1
|
Ajdari B, Madrakian T, Jalali Sarvestani MR, Afkhami A. Highly sensitive electrochemical determination of agomelatine in biological samples based on Cu nanoparticles/Schiff base network1 modified glassy carbon electrode: DFT and experimental studies. Talanta 2025; 283:127174. [PMID: 39515057 DOI: 10.1016/j.talanta.2024.127174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, a nanocomposite of copper nanoparticles incorporated into a covalent organic framework (Cu@SNW1) was synthesized and characterized by various approaches such as scanning electron microscopy, cyclic voltammetry, X-ray diffraction, electrochemical impedance spectroscopy, and energy dispersive X-ray spectroscopy. The interaction between the nanocomposite and agomelatine (AGM) was investigated through density functional theory computations. The results indicated that the nanocomposite displays electrocatalytic properties towards AGM and their interactions are both experimentally and thermodynamically viable. The synthesized nanocomposite was employed as an electrocatalytic modifier for the highly selective and sensitive square wave anodic stripping voltammetric detection of AGM. Experimental parameters including; pH, deposition time, modifier concentration, and deposition potential were fine-tuned using the Box-Behnken experimental design strategy. Under the optimal conditions, a linear correlation was established between the anodic peak current of AGM and its concentration across two linear ranges, 0.007-1.00 μmol L-1 and 1.00-6.50 μmol L-1. The method demonstrated a limit of detection of 0.002 μmol L-1 under the optimized parameters. Furthermore, the proposed method exhibited high sensitivity and selectivity in determining AGM in urine, serum, and saliva samples.
Collapse
Affiliation(s)
- Beheshteh Ajdari
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Mohammad Reza Jalali Sarvestani
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| |
Collapse
|
2
|
Chen T, Zhang S, Zhu C, Liu C, Liu X, Hu S, Zheng D, Zhang J. Application of surfactants in the electrochemical sensing and biosensing of biomolecules and drug molecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3607-3619. [PMID: 38805018 DOI: 10.1039/d4ay00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Realizing sensitive and efficient detection of biomolecules and drug molecules is of great significance. Among the detection methods that have been proposed, electrochemical sensing is favored for its outstanding advantages such as simple operation, low cost, fast response and high sensitivity. The unique structure and properties of surfactants have led to a wide range of applications in the field of electrochemical sensors and biosensors for biomolecules and drug molecules. Through the comparative analysis of reported works, this paper summarizes the application modes of surfactants in electrochemical sensors and biosensors for biomolecules and drug molecules, explores the possible electrocatalytic mechanism of their action, and looks forward to the development trend of their applications. This review is expected to provide some new ideas for subsequent related research work.
Collapse
Affiliation(s)
- Tingfei Chen
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
| | - Shunrun Zhang
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
| | - Chunnan Zhu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Xiaojun Liu
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Shengshui Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Dongyun Zheng
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China.
- Key Laboratory of Brain Cognitive Science(State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan 430074, China
| | - Jichao Zhang
- Wuhan Huadingcheng New Materials Co., Ltd, Wuhan 430205, China.
| |
Collapse
|
3
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
4
|
Švancara I, Sýs M. Carbon Paste Electrodes Surface-Modified with Surfactants: Principles of Surface Interactions at the Interface between Two Immiscible Liquid Phases. SENSORS (BASEL, SWITZERLAND) 2023; 23:9891. [PMID: 38139736 PMCID: PMC10747222 DOI: 10.3390/s23249891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Carbon paste electrodes ex-situ modified with different surfactants were studied using cyclic voltammetry with two model redox couples, namely hexaammineruthenium (II)/(III) and hexacyanoferrate (II)/(III), in 0.1 mol L-1 acetate buffer (pH 4), 0.1 mol L-1 phosphate buffer (pH 7), and 0.1 mol L-1 ammonia buffer (pH 9) at a scan rate ranging from 50 to 500 mV s-1. Distinct effects of pH, ionic strength, and the composition of supporting media, as well as of the amount of surfactant and its accumulation at the electrode surface, could be observed and found reflected in changes of double-layer capacitance and electrode kinetics. It has been proved that, at the two-phase interface, the presence of surfactants results in elctrostatic interactions that dominate in the transfer of model substances, possibly accompanied also by the effect of erosion at the carbon paste surface. The individual findings depend on the configurations investigated, which are also illustrated on numerous schemes of the actual microstructure at the respective electrode surface. Finally, principal observations and results are highlighted and discussed with respect to the future development and possible applications of sensors based on surfactant-modified composited electrodes.
Collapse
Affiliation(s)
| | - Milan Sýs
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| |
Collapse
|
5
|
Talay Pınar P, Uzun G, Şentürk Z. First electrochemical investigation of new generation antineoplastic agent ceritinib at a boron-doped diamond electrode based on the pre-enrichment effect of anionic surfactant. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Sawkar RR, Shanbhag MM, Tuwar SM, Mondal K, Shetti NP. Sodium Dodecyl Sulfate-Mediated Graphene Sensor for Electrochemical Detection of the Antibiotic Drug: Ciprofloxacin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7872. [PMID: 36431357 PMCID: PMC9696905 DOI: 10.3390/ma15227872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The present study involves detecting and determining CIP by a new electrochemical sensor based on graphene (Gr) in the presence of sodium dodecyl sulfate (SDS) employing voltammetric techniques. Surface morphology studies of the sensing material were analyzed using a scanning electron microscope (SEM) and atomic force microscope (AFM). In the electroanalysis of CIP at the developed electrode, an enhanced anodic peak response was recorded, suggesting the electro-oxidation of CIP at the electrode surface. Furthermore, we evaluated the impact of the electrolytic solution, scan rate, accumulation time, and concentration variation on the electrochemical behavior of CIP. The possible electrode mechanism was proposed based on the acquired experimental information. A concentration variation study was performed using differential pulse voltammetry (DPV) in the lower concentration range, and the fabricated electrode achieved a detection limit of 2.9 × 10-8 M. The proposed sensor detected CIP in pharmaceutical and biological samples. The findings displayed good recovery, with 93.8% for tablet analysis and 93.3% to 98.7% for urine analysis. The stability of a developed electrode was tested by inter- and intraday analysis.
Collapse
Affiliation(s)
- Rakesh R. Sawkar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Mahesh M. Shanbhag
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580027, Karnataka, India
| | - Suresh M. Tuwar
- Department of Chemistry, Karnatak Science College, Dharwad 580001, Karnataka, India
| | - Kunal Mondal
- Idaho National Laboratory, Idaho Falls, ID 83415, USA
- Department of Civil & Environmental Engineering, Idaho State University, Pocatello, ID 83209, USA
| | - Nagaraj P. Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| |
Collapse
|
7
|
Characterisation of carbon paste electrodes bulk-modified with surfactants for measurements in nonaqueous media. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Özok H, Allahverdiyeva S, Yardım Y, Şentürk Z. First report for the electrooxidation of antifungal anidulafungin: Application to its voltammetric determination in parenteral lyophilized formulation using a boron‐doped diamond electrode in the presence of anionic surfactant. ELECTROANAL 2022. [DOI: 10.1002/elan.202100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Zühre Şentürk
- Yüzüncü Yıl University Faculty of Science&Letters TURKEY
| |
Collapse
|