1
|
Xiao X, Qin S, Cui T, Liu J, Wu Y, Zhong Y, Yang C. Bacillus licheniformis suppresses Clostridium perfringens infection via modulating inflammatory response, antioxidant status, inflammasome activation and microbial homeostasis in broilers. Poult Sci 2024; 103:104222. [PMID: 39241614 PMCID: PMC11406086 DOI: 10.1016/j.psj.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024] Open
Abstract
Pathogenic bacteria infection, especially Clostridium perfringens (C. perfringens), markedly threatened the health of animals, and further caused huge economic loss. In this study, Bacillus licheniformis HJ0135 (BL) was used. Oxford cup bacteriostatic test and inhibitory rate test were conducted to evaluate the antibacterial ability of BL. Results showed the strongest inhibitory role of BL on C. perfringens (P < 0.05). Afterwards, 540 one-day-old yellow-feather broilers (32.7 ± 0.2 g) were randomly allocated into 3 groups, including CON group (basal diet), CP group (basal diet + 1 × 109 CFU C. perfringens in gavage), and BL + CP group (basal diet containing 7.5 × 106 CFU/g BL + 1 × 109 CFU C. perfringens in gavage). At d 70, broilers in the CP and BL + CP groups were treated with C. perfringens by continuously oral administration for 5 d. The experiment lasted for 75 d. The serum, immune organs, jejunal mucosa, and cecal contents were collected for analysis. In vivo experiment showed that BL supplementation markedly improved (P < 0.05) BW, ADG, thymus index, serum immunoglobins and antioxidases, reduced feed conversion ratio (FCR) and serum pro-inflammatory cytokines of C. perfringens-infected broilers. Furthermore, the increased jejunal injury and levels of pro-inflammatory cytokines, decreased gene expressions of tight junction proteins in the jejunal mucosa were significantly alleviated (P < 0.05) by BL. More importantly, the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome was inhibited (P < 0.05) by BL to further attenuate jejunal damage. Besides, BL supplementation markedly increased (P < 0.05) the cecal isobutyric acid and isovaleric acid. Microbial analysis showed that BL changed the composition and relative abundances of microbiota in the cecal contents (P < 0.05), especially the short chain fatty acids (SCFAs)-producing bacteria including Eubacterium_coprostanoligenes_group, Megamonas, Faecalibacterium, and Lactobacillus, which further protected against C. perfringens-induced jejunal inflammation in broilers. Our study laid a theoretical basis for the application of probiotics in lessening C. perfringens-related diseases in poultry farming.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
2
|
Yin H, Wang C, Shuai Y, Xie Z, Liu J. Pig-Derived Probiotic Bacillus tequilensis YB-2 Alleviates Intestinal Inflammation and Intestinal Barrier Damage in Colitis Mice by Suppressing the TLR4/NF-κB Signaling Pathway. Animals (Basel) 2024; 14:1989. [PMID: 38998101 PMCID: PMC11240761 DOI: 10.3390/ani14131989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
The search for new probiotics has been regarded as an important approach to improving intestinal health in animals. Bacillus has many advantages, such as strong resistance to harmful external factors, wide distribution, and easy colonization of the intestine. Hence, this study aims to screen for a probiotic Bacillus strain that improves animal intestinal health and to elucidate its probiotic mechanism so as to provide probiotic resources for the development of feed-using probiotic formulations. In this research, a strain of Bacillus was isolated from adult pig feces and named B. tequilensis YB-2. In vitro probiotic experiments showed that B. tequilensis YB-2 had strong acid and bile salt resistance, indicating that this strain can customize in the intestine. To further explore the effect of B. tequilensis YB-2 upon animal intestinal health, DSS-induced murine colitis models were established, and the body weight, colonic morphology, inflammatory cytokines level, and intestinal-barrier- and TLR4/NF-κB-pathway-related protein were determined. The results showed that mice receiving drinking water with 3% DSS were found to develop colitis symptoms, including body weight loss and increased disease activity index (DAI); colon length and microvilli shedding were shortened; tight junctions were disrupted; goblet cells decreased; anti-inflammatory cytokines were inhibited; and pro-inflammatory cytokines and the TLR4/NF-κB signaling pathway were activated. Notably, orally received B. tequilensis YB-2 alleviated symptoms of DSS-induced colitis in mice. The above results indicated that B. tequilensis YB-2 was capable of improving colitis in mice by weakening inflammation and intestinal barrier damage, and its mechanism may involve the TLR4/NF-κB pathway. Overall, this research suggests that B. tequilensis YB-2 has the potential to serve as an animal feed additive to prevent intestinal inflammation.
