1
|
Gore DD, Mishra N, Kumar D, Jena G, Jachak SM, Tikoo K, Bansal AK, Singh IP. Anti-inflammatory activity, stability, bioavailability and toxicity studies on seabuckthorn polyphenol enriched fraction and its phospholipid complex (Phytosomes) preparation. Int J Biol Macromol 2025; 297:139919. [PMID: 39824425 DOI: 10.1016/j.ijbiomac.2025.139919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
A standardized polyphenol-enriched fraction (IPHRFPPEF) was formulated into a phospholipid complex (IPHRFPPEF-PC) to enhance oral bioavailability and evaluate stability, toxicity, and in vivo anti-inflammatory activity in Sprague Dawley rats. IPHRFPPEF was prepared from crude extract using XAD-HP7/Diaion-HP20 resin column chromatography and analyzed via HPLC and NMR. Total phenolic and flavonoid contents were quantified, with IPHRFPPEF showing higher values than the crude fraction. The phospholipid complex was prepared via solvent evaporation and assessed for bioavailability, stability, and toxicity. Key results demonstrated a 1.99-fold, 2.03-fold, and 1.66-fold increase in plasma concentrations of isorhamnetin, kaempferol and quercetin respectively. Acute oral toxicity testing showed an LD50 of 5000 mg/kg (GHS Category 5), and repeated-dose studies confirmed safety. IPHRFPPEF-PC exhibited enhanced pharmacokinetics and potent in vivo anti-inflammatory effects. In conclusion, the development of IPHRFPPEF-PC from a standardized polyphenol-enriched fraction offers a safe and effective therapeutic approach, with significant potential for future applications in treating inflammatory conditions.
Collapse
Affiliation(s)
- Dattatraya Dinkar Gore
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160062, Punjab, India
| | - Nidhi Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160062, Punjab, India
| | - Dinesh Kumar
- Chemical Technology Division CSIR-Institute of Himalayan Bioresouce and Technology, Palampur 176061, Himachal Pradesh, India.
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160062, Punjab, India.
| | - Sanjay Madhukar Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160062, Punjab, India.
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160062, Punjab, India.
| | - Arvind Kumar Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160062, Punjab, India.
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160062, Punjab, India.
| |
Collapse
|
2
|
Chen Y, He W, Cao H, Wang Z, Liu J, Wang B, Wang C. Research progress of sea buckthorn ( Hippophae rhamnoides L.) in prevention and treatment of cardiovascular disease. Front Cardiovasc Med 2024; 11:1477636. [PMID: 39494241 PMCID: PMC11527678 DOI: 10.3389/fcvm.2024.1477636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) contains a variety of biologically active compounds, including flavonoids, terpenoids, polysaccharides, organic acids, volatile oils, and vitamins. It has been demonstrated to be effective in the treatment of cardiovascular disorders. In this paper, we evaluated the pharmacological effects of sea buckthorn in cardiovascular diseases through preclinical studies, and revealed the mechanism of action of the active components in sea buckthorn in cardiovascular diseases, including anti-inflammatory, lipid oxidation regulation, antioxidant, vascular function modulation, anti-platelet aggregation, autophagy, intestinal microorganism regulation, and cell apoptosis reduction. In clinical trials, sea buckthorn was proven to be effective in managing lipid metabolism, blood pressure, and blood glucose levels in patients. We also extensively reviewed the safety of sea buckthorn medicine and its toxicity to numerous organs. To summarize, sea buckthorn has a beneficial effect on cardiovascular disease and may give a novel strategy for clinical intervention and therapy. This paper summarizes the phytochemistry, pharmacology, clinical applications, safety, and toxicity of sea buckthorn in order to better understand the mechanism of action of the various bioactive components in sea buckthorn, investigate its medicinal potential, and provide more options for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yumeng Chen
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Weiwei He
- Department of Physiology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hanjing Cao
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhenzhen Wang
- Department of Nursing, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chuan Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Yu W, Du Y, Li S, Wu L, Guo X, Qin W, Kuang X, Gao X, Wang Q, Kuang H. Sea buckthorn-nutritional composition, bioactivity, safety, and applications: A review. J Food Compost Anal 2024; 133:106371. [DOI: 10.1016/j.jfca.2024.106371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
4
|
Sławińska N, Żuchowski J, Stochmal A, Olas B. Anti-Platelet Activity of Sea Buckthorn Seeds and Its Relationship with Thermal Processing. Foods 2024; 13:2400. [PMID: 39123591 PMCID: PMC11312268 DOI: 10.3390/foods13152400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is a tree or shrub with small, orange berries. Sea buckthorn seeds have shown many properties beneficial to human health, including antioxidant, anti-hypertensive, anti-hyperlipidemic, and retinoprotective activities. Seeds, as a component of food, are often exposed to high temperatures, which can increase or decrease their biological activity. In our previous study, we showed that both raw and roasted sea buckthorn seeds had significant antioxidant activity, which was measured in human plasma in vitro. In this paper, we evaluated the effect of extracts from raw and roasted sea buckthorn seeds on several parameters of hemostasis in vitro, including thrombus formation in full blood (measured by the Total Thrombus formation Analysis System-T-TAS), blood platelet activation (based on the exposition of P-selectin, the active form of GPIIb/IIIa on their surface and platelet-derived microparticles formation), aggregation (measured with impedance aggregometry), adhesion to fibrinogen and collagen, arachidonic acid metabolism in washed platelets stimulated by thrombin, and COX-1 activity. We also measured the levels of free 8-isoprostane in plasma and the total non-enzymatic antioxidant status of plasma. The extract from roasted seeds (50 µg/mL) significantly prolonged the time of occlusion measured by T-TAS-the AUC10 (area under the curve) value was decreased by approximately 18%. Both extracts decreased the exposition of the active form of GPIIb/IIIa on the surface of platelets activated with 10 μM ADP (by 38.4-62.2%) and 20 μM ADP (by 39.7-51.3%). Moreover, the extract from raw seeds decreased the exposition of P-selectin on the surface of platelets stimulated with 20 μM ADP (by 31.2-34.9%). The adhesion of thrombin-stimulated platelets to fibrinogen and collagen was inhibited only by the extract from roasted sea buckthorn seeds (by 20-30%). Moreover, the extract from raw seeds inhibited the level of TBARS (thiobarbituric acid-reactive substances, an indicator of enzymatic peroxidation of arachidonic acid) in washed platelets stimulated with thrombin; the activity of COX-1 was inhibited by both extracts, although the effect of the extract from raw seeds was stronger. These results indicate that sea buckthorn seeds have anti-platelet activity that is not decreased by thermal processing, but more research is needed to determine which exact chemical compounds and mechanisms are responsible for this phenomenon.
