
Li Z, Huang Y, Xu H, Li Z. Population pharmacokinetic and dose optimization of mycophenolic acid in children with anti-neutrophilic cytoplasmic antibody-associated nephritis. Eur J Clin Pharmacol 2022; 78:831-838. [DOI: 10.1007/s00228-021-03265-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/11/2021] [Indexed: 11/03/2022]
|
6
|
Szczygieł M, Markiewicz M, Szafraniec MJ, Hojda A, Fiedor L, Urbanska K. Systemic Mobilization of Breast Cancer Resistance Protein in Response to Oncogenic Stress. Cancers (Basel) 2022; 14:cancers14020313. [PMID: 35053477 PMCID: PMC8773772 DOI: 10.3390/cancers14020313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The drug efflux mediated by xenobiotic transporters is one of the best recognized mechanisms of multidrug resistance in cancer that leads to the failure of therapeutic approaches. The aim of our research was to examine the influence of a growing tumor on the activity of xenobiotic transport in the host. Our study reveals a strong correlation between the development of melanoma tumor in mice and the level of breast cancer resistance protein, one of the major xenobiotic transporters, and its transcript in the normal tissues of the hosts distant from the tumor site. The systemic effects of the tumor are confirmed by a drastically enhanced xenobiotic transport, which is correlated with changes in the level of cytokines in blood. Such an unexpected type of tumor–host interaction, which leads to the systemic upregulation of breast cancer resistance protein, and very likely of other xenobiotic transporters too, has broad implications for cancer therapies, including chemotherapy and photodynamic therapy. Our findings shed new light on the biology of cancer and the complexity of cancer–host interactions that should be taken into account in the design of new generations of anti-cancer drugs and personalized medicine. Abstract The breast cancer resistance protein (BCRP or ABCG2) involved in cancer multidrug resistance (MDR), transports many hydrophobic compounds, including a number of anti-cancer drugs. Our comprehensive study using a mouse model reveals that a subcutaneously growing tumor strongly affects the expression of BCRP in the host’s normal organs on both the transcriptional and translational level. Additionally, the efflux of BCRP substrates is markedly enhanced. The levels of BCRP and its transcript in normal tissues distant from the tumor site correlate with tumor growth and the levels of cytokines in the peripheral blood. Thus, oncogenic stress causes transient systemic upregulation of BCRP in the host’s normal tissues and organs, which is possibly mediated via cytokines. Because BCRP upregulation takes place in many organs as early as the initial stages of tumor development, it reveals a most basic mechanism that may be responsible for the induction of primary MDR. We hypothesize that such effects are not tumor-specific responses, but rather constitute a more universal defense strategy. The xenobiotic transporters are systemically mobilized due to various stresses, seemingly in a pre-emptive manner so that the body can be quickly and efficiently detoxified. Our findings shed new light on the biology of cancer and on the complexity of cancer–host interactions and are highly relevant to cancer therapies as well as to the design of new generations of therapeutics and personalized medicine.
Collapse
Affiliation(s)
- Małgorzata Szczygieł
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
- Correspondence: (M.S.); (L.F.)
| | - Marcin Markiewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
| | - Milena Julia Szafraniec
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Agnieszka Hojda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
| | - Leszek Fiedor
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
- Correspondence: (M.S.); (L.F.)
| | - Krystyna Urbanska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (M.M.); (M.J.S.); (A.H.); (K.U.)
