1
|
Bencsik T, Balázs O, Vida RG, Zsidó BZ, Hetényi C, Valentová K, Poór M. Effects of catechins, resveratrol, silymarin components and some of their conjugates on xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2765-2776. [PMID: 39606799 PMCID: PMC11909324 DOI: 10.1002/jsfa.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Over the past two decades, the global incidence of gout has markedly increased, affecting people worldwide. Considering the side effects of xanthine oxidase (XO) inhibitor drugs (e.g. allopurinol and febuxostat) used in the treatment of hyperuricemia and gout, the potential application of phytochemicals has been widely studied. In addition, XO also takes part in the elimination of certain drugs, including 6-mercaptopurine. In the current explorative study, we aimed to examine the potential effects of tea catechins, resveratrol, silymarin flavonolignans and some of their conjugated metabolites on XO-catalyzed xanthine and 6-mercaptopurine oxidation, applying in vitro assays and modeling studies. RESULTS Catechins, resveratrol and resveratrol conjugates exerted no or only weak inhibitory effects on XO. Silybin A, silybin B and isosilybin A were weak, silychristin was a moderate, while 2,3-dehydrosilychristin was a potent inhibitor of the enzyme. Sulfate metabolites of silybin A, silybin B and isosilybin A were considerably stronger inhibitors compared to the parent flavonolignans, and the sulfation of 2,3-dehydrosilychristin slightly increased its inhibitory potency. Silychristin was the sole flavonolignan tested, where sulfate conjugation decreased its inhibitory effect. CONCLUSION 2,3-Dehydrosilychristin seems to be a promising candidate for examining its in vivo antihyperuricemic effects, because both the parent compound and its sulfate conjugate are highly potent inhibitors of XO. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tímea Bencsik
- Department of Pharmacognosy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Orsolya Balázs
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of PharmacyUniversity of PécsPécsHungary
| | - Balázs Z Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- National Laboratory for Drug Research and DevelopmentBudapestHungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- National Laboratory for Drug Research and DevelopmentBudapestHungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Miklós Poór
- Department of Laboratory Medicine, Medical SchoolUniversity of PécsPécsHungary
- Molecular Medicine Research Group, János Szentágothai Research CentreUniversity of PécsPécsHungary
| |
Collapse
|
2
|
Yan W, Wang X, Peng Z, Deng Q, Zhu M, Meng F, Zhao W, Zhou W, Liu N, Wu J, Peng J. A Bidirectional Mendelian Randomization Study of Tea-Drinking Habits and Risk of Elevated Serum Uric Acid Levels. Int J Rheum Dis 2025; 28:e70128. [PMID: 39953773 PMCID: PMC11829186 DOI: 10.1111/1756-185x.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/28/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Although recent animal experiments have revealed that tea intake improves elevated serum uric acid (SUA) levels, a causal link between the consumption of different types of tea and SUA levels remains undetermined. METHODS Bidirectional Mendelian randomization (MR) analysis based on genome-wide association studies was used to assess the causal relationship between consumption of different types of tea and the risk of elevated SUA levels in European and Asian populations. RESULTS Forward MR analysis showed that tea intake was significantly associated with lower SUA levels (p = 0.0013). The estimated effect value (β $$ \beta $$ = $$ = $$ -0.0440) suggests that for every 1-unit increase in tea intake, there is a 0.044-unit decrease in SUA levels. However, there is no reverse causality between SUA and tea intake (p = 0.2824). No causal relationship was found between the consumption of different types of tea and risk of elevated SUA levels (p > 0.05). CONCLUSION Although this bidirectional MR study provided evidence of a causal relationship between tea intake and SUA levels, however, due to limitations associated with the sample size and strength of instrumental variables, a definite conclusion was not possible.