Collapse
Affiliation(s)
- Natalia Sławińska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Jerzy Żuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland; (J.Ż.); (A.S.)
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland; (J.Ż.); (A.S.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
5
|
Wang S, Liu G, Xie C, Zhou Y, Yang R, Wu J, Xu J, Tu K. Metabolomics Analysis of Different Quinoa Cultivars Based on UPLC-ZenoTOF-MS/MS and Investigation into Their Antioxidant Characteristics. PLANTS (BASEL, SWITZERLAND) 2024; 13:240. [PMID: 38256795 PMCID: PMC10819959 DOI: 10.3390/plants13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
In recent years, quinoa, as a nutritious and sustainable food material, has gained increasing popularity worldwide. To investigate the diversity of nutritional characteristics among different quinoa cultivars and explore their potential health benefits, metabolites of five quinoa cultivars (QL-1, SJ-1, SJ-2, KL-1 and KL-2) were compared by non-targeted metabolomics analysis based on UPLC-ZenoTOF-MS/MS in this study. A total of 248 metabolites across 13 categories were identified. Although the metabolite compositions were generally similar among the different quinoa cultivars, significant variations existed in their respective metabolite contents. Among the identified metabolites, amino acids/peptides, nucleosides, saponins and phenolic acids were the most abundant. Notably, SJ-1 exhibited the most distinct metabolite profile when compared to the other cultivars. Amino acids/peptides and nucleosides were found to be crucial factors contributing to the unique metabolite profile of SJ-1. Collectively, these aforementioned metabolites accounted for a substantial 60% of the total metabolites observed in each quinoa variety. Additionally, a correlation between the DPPH radical scavenging activity and the free phenolic content of quinoa was observed. Variations in phenolic content resulted in different antioxidant capacities among the quinoa cultivars, and SJ-1 exhibited lower phenolic levels and weaker antioxidant activity than the others. These results can provide important information for the development of quinoa resources.
Collapse
Affiliation(s)
- Shufang Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Guannan Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - Chong Xie
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - You Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| | - Jirong Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Jianhong Xu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Z.); (J.W.)
| | - Kang Tu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (G.L.); (C.X.); (R.Y.)
| |
Collapse
|
6
|
Chen Y, Cai Y, Wang K, Wang Y. Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome. Foods 2023; 12:foods12101985. [PMID: 37238803 DOI: 10.3390/foods12101985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L. or Elaeagnus rhamnoides L.) is a plant that has long been used as a Chinese herbal medicine. This species is known to contain numerous bioactive components, including polyphenols, fatty acids, vitamins, and phytosterols, which may be responsible for its medicinal value. In experiments both in vitro and in vivo (ranging from cell lines to animal models and human patients), sea buckthorn has shown positive effects on symptoms of metabolic syndrome; evidence suggests that sea buckthorn treatment can decrease blood lipid content, blood pressure, and blood sugar levels, and regulate key metabolites. This article reviews the main bioactive compounds present in sea buckthorn and discusses their efficacy in treating metabolic syndrome. Specifically, we highlight bioactive compounds isolated from distinct sea buckthorn tissues; their effects on abdominal obesity, hypertension, hyperglycemia, and dyslipidemia; and their potential mechanisms of action in clinical applications. This review provides key insight into the benefits of sea buckthorn, promoting future research of this species and expansion of sea buckthorn-based therapies for metabolic syndrome.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yunfei Cai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| |
Collapse
|
7
|
Ma QG, He NX, Huang HL, Fu XM, Zhang ZL, Shu JC, Wang QY, Chen J, Wu G, Zhu MN, Sang ZP, Cao L, Wei RR. Hippophae rhamnoides L.: A Comprehensive Review on the Botany, Traditional Uses, Phytonutrients, Health Benefits, Quality Markers, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4769-4788. [PMID: 36930583 DOI: 10.1021/acs.jafc.2c06916] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hippophae rhamnoides L. (sea buckthorn), consumed as a food and health supplement worldwide, has rich nutritional and medicinal properties. Different parts of H. rhamnoides L. were used in traditional Chinese medicines for relieving cough, aiding digestion, invigorating blood circulation, and alleviating pain since ancient times. Phytochemical studies revealed a wide variety of phytonutrients, including nutritional components (proteins, minerals, vitamins, etc.) and functional components like flavonoids (1-99), lignans (100-143), volatile oils (144-207), tannins (208-230), terpenoids (231-260), steroids (261-270), organic acids (271-297), and alkaloids (298-305). The pharmacological studies revealed that some crude extracts or compounds of H. rhamnoides L. demonstrated various health benefits, such as anti-inflammatory, antioxidant, hepatoprotective, anticardiovascular disease, anticancer, hypoglycemic, hypolipidemic, neuroprotective, antibacterial activities, and their effective doses and experimental models were summarized and analyzed in this paper. The quality markers (Q-markers) of H. rhamnoides L. were predicted and analyzed based on protobotanical phylogeny, traditional medicinal properties, expanded efficacy, pharmacokinetics and metabolism, and component testability. The applications of H. rhamnoides L. in juice, wine, oil, ferment, and yogurt were also summarized and future prospects were examined in this review. However, the mechanism and structure-activity relationship of some active compounds are not clear, and quality control and potential toxicity are worth further study in the future.
