1
|
Vaishnav A, Lal J, Mehta NK, Mohanty S, Yadav KK, Priyadarshini MB, Debbarma P, Singh NS, Pati BK, Singh SK. Unlocking the potential of fishery waste: exploring diverse applications of fish protein hydrolysates in food and nonfood sectors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36244-3. [PMID: 40119992 DOI: 10.1007/s11356-025-36244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Fish and their byproducts play a pivotal role as protein sources. With the global population increasing, urbanization on the rise and increased affluence, efficient utilization of available protein resources is becoming increasingly critical. Additionally, the need for sustainable protein sources is gaining recognition. By 2050, the world's protein demand is expected to double, driven not only by population growth but also by heightened awareness of protein's role in maintaining health. The fishery industry has experienced continuous growth over the last decade. However, this growth comes with a significant challenge: inadequate waste management. The fisheries industry discards 35% to 70% of their production as waste, including fillet remains, skin, fins, bones, heads, viscera and scales. Despite the importance of these byproducts as protein sources, their effective utilization remains a hurdle. Various strategies have been proposed to address this issue. Among them, the production of protein hydrolysates stands out as an efficient method for value addition. Protein hydrolysis breaks down proteins into smaller peptides with diverse functional and bioactive properties. Therefore, fish protein hydrolysates have applications in both the food and nonfood sectors. Utilizing fishery byproducts and waste represents a sustainable approach toward waste valorization and resource optimization in the fishery industry. This approach offers promising opportunities for innovation and economic growth across multiple sectors. This comprehensive review explores fish protein hydrolysates derived from fishery byproducts and wastes, focusing on their applications in both the food and nonfood sectors.
Collapse
Affiliation(s)
- Anand Vaishnav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Jham Lal
- Department of Aquaculture, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Naresh Kumar Mehta
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India.
| | - Saswat Mohanty
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Krishan Kumar Yadav
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Mocherla Bhargavi Priyadarshini
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Payel Debbarma
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Nongthongbam Sureshchandra Singh
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Bikash Kumar Pati
- Department of Fish Processing Technology & Engineering, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura, India
| | - Soibam Khogen Singh
- Krishi Vigyan Kendra, ICAR - North Eastern Hill Region, Ukhrul, Manipur, India
| |
Collapse
|
2
|
Nikoo M, Regenstein JM, Yasemi M. Protein Hydrolysates from Fishery Processing By-Products: Production, Characteristics, Food Applications, and Challenges. Foods 2023; 12:4470. [PMID: 38137273 PMCID: PMC10743304 DOI: 10.3390/foods12244470] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Fish processing by-products such as frames, trimmings, and viscera of commercial fish species are rich in proteins. Thus, they could potentially be an economical source of proteins that may be used to obtain bioactive peptides and functional protein hydrolysates for the food and nutraceutical industries. The structure, composition, and biological activities of peptides and hydrolysates depend on the freshness and the actual composition of the material. Peptides isolated from fishery by-products showed antioxidant activity. Changes in hydrolysis parameters changed the sequence and properties of the peptides and determined their physiological functions. The optimization of the value of such peptides and the production costs must be considered for each particular source of marine by-products and for their specific food applications. This review will discuss the functional properties of fishery by-products prepared using hydrolysis and their potential food applications. It also reviews the structure-activity relationships of the antioxidant activity of peptides as well as challenges to the use of fishery by-products for protein hydrolysate production.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia 57179-44514, Iran
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Mehran Yasemi
- Department of Fisheries, Institute of Agricultural Education and Extension, Agricultural Research, Education, and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| |
Collapse
|