| |
Collapse
|
7
|
Saib S, Delavenne X. Inflammation Induces Changes in the Functional Expression of P-gp, BCRP, and MRP2: An Overview of Different Models and Consequences for Drug Disposition. Pharmaceutics 2021; 13:pharmaceutics13101544. [PMID: 34683838 PMCID: PMC8539483 DOI: 10.3390/pharmaceutics13101544] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters play a key role in drug pharmacokinetics. These membrane transporters expressed within physiological barriers can be a source of pharmacokinetic variability. Changes in ABC transporter expression and functionality may consequently affect the disposition of substrate drugs, resulting in different drug exposure. Inflammation, present in several acute and chronic diseases, has been identified as a source of modulation in drug transporter expression leading to variability in drug response. Its regulation may be particularly dangerous for drugs with a narrow therapeutic index. In this context, numerous in vitro and in vivo models have shown up- or downregulation in the expression and functionality of ABC transporters under inflammatory conditions. Nevertheless, the existence of contradictory data and the lack of standardization for the models used have led to a less conclusive interpretation of these data.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Faculté de Médecine, Université Jean Monnet, 42023 Saint-Etienne, France
- Correspondence: ; Tel.: +33-477-42-1443
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et de l’Hémostase, 42270 Saint-Priest-En-Jarez, France;
- Laboratoire de Pharmacologie Toxicologie Gaz du Sang, CHU de Saint-Etienne, 42000 Saint-Etienne, France
| |
Collapse
|
8
|
Increased brain penetration of diphenhydramine and memantine in rats with adjuvant-induced arthritis. Brain Res 2021; 1768:147581. [PMID: 34280372 DOI: 10.1016/j.brainres.2021.147581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
Brain penetration of cationic drugs is an important determinant of their efficacy and side effects. However, the effects of alterations in the activity of uptake transporters in the brain under inflammatory conditions on the brain penetration of cationic drugs are not fully understood. The aim of this study was to examine changes in brain penetration of cationic drugs, including diphenhydramine (DPHM), memantine (MMT), and cimetidine (CMD), and changes in the expression of uptake transporters such as organic cation transporter (Oct) in brain microvascular endothelial cells (BMECs) under inflammatory conditions. To clarify the effects of inflammation on the brain penetration of DPHM, MMT, and CMD, we performed brain microdialysis studies in a rat model of adjuvant-induced arthritis (AA). Further, differences in transporter mRNA expression levels between BMECs from control and AA rats were evaluated. Brain microdialysis showed that the unbound brain-to-plasma partition coefficient (Kp,uu,brain) for DPHM and MMT was significantly lower in AA rats compared with control rats. OCT mRNA levels were increased and proton-coupled organic cation (H+/OC) antiporter mRNA levels were decreased in AA rats compared with control rats. Taken together, our findings suggest that inflammation decreases the brain penetration of H+/OC antiporter substrates such as DPHM and MMT.
Collapse
|
9
|
Kawase A, Chuma T, Irie K, Kazaoka A, Kakuno A, Matsuda N, Shimada H, Iwaki M. Increased penetration of diphenhydramine in brain via proton-coupled organic cation antiporter in rats with lipopolysaccharide-induced inflammation. Brain Behav Immun Health 2020; 10:100188. [PMID: 34589723 PMCID: PMC8474606 DOI: 10.1016/j.bbih.2020.100188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 01/18/2023] Open
Abstract
Uptake transporters in brain microvascular endothelial cells (BMECs) are involved in the penetration of basic (cationic) drugs such as diphenhydramine (DPHM) into the brain. Lipopolysaccharide (LPS)-induced inflammation alters the expression levels and activities of uptake transporters, which change the penetration of DPHM into the brain. A brain microdialysis study showed that the unbound brain-to-plasma partition coefficient (Kp,uu,brain) for DPHM in LPS rats was approximately two times higher than that in control rats. The transcellular transport of DPHM to BMECs was increased when BMECs were cultured with serum from LPS rats. Compared with control rats or BMECs, the brain uptake of DPHM in LPS rats was increased and the intracellular accumulation of DPHM was increased under a high intracellular pH in BMECs from LPS rats, respectively. Treatment of BMECs with transporter inhibitors or inflammatory cytokines had little impact on the intracellular accumulation of DPHM in BMECs. This study suggests that LPS-induced inflammation promotes unidentified proton-coupled organic cation (H+/OC) antiporters that improve the penetration of DPHM into rat brain via the blood-brain barrier. The unbound brain-to-plasma partition coefficient for diphenhydramine (DPHM) was increased in lipopolysaccharide-induced inflammation in rats. The uptake of DPHM to brain microvascular endothelial cells (BMECs) was promoted by treatments of serum from rats with inflammation. Treatment of BMECs with transporter inhibitors or inflammatory cytokines had little impact on the intracellular accumulation of DPHM in BMECs. LPS-induced inflammation promotes unidentified proton-coupled organic cation antiporters that improve the brain penetration of DPHM.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