Collapse
Affiliation(s)
- Qin-Ge Ma
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Neng-Xin He
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hui-Lian Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiao-Mei Fu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhong-Li Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ji-Cheng Shu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qin-Yuan Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Guang Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Mei-Ning Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhi-Pei Sang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lan Cao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Rong-Rui Wei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine of Ministry of Education, Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
8
|
Wei J, Zhao J, Su T, Li S, Sheng W, Feng L, Bi Y. Flavonoid Extract from Seed Residues of Hippophae rhamnoides ssp. sinensis Protects against Alcohol-Induced Intestinal Barrier Dysfunction by Regulating the Nrf2 Pathway. Antioxidants (Basel) 2023; 12:antiox12030562. [PMID: 36978810 PMCID: PMC10044812 DOI: 10.3390/antiox12030562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Alcohol has been demonstrated to disrupt intestinal barrier integrity. Some flavonoid compounds that exert antioxidant activity have a protective effect on intestinal barrier function. As an important medicinal and edible plant, sea buckthorn (Hippophae) seeds are rich in flavonoids, but their protective effect on the intestinal barrier has not been reported. In our research, 76 kinds of flavonoids were identified in Hippophae rhamnoides ssp. sinensis seed residue flavonoids (HRSF) by ultra-performance liquid chromatography-tandem mass spectrometry. Kaempferol-3-O-rutinoside, isorhamnetin-3-O-rutinoside, kaempferol-3-O-robinoside-7-O-rhamnoside, isorhamnetin-3-O-2G-rhamnosylrutinoside, quercetin-3-O-rutinoside, (-)-epigallocatechin, and B type of procyanidin were the most abundant substances, accounting for 15.276%, 15.128%, 18.328%, 10.904%, 4.596%, 5.082%, and 10.079% of all identified flavonoids, respectively. Meanwhile, pre-treatment with HRSF was able to prevent alcohol-induced disruption of intestinal barrier integrity through elevating the transepithelial monolayer resistance value, inhibiting the flux of fluorescein isothiocyanate-dextran, and upregulating the mRNA and protein level of TJs (occludin and ZO-1). Furthermore, it was also able to reverse alcohol-induced oxidative stress through suppressing the accumulation of reactive oxygen species and malondialdehyde, improving the glutathione level and superoxide dismutase activity. Finally, the results showed that HRSF pre-treatment effectively elevated the erythroid-related factor 2 mRNA and protein level compared with the alcohol-alone treatment group. Our research was the first to demonstrate that HRSF could prevent alcohol-induced intestinal barrier dysfunction through regulating the Nrf2-mediated pathway in order to attenuate oxidative stress and enhance TJ expression.
Collapse
Affiliation(s)
- Juan Wei
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinmei Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Su
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Sha Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjun Sheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Yao BN, Liao FY, Yang JY, Liu A, Wang J, Zhu BG, Feng G, Yang SL. Effect of sea buckthorn extract on production performance, serum biochemical indexes, egg quality, and cholesterol deposition of laying ducks. Front Vet Sci 2023; 10:1127117. [PMID: 36923054 PMCID: PMC10008885 DOI: 10.3389/fvets.2023.1127117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
The purpose of this experiment was to study the effect of sea buckthorn extract (SBE) supplementation on the production performance, serum biochemical indexes, egg quality, and cholesterol deposition of laying ducks. A total of 240 23-week-old laying ducks (female ducks) with similar body weight were randomly divided into four treatment groups with 6 replicates of 10 each. The experimental groups were fed diets supplemented with 0, 0.5, 1.0, and 1.5 g/kg of SBE, respectively. The results showed that the addition of 1.0 g/kg SBE to the diet had significant increase (P < 0.05) in average egg weight and feed conversion ratio. The inclusion of SBE showed the significant improvement (P < 0.05) in yolk weight, shell strength, egg white height and haugh unit. Ducks fed with 1.0 and 1.5 g/kg SBE displayed a significant decrease (P < 0.05) in yolk cholesterol. The significant improvements were observed in the contents of total amino acid essential amino acids, non-essential amino acids, umami amino acids, monounsaturated fatty acids, and docosahexenoic acids of eggs (P < 0.05) when supplemented with SBE. However, the contents of total saturated fatty acids, polyunsaturated fatty acids, n-3 polyunsaturated fatty acids and n-6 polyunsaturated fatty acids in eggs showed decrease when ducks fed with SBE diets (P < 0.05). SBE diets may reduce (P < 0.05) the levels of serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol, while increased (P < 0.05) the levels of serum superoxide dismutase, total antioxidant capacity, and glutathione catalase compared to the control. The levels of serum immunoglobulin G, immunoglobulin A and immunoglobulin M were improved in SBE diets (P < 0.05) in comparation to the control. The addition of SBE to diets can improve feed nutrient utilization, increase egg weight, optimaze egg quality and amino acid content in eggs, reduce blood lipids, improve fatty acid profile and yolk cholesterol in eggs, and increase antioxidant capacity and immunity in laying ducks.