Collapse
Affiliation(s)
- Weitian Yan
- Department of RheumatologyThe No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Xingqiang Wang
- Department of RheumatologyThe No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
- Yunnan Provincial Clinical Medicine Research Center of Rheumatism in TCMYunnan Provincial Hospital of Traditional Chinese MedicineKunmingChina
| | - Zining Peng
- The First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Qian Deng
- The First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Mengyuan Zhu
- The First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Fanyu Meng
- The First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Weiqing Zhao
- Department of Rheumatology and ImmunologyThe First People's Hospital of Yunnan Province and the Affiliated Hospital of Kunming University of Science and TechnologyKunmingChina
| | - Weijian Zhou
- Department of RheumatologyThe No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Nian Liu
- The First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Jingjin Wu
- Department of RheumatologyThe No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Jiangyun Peng
- Department of RheumatologyThe No. 1 Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
- Yunnan Provincial Clinical Medicine Research Center of Rheumatism in TCMYunnan Provincial Hospital of Traditional Chinese MedicineKunmingChina
| |
Collapse
|
3
|
Obeme-Nmom JI, Abioye RO, Reyes Flores SS, Udenigwe CC. Regulation of redox enzymes by nutraceuticals: a review of the roles of antioxidant polyphenols and peptides. Food Funct 2024; 15:10956-10980. [PMID: 39465304 DOI: 10.1039/d4fo03549f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Redox enzymes are essential components of the cellular defence system against oxidative stress, which is a common factor in various diseases. Therefore, understanding the role of bioactive nutraceuticals in modulating the activity of these enzymes holds immense therapeutic potential. This paper provides a comprehensive review of the regulation of redox enzymes in cell and animal models by food-derived bioactive nutraceuticals, focusing on polyphenols and peptides. Specifically, this paper discusses the regulation of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), NAPDH oxidase, xanthine oxidase (XO), myeloperoxidase (MPO), and haem oxygenase (HO) in cell and animal models. Polyphenols, which are abundant in fruits, vegetables, and beverages, have diverse antioxidant properties, including direct scavenging of reactive oxygen species and regulation of transcription factors such as nuclear factor erythroid 2-related factor 2, which leads to the increased expression of the redoxenzymes SOD, HO, and GPx. Similarly, bioactive peptides from various food proteins can enhance antioxidative enzyme activity by regulating gene expression and directly activating the enzyme CAT. In other cases, an antioxidative response requires the downregulation or inhibition of the redox enzymes XO, MPO, and NAPDH oxidase. This paper highlights the potential of bioactive nutraceuticals in mitigating oxidative stress-related diseases and their mechanisms in modulating the redox enzyme expression or activity. Furthermore, the review highlights the need for further research to uncover new therapeutic strategies using nutraceuticals for enhancing cellular antioxidant defence mechanisms and improving health outcomes.
Collapse
Affiliation(s)
- Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Samanta S Reyes Flores
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemical, Food and Environmental Engineering, University of the Americas Puebla, San Andrés Cholula 72810, Puebla, Mexico
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- University Research Chair in Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
4
|
Chen J, Chen J, Feng B, Ning M, Wu W, Zou S. Investigation of resveratrol as a xanthine oxidase inhibitor: Mechanistic insights and therapeutic implications for gout and hyperuricemia. Biotechnol Appl Biochem 2024. [PMID: 39491505 DOI: 10.1002/bab.2690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Gout predominantly stems from hyperuricemia, precipitating the accumulation of urate crystals and consequent joint inflammation, swelling, and pain, thereby compromising the quality of life and presenting a formidable medical dilemma. Although conventional treatments like allopurinol and febuxostat target uric acid reduction via xanthine oxidase (XO) inhibition, they often entail adverse effects, prompting the exploration of safer alternatives. Resveratrol, a polyphenolic compound abundant in fruits and vegetables, has emerged as a potential XO inhibitor. However, its precise inhibitory mechanisms remain poorly understood. This study aims to comprehensively investigate resveratrol's XO inhibition through mechanistic insights, molecular docking simulations, animal model experiments, and biochemical analysis, contributing valuable insights to the development of novel therapeutics for hyperuricemia and gout.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy, Putian University, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Juan Chen