- Corresponding author. 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Taihei Chuma
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Kota Irie
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Akira Kazaoka
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Asuka Kakuno
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Naoya Matsuda
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Hiroaki Shimada
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka, Japan
- Pharmaceutical Research and Technology Institute, Kindai University, Osaka, Japan
- Antiaging Center, Kindai University, Osaka, Japan
| |
Collapse
|
10
|
Yagi R, Masuda T, Ogata S, Mori A, Ito S, Ohtsuki S. Proteomic Evaluation of Plasma Membrane Fraction Prepared from a Mouse Liver and Kidney Using a Bead Homogenizer: Enrichment of Drug-Related Transporter Proteins. Mol Pharm 2020; 17:4101-4113. [PMID: 32902293 DOI: 10.1021/acs.molpharmaceut.0c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Quantifying the protein levels of drug transporters in plasma membrane fraction helps elucidate the function of these transporters. In this study, we conducted a proteomic evaluation of enriched drug-related transporter proteins in plasma membrane fraction prepared from mouse liver and kidney tissues using the membrane protein extraction kit and a bead homogenizer. Crude and plasma membrane fractions were prepared using either the Dounce or bead homogenizer, and protein levels were determined using quantitative proteomics. In liver tissues, the plasma membrane fractions were more enriched in transporter proteins than the crude membrane fractions; the average enrichment ratios of plasma-to-crude membrane fractions were 3.31 and 6.93 using the Dounce and bead homogenizers, respectively. The concentrations of transporter proteins in plasma membrane fractions determined using the bead homogenizer were higher than those determined using the Dounce homogenizer. Meanwhile, in kidney tissues, the plasma membrane fractions were enriched in transporters localized in the brush-border membrane to the same degree for both the homogenizers; however, the membrane fractions obtained using either homogenizer were not enriched in Na+/K+-ATPase and transporters localized in the basolateral membrane. These results indicate that fractionation, using the bead homogenizer, yielded transporter-enriched plasma membrane fractions from mouse liver and kidney tissues; however, no enrichment of basolateral transporters was observed in plasma membrane fractions prepared from kidney tissues.
Collapse
Affiliation(s)
- Ryotaro Yagi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
11
|
Murakami T, Bodor E, Bodor N. Modulation of expression/function of intestinal P-glycoprotein under disease states. Expert Opin Drug Metab Toxicol 2019; 16:59-78. [DOI: 10.1080/17425255.2020.1701653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, FL, USA
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Changes in Radixin Expression and Interaction with Efflux Transporters in the Liver of Adjuvant-Induced Arthritic Rats. Inflammation 2019; 43:85-94. [PMID: 31654296 DOI: 10.1007/s10753-019-01097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Scaffold proteins such as radixin help to modulate the plasma membrane localization and transport activity of the multidrug resistance-associated protein 2 (MRP2/ABCC2) and P-glycoprotein (P-gp/ABCB1) efflux transporters in the liver. We examined changes in radixin expression and interaction with efflux transporters in adjuvant-induced arthritic (AA) rats, an animal model of rheumatoid arthritis, as well as in human liver cancer (HepG2) cells because inflammation affects drug pharmacokinetics via the efflux transporters. The expression levels of radixin and phosphorylated radixin (p-radixin) were measured 24 h after treatment with inflammatory cytokines comprising tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 or sodium nitroprusside (SNP; a nitric oxide donor). The protein levels of radixin, MRP2, and P-gp in the rat liver were next examined. We also investigated whether inflammation affected the formation of complexes between radixin and MRP2 or P-gp. The mRNA and protein levels of radixin in HepG2 cells were significantly decreased by TNF-α treatment, while minimal changes were observed after treatment with IL-1β, IL-6 or SNP. TNF-α also significantly decreased the protein levels of p-radixin, suggesting that TNF-α inhibited the activation of radixin and thereby reduced the activity of the efflux transporters. Complex formation of radixin with MRP2 and P-gp was significantly decreased in AA rats but this was reversed by prednisolone and dexamethasone treatment, indicating that decreased interactions of radixin with MRP2 and P-gp likely occur during liver inflammation. These data suggest that liver inflammation reduces radixin function by decreasing its interactions with MRP2 and P-gp.