Collapse
Affiliation(s)
- Bing-Nong Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Fu-You Liao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Jiao-Yi Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Ai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Jiao Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Bao-Guo Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Gang Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Sheng-Lin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Shen F, Zhuang J, Wang Q, Zhang J, Huang Y, Mo Q, Zhao M, Wang J, Zhong H, Feng F. Enhancement in the metabolic profile of sea buckthorn juice via fermentation for its better efficacy on attenuating diet-induced metabolic syndrome by targeting gut microbiota. Food Res Int 2022; 162:111948. [DOI: 10.1016/j.foodres.2022.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
|
11
|
Liu Y, Liu C, Kou X, Wang Y, Yu Y, Zhen N, Jiang J, Zhaxi P, Xue Z. Synergistic Hypolipidemic Effects and Mechanisms of Phytochemicals: A Review. Foods 2022; 11:2774. [PMID: 36140902 PMCID: PMC9497508 DOI: 10.3390/foods11182774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidemia, a chronic disorder of abnormal lipid metabolism, can induce obesity, diabetes, and cardiovascular and cerebrovascular diseases such as coronary heart disease, atherosclerosis, and hypertension. Increasing evidence indicates that phytochemicals may serve as a promising strategy for the prevention and management of hyperlipidemia and its complications. At the same time, the concept of synergistic hypolipidemic and its application in the food industry is rapidly increasing as a practical approach to preserve and improve the health-promoting effects of functional ingredients. The current review focuses on the effects of single phytochemicals on hyperlipidemia and its mechanisms. Due to the complexity of the lipid metabolism regulatory network, the synergistic regulation of different metabolic pathways or targets may be more effective than single pathways or targets in the treatment of hyperlipidemia. This review summarizes for the first time the synergistic hypolipidemic effects of different combinations of phytochemicals such as combinations of the same category of phytochemicals and combinations of different categories of phytochemicals. In addition, based on the different metabolic pathways or targets involved in synergistic effects, the possible mechanisms of synergistic hypolipidemic effects of the phytochemical combination are illustrated in this review. Hence, this review provides clues to boost more phytochemical synergistic hypolipidemic research and provides a theoretical basis for the development of phytochemicals with synergistic effects on hyperlipidemia and its complications.
Collapse
Affiliation(s)
- Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Chunlong Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Dynamiker Biotechnology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yumeng Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ni Zhen
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Jingyu Jiang
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Puba Zhaxi
- Food and Drug Inspection and Research Institute of Tibet Autonomous Region, Lhasa 850000, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Żuchowski J. Phytochemistry and pharmacology of sea buckthorn ( Elaeagnus rhamnoides; syn. Hippophae rhamnoides): progress from 2010 to 2021. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:3-33. [PMID: 35971438 PMCID: PMC9366820 DOI: 10.1007/s11101-022-09832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 06/01/2023]
Abstract
Sea buckthorn (Elaeagnus rhamnoides; syn. Hippophae rhamnoides) is a thorny shrub or a small tree belonging to the Elaeagnaceae family, native to Eurasia. Sea buckthorn fruit is rich in vitamins and minerals, oils from the seeds and fruit flesh find use in medicine and the cosmetic industry or as nutraceutical supplements. Fruit, leaves and other parts of buckthorn have been used in traditional medicine, especially in China, Tibet, Mongolia, and Central Asia countries, and are a rich source of many bioactive substances. Due to its health-promoting and medicinal properties, the plant has been extensively investigated for several decades, and its phytochemical composition and pharmacological properties are well characterized. The years 2010-2021 brought significant progress in phytochemical research on sea buckthorn. Dozens of new compounds, mainly phenolics, were isolated from this plant. Numerous pharmacological studies were also performed, investigating diverse aspects of the biological activity of different extracts and natural products from sea buckthorn. This review focuses on the progress in research on sea buckthorn specialized metabolites made in this period. Pharmacological studies on sea buckthorn are also discussed. In addition, biosynthetic pathways of the main groups of these compounds have been shortly described.
Collapse
Affiliation(s)
- Jerzy Żuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
13
|
Tkacz K, Wojdyło A, Turkiewicz IP, Nowicka P. Triterpenoids, phenolic compounds, macro- and microelements in anatomical parts of sea buckthorn (Hippophaë rhamnoides L.) berries, branches and leaves. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Gâtlan AM, Gutt G. Sea Buckthorn in Plant Based Diets. An Analytical Approach of Sea Buckthorn Fruits Composition: Nutritional Value, Applications, and Health Benefits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18178986. [PMID: 34501575 PMCID: PMC8431556 DOI: 10.3390/ijerph18178986] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023]
Abstract
Current nutritional trends include plant-based diets as nutritional behavior of consumers who are increasingly concerned about a healthy lifestyle. Sea buckthorn (Hippophaë rhamnoides L.) is a plant with great virtues, containing more than 100 types of compounds. It is a plant with versatile properties, multiple economic advantages and a rich history, which still continues in natural medicine, and it is hence included in the daily diet by more and more people for the prevention and treatment of diet-related diseases. Its uniqueness is due to its chemical composition and the health beneficial properties that rise from its composition. This review is a detailed analytical picture of the current state of knowledge currently available regarding the Hippophaë plant, providing an overview of the qualities of sea buckthorn. This article summarizes data on sea buckthorn’s nutritional value, health beneficial properties, and its applications.
