1
|
Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proc Natl Acad Sci U S A 2009; 106:2359-64. [PMID: 19174523 DOI: 10.1073/pnas.0810221106] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Considering the strong association between dysregulated insulin-like growth factor (IGF) signaling and various human cancers, we have used an expedient combination of genetic analysis and pharmacological treatment to evaluate the potential of the type 1 IGF receptor (Igf1r) for targeted anticancer therapy in a mouse model of mammary tumorigenesis. In this particular strain of genetically modified animals, histopathologically heterogeneous invasive carcinomas exhibiting up-regulation of the Igf1r gene developed extremely rapidly by mammary gland-specific overexpression of constitutively active oncogenic Kras* (mutant Kras(G12D)). Immunophenotyping data and expression profiling analyses showed that, except for a minor luminal component, these mouse tumors resembled basal-like human breast cancers. This is a group of aggressive tumors of poor prognosis for which there is no targeted therapy currently available, and it includes a subtype correlating with KRAS locus amplification. Conditional ablation of Igf1r in the mouse mammary epithelium increased the latency of Kras*-induced tumors very significantly (approximately 11-fold in comparison with the intact model), whereas treatment of tumor-bearing animals by administration of picropodophyllin (PPP), a specific Igf1r inhibitor, resulted in a dramatic decrease in tumor mass of the main forms of basal-like carcinomas. PPP also was effective against xenografts of the human basal-like cancer cell line MDA-MB-231, which carries a KRAS(G13D) mutation.
Collapse
|
2
|
Vasilcanu R, Vasilcanu D, Sehat B, Yin S, Girnita A, Axelson M, Girnita L. Insulin-like growth factor type-I receptor-dependent phosphorylation of extracellular signal-regulated kinase 1/2 but not Akt (protein kinase B) can be induced by picropodophyllin. Mol Pharmacol 2008; 73:930-9. [PMID: 18070930 DOI: 10.1124/mol.107.040014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The initial event upon binding of insulin-like growth factor 1 to the insulin-like growth factor type-I receptor (IGF-1R) is auto-phosphorylation of tyrosine residues within the activation loop of the kinase domain followed by phosphorylation of other receptor tyrosine residues and the subsequent activation of the intracellular signaling cascades. We found recently that the cyclolignan picropodophyllin (PPP) inhibits phosphorylation of IGF-1R and phosphatidyl-3 kinase/Akt (protein kinase B) signaling molecules without interfering with the highly homologous insulin receptor. Furthermore, PPP causes regression of tumor grafts and substantially prolongs the survival of animals with systemic tumor disease. It is of interest that we show here that short treatments with PPP activate the intracellular extracellular signal-regulated kinase (ERK) signaling. Our data suggest that PPP induces IGF-1R ubiquitination and in turn activates ERK1/2. The PPP-induced ERK activation requires IGF-1R because PPP is not able to induce ERK phosphorylation in IGF-1R-negative cells or in cells in which the receptor is knocked down by small interfering RNA. Moreover, in the absence of Mdm2, an E3 ligase that has been shown previously to be involved in IGF-1R ubiquitination, the phosphorylation of ERK did not occur. Thus, apart from inhibiting the receptor activity, PPP can induce IGF-1R ubiquitination and stimulate ERK in an Mdm2-dependent manner. This response could contribute to the apoptotic effect of PPP.