Collapse
|
13
|
Mirzaei SA, Dinmohammadi F, Alizadeh A, Elahian F. Inflammatory pathway interactions and cancer multidrug resistance regulation. Life Sci 2019; 235:116825. [PMID: 31494169 DOI: 10.1016/j.lfs.2019.116825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multidrug resistances against chemotherapeutics are among the major challenges related to cancer treatment. Recent studies have demonstrated that different conditions may tune the expression and activity of MDR transporters. For instance, inflammation occurs through a complex cytological process and chemical reactions in the most tumor microenvironment; it can play a critical role in cancer development and is capable of altering the expression and function of MDR transporters. Cytokines, interleukins, and prostaglandins are potent inflammatory mediators that can modulate the expression of MDRs at transcriptional and post-transcriptional levels in the most human cancer cells and tissues and potentially contribute to balance bioavailability of chemotherapeutic agents. Since cancer cases are usually accompanied by inflammatory responses, glucocorticoids and NSAIDs are the primary useful combination chemotherapies in a variety of cancer treatment protocols. In addition to the anti-inflammatory activities of these agents, they exert diverse modulatory effects on MDR-mediated drug resistance via specific mechanisms. Several factors, including cell and MDR-protein types, pharmacokinetics, and pharmacogenetics, mainly influence the regulatory mechanisms. Uncovering the networks between inflammation and multidrug resistance will be clinically helpful in the treatment of malignant cancers and decreasing the cancer mortality rates.
Collapse
Affiliation(s)
- Seyed Abbas Mirzaei
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farideh Dinmohammadi
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
14
|
Guo Z, Yan M, Chen L, Fang P, Li Z, Wan Z, Cao S, Hou Z, Wei S, Li W, Zhang B. Nrf2-dependent antioxidant response mediated the protective effect of tanshinone IIA on doxorubicin-induced cardiotoxicity. Exp Ther Med 2018; 16:3333-3344. [PMID: 30233680 PMCID: PMC6143869 DOI: 10.3892/etm.2018.6614] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
Doxorubicin (DOX), a potent and widely used anticancer agent, can give rise to severe cardiotoxicity that limits its clinical use by inducing oxidative stress. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the central regulator of cellular responses to electrophilic/oxidative stress, which serves a critical role in maintenance of normal cardiac function. Tanshinone IIA (Tan IIA) has previously been reported to protect against DOX-induced cardiotoxicity. The aim of the present study was to elucidate whether Nrf2 signaling serves a role in the underlying mechanism. In the animal model, DOX induced acute cardiotoxicity, whereas Tan IIA pretreatment reduced the activity of myocardial enzymes, and increased activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione (GSH). Furthermore, Tan IIA pretreatment (3-10 µM) significantly increased the cell viability and markedly restored morphological changes in DOX-injured H9c2 cells, decreased the generation of reactive oxygen species, and increased the level of intracellular GSH. Additionally, Tan IIA pretreatment also induced the nuclear accumulation of Nrf2 and its downstream genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone) 1, and glutamate-cysteine ligase catalytic subunit in both the mice cardiac tissues and H9c2 cells. Nrf2 knockdown by small interfering RNA downregulated Tan IIA-induced Nrf2 activation and reversed the effect of Tan IIA on the DOX-induced inhibition of cell viability. These results suggest that the Nrf2-dependent antioxidant response mediates the protective effect of Tan IIA on DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhaohui Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Department of Pharmacy, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lei Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Pingfei Fang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhihua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zimeng Wan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Sisi Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhenyan Hou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, P.R. China