- School of Pharmacy, Putian University, Fujian, China
| | - Baozhu Feng
- School of Pharmacy, Putian University, Fujian, China
| | - Meilian Ning
- School of Pharmacy, Putian University, Fujian, China
| | - Wanhui Wu
- School of Pharmacy, Putian University, Fujian, China
| | - Shiqi Zou
- School of Pharmacy, Putian University, Fujian, China
| |
Collapse
|
5
|
Liu X, Zhang W, Chen J, Fu R, Lin X, Zhou S, Wang L. Investigating the inhibition of xanthine oxidase by five catechins: Kinetic studies, spectroscopy, molecular docking, and dynamics simulations. Int J Biol Macromol 2024; 281:136231. [PMID: 39368569 DOI: 10.1016/j.ijbiomac.2024.136231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Catechins compounds from tea have demonstrated significant inhibitory effects on xanthine oxidase (XOD). However, the precise inhibitory mechanisms of the main catechins on XOD remain to be fully elucidated. This study explored the inhibition mechanisms and binding characteristics of five catechins (GC, EGC, EC, EGCG, and ECG) on XOD through a combination of inhibition kinetics, multi-spectroscopy analysis, molecular docking, and dynamics simulations. Among the catechins, EGCG and ECG exhibited the most potent inhibitory activities against XOD. All five catechins were found to exhibit mixed inhibition, affecting the hydrophobic groups and secondary structure of XOD predominantly through hydrophobic interactions and hydrogen bonding. Molecular dynamics simulations revealed that a 3,4,5-trihydroxybenzoic acid moiety at C3 position significantly enhances the binding affinity of EGCG and ECG to XOD. Additionally, the decrease of β-sheet and random coil induced by EGCG and ECG was found to be crucial for enhancing inhibitory activity of XOD. In vitro cell experiments showed that EGCG and ECG significantly reduced high uric acid levels of BRL-3A cell. This study elucidates the inhibitory mechanisms of catechins on XOD, paving the way for their application as XOD inhibitors to combat hyperuricemia.
Collapse
Affiliation(s)
- Xiaoze Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Wen Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Jingwen Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Ruihui Fu
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
6
|
Li K, Xu R, Kuang M, Ma W, Li N. Bioassay-Guided Isolation and Identification of Xanthine Oxidase Inhibitory Constituents from the Fruits of Chaenomeles speciosa (Sweet) Nakai. Molecules 2024; 29:4468. [PMID: 39339463 PMCID: PMC11434067 DOI: 10.3390/molecules29184468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a traditional Chinese herbal medicine that possesses not only abundant nutritional value but also significant medicinal properties. The extracts of C. speciosa fruits effectively reduce urate levels, but the specific chemical constituents responsible for this effect in C. speciosa fruits are still unknown. Therefore, this study aims to investigate and analyze the structure-activity relationships of these constituents to better understand their ability to lower uric acid. Activity-guided fractionation and purification processes were used to isolate compounds with xanthine oxidase (XO) inhibitory activity from C. speciosa fruits, resulting in three extracts: petroleum ether, ethyl acetate, and n-butanol. The ethyl acetate and n-butanol fractions showed strong activity and underwent further separation and purification using chromatographic techniques. Twenty-four compounds were isolated and identified, with nine showing potent activity, including chlorogenic acid, methyl chlorogenate, butyl chlorogenate, ethyl chlorogenate, cryptochlorogenic acid methyl ester, caffeic acid, p-coumaric acid, benzoic acid and protocatechuic acid. The docking analysis showed that these compounds interacted with amino acid residues in the active site of XO through hydrogen bonding and hydrophobic interactions. These findings suggest that these compounds help reduce uric acid in C. speciosa, supporting further investigation into their mechanism of action.