Collapse
|
15
|
Chen T, Wang S, Li H, Shen C, Yan S, Wei Y, Song Z, Li P, Li Y. Efficient One-Step Separation of Five Flavonoids from the Crude Extract of the Waste Pomace of Sea Buckthorn Berries through Counter-Current Chromatography. J Chromatogr Sci 2021; 60:578-583. [PMID: 34343279 DOI: 10.1093/chromsci/bmab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 11/12/2022]
Abstract
The pomace of sea buckthorn berries is usually discarded when transforming into nonalcoholic or alcoholic beverages, jellies, jams, juices, candies and dairy products. Here, we established a promising approach for one step separation of five flavonoids from the waste pomace of sea buckthorn berries through counter-current chromatography. The crude extract of waste pomace of sea buckthorn berries after juicing was injected into counter-current chromatography with hexane/ethyl acetate/ethanol/water (v/v/v/v, 5:7:5:7) as the solvent system. As a result, five flavonoids, including quercetin, laricitrin, isorhamnetin-7-O-rhamnoside, kaempferol and isorhamnetin, were obtained in a single step separation. Our finding showed that ethanol is a good substitute for methanol to regulate the partition coefficient in hexane/ethyl acetate/ methanol/water system. This study provided a significant measure to utilize the waste pomace of Sea buckthorn berries.
Collapse
Affiliation(s)
- Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| | - Hongmei Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cheng Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuping Yan
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yangfei Wei
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhibo Song
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peipei Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China
| |
Collapse
|
16
|
Liu S, Xiao P, Kuang Y, Hao J, Huang T, Liu E. Flavonoids from sea buckthorn: A review on phytochemistry, pharmacokinetics and role in metabolic diseases. J Food Biochem 2021; 45:e13724. [PMID: 33856060 DOI: 10.1111/jfbc.13724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Sea buckthorn (Hippophae rhamnoides L., SBT) is being used as a folk medicine for their diverse medicinal properties. Flavonoids are generally considered as the main bioactive and characteristic ingredients in SBT. This review was conducted using a comprehensive literature search on the chemical components, quality control, pharmacokinetics of flavonoids from SBT (FSBT). Particularly, we highlighted the therapeutic potential in metabolic diseases and clinical applications of FSBT. More than 95 flavonoids have been identified from SBT. Although the oral bioavailability of FSBT was relatively low, FSBT displays significant effect on the regulation of metabolism to ameliorate metabolic disorders and their complications. There is a heightened need to explore the bioactive compounds in SBT and mechanism(s) of action of FSBT in order to fully understand the pathways of their activities. PRACTICAL APPLICATIONS: For years, due to the increasing emergence of metabolic syndrome and diverse functions of FSBT in regulating metabolism, they can be efficiently utilized for human health and have an urgent need to become a hotspot for research. This review will broaden the understanding of FSBT, providing some directions for further development and expanding the therapeutic applications of FSBT.
Collapse
Affiliation(s)
- Shiyu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Pingting Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Yujia Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Jinhua Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Tianqing Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| | - Ehu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
17
|
Xiao PT, Liu SY, Kuang YJ, Jiang ZM, Lin Y, Xie ZS, Liu EH. Network pharmacology analysis and experimental validation to explore the mechanism of sea buckthorn flavonoids on hyperlipidemia. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113380. [PMID: 32918994 DOI: 10.1016/j.jep.2020.113380] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn is popularly used as a herbal medicine and food additive in the world. Sea buckthorn flavonoids (SF) is reported to have an ameliorative effect on obesity and hyperlipidemia (HLP). AIM To identify the major bioactive compounds and the lipid-lowering mechanism of SF. METHODS We used network pharmacology analysis and in vitro experiments to identify the major bioactive compounds and the lipid-lowering mechanism of SF. RESULTS A total of 12 bioactive compounds, 60 targets related to SF and HLP were identified, and a component-target-disease network was constructed. The KEGG analysis revealed that SF regulated cholesterol metabolism, fat digestion and absorption, and PPAR signaling pathways in HLP. The experimental validation indicated that sea buckthorn flavonoids extract (SFE) and 4 bioactive compounds reduced lipid droplet accumulation, up-regulated the mRNA expression of PPAR-γ, PPAR-α, ABCA1 and CPT1A, etc, down-regulated SREBP-2 and its target gene LDLR, which are closely related to cholesterol conversion into bile acids, de novo synthesis and fatty acids oxidation. The major bioactive flavonoid isorhamnetin (ISOR) also increased the protein expression of PPAR-γ, LXRα and CYP7A1. CONCLUSION SF might promote cholesterol transformation into bile acids and cholesterol efflux, inhibit cholesterol de novo synthesis and accelerate fatty acids oxidation for ameliorating HLP.
Collapse
Affiliation(s)
- Ping-Ting Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, PR China
| | - Shi-Yu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, PR China
| | - Yu-Jia Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, PR China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, PR China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, PR China
| | - Zhi-Shen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, PR China.