Collapse
Affiliation(s)
- Radu Vasilcanu
- Department of Oncology-Pathology, Cellular and Molecular Tumor Pathology, Cancer Center Karolinska, CCK R8:04, Karolinska Institutet, S-17176, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
3
|
Törnkvist M, Natalishvili N, Xie Y, Girnita A, D'Arcy P, Brodin B, Axelson M, Girnita L. Differential roles of SS18-SSX fusion gene and insulin-like growth factor-1 receptor in synovial sarcoma cell growth. Biochem Biophys Res Commun 2008; 368:793-800. [PMID: 18267106 DOI: 10.1016/j.bbrc.2008.01.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/28/2022]
Abstract
Recently we demonstrated that the synovial sarcoma specific fusion gene SS18-SSX is crucial for cyclin D1 expression and is linked to cell proliferation. In this report we explore the role of SS18-SSX and IGF-1R for their potential functions in cellular proliferation and survival in cultured synovial sarcoma cells. We found that targeting of SS18-SSX mRNA by antisense oligonucleotide treatment drastically and rapidly decreased cell proliferation but caused only a slight increase of apoptosis. The synovial sarcoma cells were confirmed to express IGF-1R, and treatment with an IGF-1R inhibitor resulted in substantially reduced cell viability by inducing apoptosis in these cells. Conversely, inhibition of the IGF-1R resulted only in a slight to moderate decrease in DNA synthesis. In conclusion, SS18-SSX and IGF-1R seem to play important but different roles in maintaining malignant growth of synovial sarcoma cells. Whereas SS18-SSX maintains cyclin D1 and cell proliferation, IGF-1R protects from apoptosis.
Collapse
Affiliation(s)
- Maria Törnkvist
- Department of Oncology and Pathology, Karolinska Institute, CCK, R8:04, S-17176 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Vasilcanu R, Vasilcanu D, Rosengren L, Natalishvili N, Sehat B, Yin S, Girnita A, Axelson M, Girnita L, Larsson O. Picropodophyllin induces downregulation of the insulin-like growth factor 1 receptor: potential mechanistic involvement of Mdm2 and β-arrestin1. Oncogene 2007; 27:1629-38. [PMID: 17828296 DOI: 10.1038/sj.onc.1210797] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is crucial for growth and survival of malignant cells. Experience in targeting IGF-1R in cancer models has shown that strategies promoting downregulation of the receptor are much more efficient in inducing apoptosis than those inhibiting the IGF-1R activity. Recently, we found that the cyclolignan picropodophyllin (PPP) inhibits phosphorylation of IGF-1R and activation of downstream signaling without interfering with the highly homologous insulin receptor (IR). Furthermore, PPP treatment caused strong regression of tumor grafts and prolonged survival of animals with systemic tumor disease. Here we demonstrate that PPP also downregulates the IGF-1R, whereas the IR and several other receptors were not affected. PPP-induced IGF-1R downregulation required expression of the MDM2 E3 ligase, which recently was found to ubiquitinate and cause degradation of the IGF-1R. In addition knockdown of beta-arrestin1, the adaptor molecule known to bridges MDM2 and IGF-1R, prevented downregulation of the receptor and significantly decreased PPP-induced cell death. All together these data suggest that PPP downregulates IGF-1R by interfering with the action of beta-arrestin1/MDM2 as well as the achieved receptor downregulation contributes to the apoptotic effect of PPP.
Collapse
Affiliation(s)
- R Vasilcanu
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Razuvaev A, Henderson B, Girnita L, Larsson O, Axelson M, Hedin U, Roy J. The cyclolignan picropodophyllin attenuates intimal hyperplasia after rat carotid balloon injury by blocking insulin-like growth factor-1 receptor signaling. J Vasc Surg 2007; 46:108-15. [PMID: 17606126 DOI: 10.1016/j.jvs.2007.02.