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
15
|
Yano K, Tomono T, Ogihara T. Advances in Studies of P-Glycoprotein and Its Expression Regulators. Biol Pharm Bull 2018; 41:11-19. [PMID: 29311472 DOI: 10.1248/bpb.b17-00725] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review deals with recent advances in studies on P-glycoprotein (P-gp) and its expression regulators, focusing especially on our own research. Firstly, we describe findings demonstrating that the distribution of P-gp along the small intestine is heterogeneous, which explains why orally administered P-gp substrate drugs often show bimodal changes of plasma concentration. Secondly, we discuss the post-translational regulation of P-gp localization and function by the scaffold proteins ezrin, radixin and moesin (ERM proteins), together with recent reports indicating that tissue-specific differences in regulation by ERM proteins in normal tissues might be retained in corresponding cancerous tissues. Thirdly, we review evidence that P-gp activity is enhanced in the process of epithelial-to-mesenchymal transition (EMT), which is associated with cancer progression, without any increase in expression of P-gp mRNA. Finally, we describe two examples in which P-gp critically influences the brain distribution of drugs, i.e., oseltamivir, where low levels of P-gp associated with early development allow oseltamivir to enter the brain, potentially resulting in neuropsychiatric side effects in children, and cilnidipine, where impairment of P-gp function in ischemia allows cilnidipine to enter the ischemic brain, where it exerts a neuroprotective action.
Collapse
Affiliation(s)
- Kentaro Yano
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takumi Tomono
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| | - Takuo Ogihara
- Faculty of Pharmacy, Takasaki University of Health and Welfare.,Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare
| |
Collapse
|
16
|
Kawase A, Tateishi S, Kazaoka A. Profiling of hepatic metabolizing enzymes and nuclear receptors in rats with adjuvant arthritis by targeted proteomics. Biopharm Drug Dispos 2018; 39:308-314. [DOI: 10.1002/bdd.2147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Shunsuke Tateishi
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Akira Kazaoka
- Department of Pharmacy, Faculty of Pharmacy; Kindai University; 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| |
Collapse
|
17
|
Kimura Y, Shibata M, Tamada M, Ozaki N, Arai K. Pharmacokinetics of Morphine in Rats with Adjuvant-induced Arthritis. ACTA ACUST UNITED AC 2017; 31:811-817. [PMID: 28882946 DOI: 10.21873/invivo.11134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 01/25/2023]
Abstract
We investigated the in vivo dynamics and analgesic effect of morphine using an adjuvant-induced arthritis (AA) rat as a model of chronic inflammation. Morphine generally binds to μ-opioid receptors in the brain to exert its effects. After several minutes, it is metabolized by glucuronidation via a UDP-glucuronosyltransferase (UGT). Here, we showed that in AA rats, UGT activity in liver microsomes was reduced. Morphine-free serum fractions in AA rats were also decreased (control, 84.9%; AA, 63.9%) and the expression of ATP-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1), which plays a crucial role in morphine bile excretion, decreased to 23.0% that of the control group. However, we observed no significant difference between the AA and control groups regarding blood concentrations of morphine and morphine-3-glucuronide. In contrast, the analgesic effect of morphine increased 4-fold in AA rats. Our results showed that the pharmacokinetics of morphine is not changed, but the pharmacodynamics of morphine is enhanced in chronic inflammation.