Collapse
Affiliation(s)
- Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Chengbi Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yi Shuai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhuoya Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
3
|
Yang T, Sun Y, Dai Z, Liu J, Xiao S, Liu Y, Wang X, Yang S, Zhang R, Yang C, Dai B. Microencapsulated Sodium Butyrate Alleviates Immune Injury and Intestinal Problems Caused by Clostridium Perfringens through Gut Microbiota. Animals (Basel) 2023; 13:3784. [PMID: 38136821 PMCID: PMC10741131 DOI: 10.3390/ani13243784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Microencapsulated sodium butyrate (MS-SB) is an effective sodium butyrate additive which can reduce the release of sodium butyrate (SB) in the fore gastrointestinal tract. In this study, we assess the protective effects and mechanisms of MS-SB in Clostridium perfringens (C. perfringens)-challenged broilers. Broiler chickens were pre-treated with SB or MS-SB for 56 days and then challenged with C. perfringens three times. Our results indicate that the addition of MS-SB or SB before C. perfringens infection significantly decreased the thymus index (p < 0.05). Serum IgA, IgY, and IgM concentrations were significantly increased (p < 0.05), while pro-inflammatory IL-1β, IL-6, and TNF-α were significantly decreased (p < 0.05) under MS-SB or SB supplementation. Compared with SB, MS-SB presented a stronger performance, with higher IgA content, as well as a lower IL-1β level when normal or C. perfringens-challenged. While C. perfringens challenge significantly decreased the villus height (p < 0.05), MS-SB or SB administration significantly increased the villus height and villus height/crypt depth (V/C ratio) (p < 0.05). Varying degrees of SB or MS-SB increased the concentrations of volatile fatty acids (VFAs) during C. perfringens challenge, where MS-SB presented a stronger performance, as evidenced by the higher content of isovaleric acid and valeric acid. Microbial analysis demonstrated that both SB or MS-SB addition and C. perfringens infection increase variation in the microbiota community. The results also indicate that the proportions of Bacteroides, Faecalibacterium, Clostridia, Ruminococcaceae, Alistipes, and Clostridia were significantly higher in the MS-SB addition group while, at same time, C. perfringens infection increased the abundance of Bacteroides and Alistipes. In summary, dietary supplementation with SB or MS-SB improves the immune status and morphology of intestinal villi, increases the production of VFAs, and modulates cecal microbiota in chickens challenged with C. perfringens. Moreover, MS-SB was more effective than SB with the same supplemental amount.
Collapse
Affiliation(s)
- Ting Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Yaowei Sun
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Zhenglie Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Shiping Xiao
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Yulan Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Xiuxi Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Shenglan Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| | - Caimei Yang
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China; (J.L.); (S.X.); (Y.L.); (C.Y.)
| | - Bing Dai
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (T.Y.); (Y.S.); (Z.D.); (X.W.); (S.Y.); (R.Z.)
| |
Collapse
|
4
|
Xu H, Zhang X, Li P, Luo Y, Fu J, Gong L, Lv Z, Guo Y. Effects of Tannic Acid Supplementation on the Intestinal Health, Immunity, and Antioxidant Function of Broilers Challenged with Necrotic Enteritis. Antioxidants (Basel) 2023; 12:1476. [PMID: 37508014 PMCID: PMC10376868 DOI: 10.3390/antiox12071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Clostridium perfringens causes necrotic enteritis (NE) after proliferation in the intestine of poultry, resulting in considerable losses to the poultry industry. This study aimed to investigate the impact of tannic acid on the antioxidant, immunity, and gut health of broilers with NE. In the experiment, 630 one-day-old Cobb500 male chicks were randomly divided into six treatment groups, with seven replicate cages and with fifteen birds in each cage. The treatment groups were as follows: control group (NC), challenged group (PC), and challenged NE chickens treated with 250, 500, 750, and 1000 mg/kg tannic acid (PTA1, PTA2, PTA3, and PTA4, respectively). To induce NE, coccidia vaccine and Clostridium perfringens were administered on day 19 and days 22-28, respectively. Indexes related to antioxidant, immune, and intestinal health were measured on days 28 and 35. During the infection period, we observed significant increases in fecal water content, D-LA, TNF-α, and malondialdehyde concentrations (p < 0.05). Conversely, significant decreases were noted in chyme pH and in T-AOC, IL-4, and IL-10 concentrations (p < 0.05). The addition of tannic acid exhibited a linear decrease in fecal water content and TNF-α concentration (p < 0.05). Furthermore, tannic acid supplementation resulted in a quadratic curve decrease in D-LA concentration and linear increases in T-AOC, IL-4, and IL-10 (p < 0.05). Cecal microbiological analysis revealed that Ruminococcaceae and Butyricimona were dominant in PTA3. In conclusion, the dietary addition of tannic acid may reduce the negative effects of NE by increasing antioxidant and anti-inflammatory capacity, improving the intestinal barrier, and regulating the intestinal flora.
Collapse
Affiliation(s)
- Huiping Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Peng Li
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yimeng Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|