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, PR China.
| |
Collapse
|
18
|
Ciesarová Z, Murkovic M, Cejpek K, Kreps F, Tobolková B, Koplík R, Belajová E, Kukurová K, Daško Ľ, Panovská Z, Revenco D, Burčová Z. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res Int 2020; 133:109170. [PMID: 32466930 DOI: 10.1016/j.foodres.2020.109170] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 01/23/2023]
Abstract
Sea buckthorn (Hippophae L.) is a valuable, multipurpose plant extensively grown in Asia, Europe and Canada. In order to use it in the best way for products of human nutrition, it is necessary to recognize its positive aspects and to eliminate the negative ones. The exceptional value of sea buckthorn can be seen in the presence of both lipophilic antioxidants (mainly carotenoids and tocopherols) and hydrophilic antioxidants (flavonoids, tannins, phenolic acids, ascorbic acid) in remarkably high quantities. Some of the main nutrients, especially lipids of advantageous fatty acid composition, contribute to nutritional benefits of sea buckthorn products for a consumer as well. This review article focuses, besides the above mentioned compounds and vitamins, also on other important components, such as sugars, sugar derivatives, fibre, organic acids, proteins, amino acids and mineral elements. The article also deals with the effects of sea buckthorn components on the course of non-enzymatic browning of food and in vivo glycation. In addition, sensory perception of sea buckthorn and its constituents from the consumers point of view is discussed.
Collapse
Affiliation(s)
- Zuzana Ciesarová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic.
| | - Michael Murkovic
- Graz University of Technology, Faculty of Technical Chemistry, Chemical and Process Engineering and Biotechnology, Institute of Biochemistry, Petersgasse 12/II, 8010 Graz, Austria
| | - Karel Cejpek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - František Kreps
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Radlinského 9, 812 37 Bratislava, the Slovak Republic
| | - Blanka Tobolková
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Richard Koplík
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Elena Belajová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Kristína Kukurová
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Ľubomír Daško
- NPPC National Agricultural and Food Centre, Food Research Institute, Priemyselná 4, 824 75 Bratislava, the Slovak Republic
| | - Zdenka Panovská
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Diomid Revenco
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Technická 5, 166 28 Praha 6, the Czech Republic
| | - Zuzana Burčová
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Radlinského 9, 812 37 Bratislava, the Slovak Republic
| |
Collapse
|
19
|
The Effects and Mechanism of Quercetin Dietary Supplementation in Streptozotocin-Induced Hyperglycemic Arbor Acre Broilers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9585047. [PMID: 32104545 PMCID: PMC7035566 DOI: 10.1155/2020/9585047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/28/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Quercetin, a flavonoid found in fruits and vegetables, is widely distributed as a secondary metabolite in the plant kingdom. Oxidative stress plays a role in the pathogenesis of diabetes mellitus (DM). The present study investigated the effects of quercetin dietary supplementation on streptozotocin- (STZ-) induced hyperglycemic Arbor Acre (AA) broilers by determining the levels of fasting blood glucose (FBG), fasting insulin (FINS), biochemical indicators, oxidative stress markers, inflammatory cytokines content, antioxidant enzymes activities in tissues, and mRNA expression of genes relating to the insulin signaling pathway. Three hundred one-day-old healthy AA broilers were randomly assigned into 5 treatments; A, control healthy broilers; B, STZ-induced broilers; C, STZ-induced broiler dietary supplemented with 0.02% quercetin; D, STZ-induced broiler dietary supplemented with 0.04% quercetin; and E, STZ-induced broiler dietary supplemented with 0.06% quercetin. The results showed that quercetin supplementation relieved the side effects of STZ-induced oxidative stress by changing activities of antioxidant enzymes, decreasing malondialdehyde (MDA) and nitric oxide (NO) levels, activating expression of genes relating to PI3K/PKB signaling pathway that modulate glucose metabolism and reduce oxidative damage, thereby decreasing FBG and increasing FINS levels. These findings suggest that quercetin exhibits a protective effect in STZ-induced hyperglycemic AA broilers via decreasing oxidative stress.
Collapse
|
20
|
Ren R, Li N, Su C, Wang Y, Zhao X, Yang L, Li Y, Zhang B, Chen J, Ma X. The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Adv 2020; 10:44654-44671. [PMID: 35516250 PMCID: PMC9058667 DOI: 10.1039/d0ra06488b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Sea buckthorn (SB), also named sea berry, Hippophae rhamnoides L. or Elaeagnus rhamnoides L., has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases. SB is well known more than just a fruit. So far, a unique mixture of bioactive components was elucidated in SB including flavonoids, phenolic acids, proanthocyanidins, carotenoids, fatty acids, triterpenoids, vitamins and phytosterols, which implied the great medicinal worth of this seaberry. Both in vitro and in vivo experiments, ranged from cell lines to animals as well as a few in patients and healthy volunteers, indicated that SB possessed various biological activities including anti-inflammatory and immunomodulatory effects, antioxidant properties, anti-cancer activities, hepato-protection, cardiovascular-protection, neuroprotection, radioprotection, skin protection effect as well as the protective effect against some eye and gastrointestinal sickness. Furthermore, the toxicological results revealed neither the fruits, nor the seeds of SB were toxic. The present review summarizes the unique profile of the chemical compounds, the nutritional and health effects as well as the toxicological properties of SB, which lay the foundation for practical applications of SB in treatment of human diseases. Sea buckthorn (SB), also named sea berry, has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases.![]()