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Smooth muscle cell proliferation (SMC) is a pivotal factor in the development of intimal hyperplasia after vascular injury. A number of growth factors, including insulin-like growth factor-1 (IGF-1), have been shown to be involved in SMC proliferation. We evaluated the effect of picropodophyllin (PPP), a new IGF-1 receptor inhibitor, in the prevention of SMC proliferation and development of intimal hyperplasia after vascular injury. METHODS The effects of systemic administration of PPP on intimal hyperplasia were studied in a balloon rat carotid injury model. Lesions were quantified by morphometry and SMC proliferation and apoptosis was studied by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) and activated caspase 3, respectively. The effect of PPP on rat aortic SMC proliferation and apoptosis was studied in vitro by using cell counting, 3[H]-thymidine incorporation, and a flow cytometry assay for annexin V. Phosphorylation of the IGF-1 receptor, protein kinase B (Akt), and extracellular signal-regulated kinase 1/2 (ERK1/2) in vitro and in vivo were analyzed by using Western blotting. RESULTS PPP inhibited IGF-1-mediated SMC proliferation in vitro but no significant increase in apoptosis was detected. In rats treated with PPP, a more than a twofold reduction in carotid intima area was observed 2 weeks after balloon injury, a significant decrease in PCNA staining was demonstrated in early lesions, but activated caspase 3 was not detected. In addition, PPP attenuated phosphorylation of the IGF-1 receptor, Akt, and ERK1/2 in IGF-1-stimulated SMCs in vitro, and a reduced phosphorylation of the IGF-1 receptor and Akt was found in balloon-injured carotid arteries in rats treated with PPP. CONCLUSION These results show that PPP potently blocks IGF-1-mediated phosphorylation of the IGF-1 receptor in SMCs, decreases downstream Akt and ERK1/2 activation, inhibits SMC replication, and subsequently attenuates intimal hyperplasia after balloon injury of rat carotid arteries.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cardiovascular Agents/pharmacology
- Cardiovascular Agents/therapeutic use
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Catheterization
- Cell Proliferation/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Hyperplasia
- Insulin-Like Growth Factor I/metabolism
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphorylation/drug effects
- Podophyllotoxin/analogs & derivatives
- Podophyllotoxin/pharmacology
- Podophyllotoxin/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/metabolism
- Signal Transduction/drug effects
- Time Factors
- Tunica Intima/drug effects
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Anton Razuvaev
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
6
|
Rosengren L, Vasilcanu D, Vasilcanu R, Fickenscher S, Sehat B, Natalishvili N, Naughton S, Yin S, Girnita A, Girnita L, Axelson M, Larsson O. IGF-1R tyrosine kinase expression and dependency in clones of IGF-1R knockout cells (R−). Biochem Biophys Res Commun 2006; 347:1059-66. [PMID: 16857168 DOI: 10.1016/j.bbrc.2006.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/01/2006] [Indexed: 12/31/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) plays many crucial roles in cancer, like anti-apoptotic activity and necessity for transformation. IGF-1R knockout cells (R-) represent a useful tool for molecular mapping of biological properties of the receptor. R- cells have been shown to be refractory to transformation by viral and cellular oncogenes, highlighting the necessity of this receptor for transformation. Surprisingly, more recent studies have shown that these cells can undergo spontaneous transformation. This observation raises the question as whether R- cells over the years have acquired some properties mimicking those of IGF-1R. Using an IGF-1R inhibitor (cyclolignan PPP) we have identified clones of R- (R-s) that are sensitive to this compound. Since, PPP is closely related to podophyllotoxin, which is an efficient microtubule inhibitor, we first investigated if such a mechanism could explain the sensitivity to PPP. However, highly purified PPP showed no or very slight tubulin binding. Further analysis of R-s revealed expression of a 90 kDa protein being reactive to IGF-1R beta-subunit antibodies. This protein was weakly but constitutively tyrosine phosphorylated and was downregulated by siRNA targeting IGF-1R. This downregulation was paralleled by decreased R-s survival. Taken together, our study suggests that clones of R- express IGF-1R activity and dependency, which in turn may explain that R- can undergo spontaneous transformation.