Collapse
Affiliation(s)
- Kui Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruoling Xu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Mengting Kuang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Ma
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ning Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
7
|
Wang H, Zheng Y, Yang M, Wang L, Xu Y, You S, Mao N, Fan J, Ren S. Gut microecology: effective targets for natural products to modulate uric acid metabolism. Front Pharmacol 2024; 15:1446776. [PMID: 39263572 PMCID: PMC11387183 DOI: 10.3389/fphar.2024.1446776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Gut microecology,the complex community consisting of microorganisms and their microenvironments in the gastrointestinal tract, plays a vital role in maintaining overall health and regulating various physiological and pathological processes. Recent studies have highlighted the significant impact of gut microecology on the regulation of uric acid metabolism. Natural products, including monomers, extracts, and traditional Chinese medicine formulations derived from natural sources such as plants, animals, and microorganisms, have also been investigated for their potential role in modulating uric acid metabolism. According to research, The stability of gut microecology is a crucial link for natural products to maintain healthy uric acid metabolism and reduce hyperuricemia-related diseases. Herein, we review the recent advanced evidence revealing the bidirectional regulation between gut microecology and uric acid metabolism. And separately summarize the key evidence of natural extracts and herbal formulations in regulating both aspects. In addition,we elucidated the important mechanisms of natural products in regulating uric acid metabolism and secondary diseases through gut microecology, especially by modulating the composition of gut microbiota, gut mucosal barrier, inflammatory response, purine catalyzation, and associated transporters. This review may offer a novel insight into uric acid and its associated disorders management and highlight a perspective for exploring its potential therapeutic drugs from natural products.
Collapse
Affiliation(s)
- Hui Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengfan Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Xu
- Chengdu Medical College, Chengdu, China
| | - Siqi You
- Chengdu Medical College, Chengdu, China
| | - Nan Mao
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Junming Fan
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Sichong Ren
- Chengdu Medical College, Chengdu, China
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- TCM Preventative Treatment Research Center of Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Cerqueira Melo RDC, Martins AA, Melo ALF, Vicente JCP, Sturaro MC, Arantes JP, Rossato L, de Souza GHDA, Simionatto S. Investigating the Antimicrobial Potential of 560 Compounds from the Pandemic Response Box and COVID Box against Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:723. [PMID: 39200023 PMCID: PMC11350835 DOI: 10.3390/antibiotics13080723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a significant threat to public health, particularly in infections caused by critically important Gram-negative bacteria. The development of novel antibiotics has its limitations, and therefore it is crucial to explore alternative strategies to effectively combat infections with resistant pathogens. In this context, the present study investigated the antibacterial potency of 560 compounds against the multidrug-resistant (MDR) strains of Klebsiella pneumoniae and Serratia marcescens. The evaluated compounds were selected from the Pandemic Response Box (PRB) and COVID Box (CB) and subjected to assays to determine the inhibitory concentration (IC), minimum bactericidal concentration (MBC), and biofilm formation. Further, the effects of these compounds on membrane integrity were assessed through protein quantification. Several of the evaluated compounds, including fusidic acid, MMV1580853, and MMV1634399, exhibited a significant reduction in biofilm formation and growth in K. pneumoniae. Trimethoprim exhibited potential against S. marcescens. The IC values of the compounds indicated significant microbial growth inhibition at various concentrations. These findings underscore the potency of the existing antibiotics and novel compounds in combating the MDR strains of bacteria. The importance of reconsidering the known antibiotics and utilizing drug repositioning strategies to address the increasing risk of AMR is highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Simone Simionatto
- Health Sciences Research Laboratory, Federal University of Grande Dourados (UFGD), Dourados 79804970, Mato Grosso do Sul, Brazil; (R.d.C.C.M.)