Collapse
Affiliation(s)
- Yoshiaki Kimura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan.,Suisen Pharmacy, Fukui Pharmaceutical Association, Eiheiji, Japan
| | - Mika Shibata
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Tamada
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kunizo Arai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
18
|
Xie Y, Yu N, Chen Y, Zhang K, Ma HY, Di Q. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway. Mol Med Rep 2017. [PMID: 28627626 PMCID: PMC5562060 DOI: 10.3892/mmr.2017.6772] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Overexpression of P-glycoprotein (P-gp) in the brain is an important mechanism involved in drug-resistant epilepsy (DRE). High-mobility group box 1 (HMGB1), an inflammatory cytokine, significantly increases following seizures and may be involved in upregulation of P-gp. However, the underlying mechanisms remain elusive. The aim of the present study was to evaluate the role of HMGB1 and its downstream signaling components, receptor for advanced glycation end-product (RAGE) and nuclear factor-κB (NF-κB), on P-gp expression in rat brains during status epilepticus (SE). Small interfering RNA (siRNA) was administered to rats prior to induction of SE by pilocarpine, to block transcription of the genes encoding HMGB1 and RAGE, respectively. An inhibitor of NF-κB, pyrrolidinedithiocarbamic acid (PDTC), was utilized to inhibit activation of NF-κB. The expression levels of HMGB1, RAGE, phosphorylated-NF-κB p65 (p-p65) and P-gp were detected by western blotting. The relative mRNA expression levels of the genes encoding these proteins were measured using reverse transcription-quantitative polymerase chain reaction and the cellular localization of the proteins was determined by immunofluorescence. Pre-treatment with HMGB1 siRNA reduced the expression levels of RAGE, p-p65 and P-gp. PDTC reduced the expression levels of P-gp. These findings suggested that overexpression of P-gp during seizures may be regulated by HMGB1 via the RAGE/NF-κB signaling pathway, and may be a novel target for treating DRE.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nian Yu
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Chen
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kang Zhang
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hai-Yan Ma
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qing Di
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
19
|
Uraki M, Kawase A, Sayama H, Matsushima Y, Iwaki M. Effects of Adjuvant-Induced Inflammation on Disposition of Diclofenac and Its Metabolites in Perfused Rat Liver. J Pharm Sci 2017; 106:1175-1182. [DOI: 10.1016/j.xphs.2016.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
20
|
Ikuta H, Kawase A, Iwaki M. Stereoselective Pharmacokinetics and Chiral Inversion of Ibuprofen in Adjuvant-induced Arthritic Rats. Drug Metab Dispos 2017; 45:316-324. [PMID: 27927688 DOI: 10.1124/dmd.116.073239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022] Open
Abstract
2-Arylpropionic acid (2-APA) nonsteroidal anti-inflammatory drugs are commonly used in racemic mixtures (rac) for clinical use. 2-APA undergoes unidirectional chiral inversion of the in vivo inactive R-enantiomer to the active S-enantiomer. Inflammation causes the reduction of metabolic activities of drug-metabolizing enzymes such as cytochrome P450 (P450) and UDP-glucuronosyltransferase. However, it is unclear whether inflammation affects the stereoselective pharmacokinetics and chiral inversion of 2-APA such as ibuprofen (IB). We examined the effects of inflammation on the pharmacokinetics of R-IB and S-IB after intravenous administration of rac-IB, R-IB, and S-IB to adjuvant-induced arthritic (AA) rats, an animal model of inflammation. The plasma protein binding of rac-IB, glucuronidation activities for R-IB and S-IB, and P450 contents of liver microsomes in AA rats were determined. Total clearance (CLtot) of IB significantly increased in AA rats, although the glucuronidation activities for IB, and P450 contents of liver microsomes decreased in AA rats. We presumed that the increased CLtot of IB in AA rats was caused by the elevated plasma unbound fraction of IB due to decreased plasma albumin levels in AA rats. Notably, CLtot of R-IB but not S-IB significantly increased in AA rats after intravenous administration of rac-IB. These results suggested that AA could affect drug efficacies after stereoselective changes in the pharmacokinetics of R-IB and S-IB.