Collapse
Affiliation(s)
- Linda Rosengren
- Department of Oncology and Pathology, Division of Cellular and Molecular Tumor Pathology, CCK, R8:04, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vasilcanu D, Weng WH, Girnita A, Lui WO, Vasilcanu R, Axelson M, Larsson O, Larsson C, Girnita L. The insulin-like growth factor-1 receptor inhibitor PPP produces only very limited resistance in tumor cells exposed to long-term selection. Oncogene 2006; 25:3186-95. [PMID: 16407828 DOI: 10.1038/sj.onc.1209339] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cyclolignan PPP was recently demonstrated to inhibit the activity of insulin-like growth factor-1 receptor (IGF-1R), without affecting the highly homologous insulin receptor. In addition, PPP caused complete regression of xenografts derived from various types of cancer. These data highlight the use of this compound in cancer treatment. However, a general concern with antitumor agents is development of resistance. In light of this problem, we aimed to investigate whether malignant cells may develop serious resistance to PPP. After trying to select 10 malignant cell lines, with documented IGF-1R expression and apoptotic responsiveness to PPP treatment (IC50s less than 0.1 microM), only two survived an 80-week selection but could only tolerate maximal PPP doses of 0.2 and 0.5 microM, respectively. Any further increase in the PPP dose resulted in massive cell death. These two cell lines were demonstrated not to acquire any essential alteration in responsiveness to PPP regarding IGF-1-induced IGF-1R phosphorylation. Neither did they exhibit any increase in expression of the multidrug resistance proteins MDR1 or MRP1. Consistently, they did not exhibit decreased sensitivity to conventional cytostatic drugs. Rather, the sensitivity was increased. During the first half of the selection period, both cell lines responded with a temporary and moderate increase in IGF-1R expression, which appeared to be because of an increased transcription of the IGF-1R gene. This increase in IGF-1R might be necessary to make cells competent for further selection but only up to a PPP concentration of 0.2 and 0.5 microM. In conclusion, malignant cells develop no or remarkably weak resistance to the IGF-1R inhibitor PPP.
Collapse
Affiliation(s)
- D Vasilcanu
- Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vasilcanu D, Girnita A, Girnita L, Vasilcanu R, Axelson M, Larsson O. The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene 2004; 23:7854-62. [PMID: 15334055 DOI: 10.1038/sj.onc.1208065] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) is crucial for many functions in neoplastic cells, for example, antiapoptosis. Recently, we demonstrated that the cyclolignan PPP efficiently inhibited phosphorylation of IGF-1R without interfering with insulin receptor activity. PPP preferentially reduced phosphorylated Akt, as compared to phosphorylated Erk1/2, and caused apoptosis. Now, we aimed to investigate how PPP inhibits the IGF-1R tyrosine kinase (IGF-1RTK) and the PI3K/Akt apoptotic pathway. Using a baculovirus driven IGF-1RTK we found that PPP interfered with tyrosine phosphorylation in the activation loop of the kinase domain. Specifically, it blocked phosphorylation of tyrosine (Y) 1136, while sparing the two others (Y1131 and Y1135). To explore the impact of inhibition of Y1136 on Akt phosphorylation we transfected P6 cells (overexpressing IGF-1R) and malignant melanoma cells with different IGF-1R mutants, including Y1136F (tyrosine replaced by phenylalanine). Y1136F was found to strongly decrease IGF-1 stimulated phosphorylation of Akt. Conversely, Akt phosphorylation was weakly affected in the Y1131F transfectant. Taken together, our data suggest that the preferential inhibition of phosphorylated Akt, after PPP treatment, may be due to specific inhibition of Y1136. PPP was proven not to interfere directly with Akt or any of its downstream molecules in the apoptotic pathway.
Collapse
Affiliation(s)
- Daiana Vasilcanu
- Department of Oncology and Pathology, Division of Cellular and Molecular Tumor Pathology, CCK, R8:04, Karolinska Hospital, SE-17176 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Girnita A, Girnita L, del Prete F, Bartolazzi A, Larsson O, Axelson M. Cyclolignans as Inhibitors of the Insulin-Like Growth Factor-1 Receptor and Malignant Cell Growth. Cancer Res 2004; 64:236-42. [PMID: 14729630 DOI: 10.1158/0008-5472.can-03-2522] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) plays a pivotal role in transformation, growth, and survival of malignant cells, and has emerged as a general and promising target for cancer treatment. However, no fully selective IGF-1R inhibitors have thus far been found. This is explained by the fact that IGF-1R is highly homologous to the insulin receptor, coinhibition of which may cause diabetic response. The receptors are both tyrosine kinases, and their ATP binding sites are identical, implying that ATP inhibitors cannot discriminate between them. Therefore, the current strategy has been to identify compounds interfering with receptor autophosphorylation at the substrate level. In this study we investigated the effects of cyclolignans and related molecules on IGF-1R activity. We report that certain cyclolignans are potent and selective inhibitors of tyrosine phosphorylation of the IGF-1R. Of particular interest was picropodophyllin (PPP), which is almost nontoxic (LD(50) >500 mg/kg in rodents). PPP efficiently blocked IGF-1R activity, reduced pAkt and phosphorylated extracellular signal regulated kinase 1 and 2 (pErk1/2), induced apoptosis in cultured IGF-1R-positive tumor cells, and caused complete tumor regression in xenografted and allografted mice. PPP did not affect the insulin receptor or compete with ATP in an in vitro kinase assay, suggesting that it may inhibit IGF-1R autophosphorylation at the substrate level. This is also in agreement with our molecular model of how the cyclolignans may act on the IGF-1R kinase. Our results open the possibility to use PPP or related compounds with inhibitory effects on IGF-1R as lead compounds in development of anticancer agents.