Collapse
|
21
|
Singh IP, Ahmad F, Gore DD, Tikoo K, Bansal A, Jachak SM, Jena G. Therapeutic potential of seabuckthorn: a patent review (2000-2018). Expert Opin Ther Pat 2019; 29:733-744. [DOI: 10.1080/13543776.2019.1648434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Furkan Ahmad
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Dattatraya Dinkar Gore
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), India
| | - Arvind Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), India
| | - Sanjay Madhukar Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), India
| |
Collapse
|
22
|
Yang X, Wang Q, Pang ZR, Pan MR, Zhang W. Flavonoid-enriched extract from Hippophae rhamnoides seed reduces high fat diet induced obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in C57BL/6 mice. PHARMACEUTICAL BIOLOGY 2017; 55:1207-1214. [PMID: 28248545 PMCID: PMC6130443 DOI: 10.1080/13880209.2016.1278454] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 09/27/2016] [Accepted: 12/30/2016] [Indexed: 05/14/2023]
Abstract
CONTEXT Flavonoid-enriched extract from Hippophae rhamnoides L. (Elaeagnaceae) seed (FSH) has shown beneficial effects in anti-hypertension and lowering cholesterol level. However, evidence for its efficacy in treating obesity is limited. OBJECTIVE We sought to determine if FSH can reduce body weight and regulate lipid metabolism disorder in high fat diet (HFD)-induced obese mouse model, and to investigate potential molecular targets involved. MATERIALS AND METHODS C57BL/6 mice were fed with HFD for 8 weeks to induce obesity. The modeled mice were divided into four groups and treated with vehicle, rosiglitazone (2 mg/kg), low (100 mg/kg) and high (300 mg/kg) dose of FSH, respectively. Normal control was also used. The treatments were administered orally for 9 weeks. We measured the effect of FSH on regulating body weight, various liver and serum parameters, and molecular targets that are key to lipid metabolism. RESULTS FSH administration at 100 and 300 mg/kg significantly reduced body weight gain by 33.06 and 43.51%, respectively. Additionally, triglyceride concentration in serum and liver were decreased by 15.67 and 49.56%, individually, after FSH (300 mg/kg) treatment. Upon FSH (100 and 300 mg/kg) treatment, PPARα mRNA expression was upregulated in liver (1.24- and 1.42-fold) and in adipose tissue (1.66- and 1.72-fold). Furthermore, FSH downregulated PPARγ protein level both in liver and adipose tissue. Moreover, FSH inhibited macrophage infiltration into adipose tissues, and downregulated TNFα mRNA expression in adipose tissue (38.01-47.70%). CONCLUSION This effect was mediated via regulation of PPARγ and PPARα gene expression, and suppression of adipose tissue inflammation.
Collapse
Affiliation(s)
- Xin Yang
- School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Qian Wang
- Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Zeng-run Pang
- School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Meng-ran Pan
- School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Wen Zhang
- School of Life Sciences, East China Normal University, Shanghai, P.R. China
| |
Collapse
|
23
|
Medicinal plants and phytochemicals with anti-obesogenic potentials: A review. Biomed Pharmacother 2017; 89:1442-1452. [DOI: 10.1016/j.biopha.2017.02.108] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023] Open
|
24
|
Guo XF, Yang B, Cai W, Li D. Effect of sea buckthorn ( Hippophae rhamnoides L.) on blood lipid profiles: A systematic review and meta-analysis from 11 independent randomized controlled trials. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Shenkar R, Shi C, Austin C, Moore T, Lightle R, Cao Y, Zhang L, Wu M, Zeineddine HA, Girard R, McDonald DA, Rorrer A, Gallione C, Pytel P, Liao JK, Marchuk DA, Awad IA. RhoA Kinase Inhibition With Fasudil Versus Simvastatin in Murine Models of Cerebral Cavernous Malformations. Stroke 2016; 48:187-194. [PMID: 27879448 DOI: 10.1161/strokeaha.116.015013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND PURPOSE We sought to compare the effect of chronic treatment with commonly tolerated doses of Fasudil, a specific RhoA kinase (ROCK) inhibitor, and simvastatin (with pleiotropic effects including ROCK inhibition) on cerebral cavernous malformation (CCM) genesis and maturation in 2 models that recapitulate the human disease. METHODS Two heterozygous murine models, Ccm1+/-Msh2-/- and Ccm2+/-Trp53-/-, were treated from weaning to 4 to 5 months of age with Fasudil (100 mg/kg per day), simvastatin (40 mg/kg per day) or with placebo. Mouse brains were blindly assessed for CCM lesion burden, nonheme iron deposition (as a quantitative measure of chronic lesional hemorrhage), and ROCK activity. RESULTS Fasudil, but not simvastatin, significantly decreased mature CCM lesion burden in Ccm1+/-Msh2-/- mice, and in meta-analysis of both models combined, when compared with mice receiving placebo. Fasudil and simvastatin both significantly decreased the integrated iron density per mature lesion area in Ccm1+/-Msh2-/- mice, and in both models combined, compared with mice given placebo. ROCK activity in mature lesions of Ccm1+/-Msh2-/- mice was similar with both treatments. Fasudil, but not simvastatin, improved survival in Ccm1+/-Msh2-/- mice. Fasudil and simvastatin treatment did not affect survival or lesion development significantly in Ccm2+/-Trp53-/- mice alone, and Fasudil benefit seemed limited to males. CONCLUSIONS ROCK inhibitor Fasudil was more efficacious than simvastatin in improving survival and blunting the development of mature CCM lesions. Both drugs significantly decreased chronic hemorrhage in CCM lesions. These findings justify the development of ROCK inhibitors and the clinical testing of commonly used statin agents in CCM.