| |
Collapse
|
9
|
Li K, Wang Y, Liu W, Zhang C, Xi Y, Zhou Y, Li H, Liu X. Structure-Activity Relationships and Changes in the Inhibition of Xanthine Oxidase by Polyphenols: A Review. Foods 2024; 13:2365. [PMID: 39123556 PMCID: PMC11312107 DOI: 10.3390/foods13152365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Hyperuricemia (HUA), or elevated uric acid in the blood, has become more prevalent in recent years. Polyphenols, which are known to have good inhibitory activity on xanthine oxidoreductase (XOR), are effective in uric acid reduction. In this review, we address the structure-activity relationship of flavonoids that inhibit XOR activity from two perspectives: the key residues of XOR and the structural properties of flavonoids. Flavonoids' inhibitory effect is enhanced by their hydroxyl, methoxy, and planar structures, whereas glycosylation dramatically reduces their activity. The flavonoid structure-activity relationship informed subsequent discussions of the changes that occur in polyphenols' XOR inhibitory activity during their extraction, processing, gastrointestinal digestion, absorption, and interactions. Furthermore, gastrointestinal digestion and heat treatment during processing can boost the inhibition of XOR. Polyphenols with comparable structures may have a synergistic effect, and their synergy with allopurinol thus provides a promising future research direction.
Collapse
Affiliation(s)
- Kexin Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Yumei Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Wanlu Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | | | - Yu Xi
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Yanv Zhou
- The Product Makers Co., Ltd., Shanghai 200444, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China; (K.L.); (Y.W.); (W.L.)
| |
Collapse
|
10
|
James A, Wang K, Wang Y. Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates. Nutrients 2023; 15:3022. [PMID: 37447347 DOI: 10.3390/nu15133022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Green tea polyphenols have numerous functions including antioxidation and modulation of various cellular proteins and are thus beneficial against metabolic diseases including obesity, type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases, and their comorbidities. Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and is attributed to antioxidant and free radical scavenging activities, and the likelihood of targeting multiple metabolic pathways. It has been shown to exhibit anti-obesity, anti-inflammatory, anti-diabetic, anti-arteriosclerotic, and weight-reducing effects in humans. Worldwide, the incidences of metabolic diseases have been escalating across all age groups in modern society. Therefore, EGCG is being increasingly investigated to address the problems. This review presents the current updates on the effects of EGCG on metabolic diseases, and highlights evidence related to its safety. Collectively, this review brings more evidence for therapeutic application and further studies on EGCG and its derivatives to alleviate metabolic diseases and non-alcoholic fatty liver diseases.
Collapse
Affiliation(s)
- Armachius James
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Tanzania Agricultural Research Institute (TARI), Makutupora Center, Dodoma P.O. Box 1676, Tanzania
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Green Tea Polyphenol (-)-Epigallocatechin-3-Gallate (EGCG): A Time for a New Player in the Treatment of Respiratory Diseases? Antioxidants (Basel) 2022; 11:antiox11081566. [PMID: 36009285 PMCID: PMC9405266 DOI: 10.3390/antiox11081566] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is a major polyphenol of green tea that possesses a wide variety of actions. EGCG acts as a strong antioxidant which effectively scavenges reactive oxygen species (ROS), inhibits pro-oxidant enzymes including NADPH oxidase, activates antioxidant systems including superoxide dismutase, catalase, or glutathione, and reduces abundant production of nitric oxide metabolites by inducible nitric oxide synthase. ECGC also exerts potent anti-inflammatory, anti-fibrotic, pro-apoptotic, anti-tumorous, and metabolic effects via modulation of a variety of intracellular signaling cascades. Based on this knowledge, the use of EGCG could be of benefit in respiratory diseases with acute or chronic inflammatory, oxidative, and fibrotizing processes in their pathogenesis. This article reviews current information on the biological effects of EGCG in those respiratory diseases or animal models in which EGCG has been administered, i.e., acute respiratory distress syndrome, respiratory infections, COVID-19, bronchial asthma, chronic obstructive pulmonary disease, lung fibrosis, silicosis, lung cancer, pulmonary hypertension, and lung embolism, and critically discusses effectiveness of EGCG administration in these respiratory disorders. For this review, articles in English language from the PubMed database were used.
Collapse
|