Collapse
Affiliation(s)
- Hiroyuki Ikuta
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
21
|
Uraki M, Kawase A, Iwaki M. Stereoselective hepatic disposition of ibuprofen in the perfused liver of rat with adjuvant-induced arthritis. Xenobiotica 2016; 47:943-950. [DOI: 10.1080/00498254.2016.1252869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Misato Uraki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
22
|
Physiological and pathophysiological factors affecting the expression and activity of the drug transporter MRP2 in intestine. Impact on its function as membrane barrier. Pharmacol Res 2016; 109:32-44. [DOI: 10.1016/j.phrs.2016.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/15/2022]
|
23
|
High ABCC2 and low ABCG2 gene expression are early events in the colorectal adenoma-carcinoma sequence. PLoS One 2015; 10:e0119255. [PMID: 25793771 PMCID: PMC4368545 DOI: 10.1371/journal.pone.0119255] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/11/2015] [Indexed: 12/26/2022] Open
Abstract
Development of colorectal cancer (CRC) may result from a dysfunctional interplay between diet, gut microbes and the immune system. The ABC transport proteins ABCB1 (P-glycoprotein, Multidrug resistance protein 1, MDR1), ABCC2 (MRP2) and ABCG2 (BCRP) are involved in transport of various compounds across the epithelial barrier. Low mRNA level of ABCB1 has previously been identified as an early event in colorectal carcinogenesis (Andersen et al., PLoS One. 2013 Aug 19;8(8):e72119). ABCC2 and ABCG2 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 106 adenoma cases (12 with severe dysplasia, 94 with mild-moderate dysplasia) and from 18 controls with normal endoscopy. We found significantly higher level of ABCC2 in adenomas with mild to moderate dysplasia and carcinoma tissue compared to the levels in unaffected tissue from the same individual (P = 0.037, P = 0.037, and P<0.0001) and in carcinoma and distant unaffected tissue from CRC cases compared to the level in the healthy individuals (P = 0.0046 and P = 0.036). Furthermore, ABCG2 mRNA levels were significantly lower in adenomas and carcinomas compared to the level in unaffected tissue from the same individuals and compared to tissue from healthy individuals (P<0.0001 for all). The level of ABCB2 in adjacent normal tissue was significantly higher than in tissue from healthy individuals (P = 0.011). In conclusion, this study found that ABCC2 and ABCG2 expression levels were altered already in mild/moderate dysplasia in carcinogenesis suggesting that these ABC transporters are involved in the early steps of carcinogenesis as previously reported for ABCB1. These results suggest that dysfunctional transport across the epithelial barrier may contribute to colorectal carcinogenesis.
Collapse
|
24
|
Kawase A, Sakata M, Yada N, Nakasaka M, Shimizu T, Kato Y, Iwaki M. Decreased radixin function for ATP-binding cassette transporters in liver in adjuvant-induced arthritis rats. J Pharm Sci 2014; 103:4058-4065. [PMID: 25331966 DOI: 10.1002/jps.24210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023]
Abstract
Pathophysiological changes are associated with alterations in the expression and function of numerous ADME-related proteins. We have previously demonstrated that the membrane localization of ATP-binding cassette (ABC) transporters in liver was decreased without change of total expression levels in adjuvant-induced arthritis (AA) in rats. Ezrin/radixin/moesin (ERM) proteins are involved in localization of some ABC transporters in canalicular membrane. The mRNA levels of radixin decreased significantly in liver but not kidney, small intestine, and brain. The mRNA levels of ezrin and moesin did not change in AA. The membrane localization of radixin was reduced in liver of AA and the ratios of activated radixin (p-radixin) to total radixin were decreased in AA, although the protein levels of radixin did not change in homogenate and membrane protein. To clarify whether AA affects the linker functions of ERM proteins, we examined the interactions between ERM proteins and ABC transporters. The interactions between radixin and ABC transporters were decreased in AA. In vitro studies using human hepatoma HepG2 cells showed that interleukin-1β decreased the mRNA levels of radixin and colocalization of radixin and Mrp2. Our results show that the decreased radixin functions affect the interaction between radixin and ABC transporters in inflammation.
Collapse
Affiliation(s)
- Atsushi Kawase
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Misato Sakata
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Nagisa Yada
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Misaki Nakasaka
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan
| | - Takuya Shimizu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, School of Pharmacy, Kinki University, Osaka 577-8502, Japan.
| |
Collapse
|