Collapse
Affiliation(s)
- Ada Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Gordaliza M, Faircloth GT, Castro MA, Miguel del Corral JM, López-Vázquez ML, San Feliciano A. Immunosuppressive cyclolignans. J Med Chem 1996; 39:2865-8. [PMID: 8709118 DOI: 10.1021/jm960023h] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The immunosuppressive activity of several lactonic, nonlactonic, and heterocycle-fused cyclolignans has been demonstrated for the first time by use of a T-cell-mediated immune response. Of the compounds tested, 4'-demethyldeoxypodophyllotoxin (8), beta-apopicropodophyllin (6), and the isoxazoline-fused cyclolignan 15 are the most potent with respect to their suppression of activated splenocytes.
Collapse
Affiliation(s)
- M Gordaliza
- Laboratorio de Química, Farmacéutica, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Gordaliza M, Castro MA, García-Grávalos MD, Ruiz P, Miguel del Corral JM, San Feliciano A. Antineoplastic and antiviral activities of podophyllotoxin related lignans. Arch Pharm (Weinheim) 1994; 327:175-9. [PMID: 8179476 DOI: 10.1002/ardp.19943270309] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
28 cyclolignans, most of them derived from podophyllotoxin, have been evaluated for their antineoplastic and antiviral activities. They were subjected to screening against P-388 murine leukemia, A-549 human lung carcinoma, and HT-29 colon carcinoma, while antiviral assays were performed on herpes simplex virus type I infecting fibroblasts of monkey kidney (HSV/CV-1) and on vesicular stomatitis virus infecting fibroblasts of hamster kidney (VSV/BHK). A number of substances were active in both groups of assays at concentrations below 1 microM; deoxypodophyllotoxin (1) being the most potent compound in all cases.
Collapse
Affiliation(s)
- M Gordaliza
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Sackett DL. Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol Ther 1993; 59:163-228. [PMID: 8278462 DOI: 10.1016/0163-7258(93)90044-e] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A large number of antimicrotubule agents are known that bind to tubulin in vitro and disrupt microtubule assembly in vitro and in vivo. Many of these agents bind to the same site on the tubulin molecule, as does colchicine. Of these, the natural products podophyllotoxin, steganacin and combretastatin are the subjects of this review. For each of these, the chemistry and biochemistry are described. Particular attention is given to stereochemical considerations. Biosynthetic pathways for podophyllotoxin and congeners are surveyed. The binding to tubulin and the effects on microtubule assembly and disassembly are described and compared. In addition, structural features important to binding are examined using available analogs. Several features significant for tubulin interaction are common to these compounds and to colchicine. These are described and the implications for tubulin structure are discussed. The manifold results of applying these agents to biological systems are reviewed. These actions include effects that are clearly microtubule mediated and others in which the microtubule role is less obvious. Activity of some of these compounds due to inhibition of DNA topoisomerase is discussed. The range of species in which these compounds occur is examined and in the case of podophyllotoxin is found to be quite broad. In addition, the range of species that are sensitive to the effects of these compounds is discussed.
Collapse
Affiliation(s)
- D L Sackett
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
14
|
Stähelin H, von Wartburg A. From podophyllotoxin glucoside to etoposide. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1989; 33:169-266. [PMID: 2687938 DOI: 10.1007/978-3-0348-9146-2_8] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
|