Collapse
Affiliation(s)
- Robert Shenkar
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Changbin Shi
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Cecilia Austin
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Thomas Moore
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Rhonda Lightle
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Ying Cao
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Lingjiao Zhang
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Meijing Wu
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Hussein A Zeineddine
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Romuald Girard
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - David A McDonald
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Autumn Rorrer
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Carol Gallione
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Peter Pytel
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - James K Liao
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Douglas A Marchuk
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk)
| | - Issam A Awad
- From the Section of Neurosurgery (R.S., C.S., C.A., T.M., R.L., Y.C., L.Z., M.W., H.A.Z., R.G., I.A.A.), Department of Pathology (P.P.), Section of Cardiology (J.K.L.), Biological Sciences Division, University of Chicago, IL; and the Molecular Genetics and Microbiology Department, Duke University Medical Center, Durham, NC (D.A. McDonald, A.R., C.G., D.A. Marchuk).
| |
Collapse
|
26
|
Choi YH. Protective Effects of Isorhamnetin against Hydrogen Peroxide-Induced Apoptosis in C2C12 Murine Myoblasts. ACTA ACUST UNITED AC 2015. [DOI: 10.15429/jkomor.2015.15.2.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine and Anti-Aging Research Center, Dong-Eui University
| |
Collapse
|
27
|
Yaseen G, Ahmad M, Zafar M, Sultana S, Kayani S, Cetto AA, Shaheen S. Traditional management of diabetes in Pakistan: Ethnobotanical investigation from Traditional Health Practitioners. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:91-117. [PMID: 26231447 DOI: 10.1016/j.jep.2015.07.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The uses of anti-diabetic plants are well anchored in the traditional health care system of Pakistan. To the best of our knowledge, this is the first ethno-botanical study about the uses of plants for the treatment of diabetes. The aim of the study is to record indigenous knowledge on anti-diabetic plants from Traditional Health Practitioners (THPs) and diabetic patients. In addition, it is aimed to ascertain and validate the traditional uses of anti-diabetic plants by citing pharmacological activities and phytochemical constitutes from previously published literature. MATERIALS AND METHODS The ethno-medicinal data was documented during 14 field surveys, each comprising of 10 days, from 3 regions of Pakistan (Islamabad, Khyber Pukhtoonkhwa and Deserts of Sindh). In total, 113 THPs and 44 diabetic patients were interviewed using open-ended and semi-structured questionnaires. Quantitative indices, including Relative Frequency of Citation percentage (RFC %) and Disease Consensus Index (DCI) were calculated. The documented data is authenticated by comparing with 28 published articles on ethno-botanical aspects and many pharmacological studies. RESULTS In total, 120 plant species belonging to 50 families were reported. The ethno-botanical results indicated that Moraceae (11 species); herb (56 reports) is dominant life form; the leaves (56 reports) are the most used plant part and decoction (24%) is the preferred mode of preparation. The quantitative analysis shows that RFC% ranges from 14 to 42 and DCI varies from 0.15 to 0.74. By comparing to previous studies, 64 species are reported new in traditional treatment of DM; 40 species are new to pharmacological evidence and 3 species are new to phytochemical studies. CONCLUSIONS This study recoded the significant indigenous knowledge about anti-diabetic plants among the THPs and diabetic patients in Pakistan. This type of ethno-botanical knowledge on traditional use of anti-diabetic plants is an important step in designing detailed pharmacological and clinical trials for Diabetes Miletus treatment. It is recommended that further pharmacological and phytochemical analysis should be conducted on those species which lack previous references in literature and have highest Frequency of Citation (FC), Disease Consensus Index (DCI) and Relative Frequency of Citation percentage (RFC%).
Collapse
Affiliation(s)
- Ghulam Yaseen
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shazia Sultana
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sadaf Kayani
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Adolfo Andrade Cetto
- Cellular Biology Department School of Science, National Autonomous University of Mexico (UNAM), Mexico
| | - Shabnum Shaheen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
28
|
Xue Y, Miao Q, Zhao A, Zheng Y, Zhang Y, Wang P, Kallio H, Yang B. Effects of sea buckthorn (Hippophaë rhamnoides) juice and L-quebrachitol on type 2 diabetes mellitus in db/db mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
29
|
Wang H, Cui Y, Fu Q, Deng B, Li G, Yang J, Wu T, Xie Y. A phospholipid complex to improve the oral bioavailability of flavonoids. Drug Dev Ind Pharm 2014; 41:1693-703. [DOI: 10.3109/03639045.2014.991402] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. FRONTIERS IN PLANT SCIENCE 2014; 5:620. [PMID: 25426130 PMCID: PMC4226159 DOI: 10.3389/fpls.2014.00620] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/21/2014] [Indexed: 05/18/2023]
Abstract
From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.
Collapse
Affiliation(s)
- Aidyn Mouradov
- Royal Melbourne Institute of Technology UniversityBundoora, VIC, Australia
| | - German Spangenberg
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University – AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
| |
Collapse
|
31
|
Studies on the antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-Dawley rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:160980. [PMID: 24738047 PMCID: PMC3967809 DOI: 10.1155/2014/160980] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 01/08/2023]
Abstract
Due to substantial morbidity and high complications, diabetes mellitus is considered as the third “killer” in the world. A search for alternative antidiabetic drugs from herbs or fungi is highly demanded. Our present study aims to investigate the antidiabetic activities of Cordyceps militaris on diet-streptozotocin-induced type 2 diabetes mellitus in rats. Diabetic rats were orally administered with water extract or alcohol extract at 0.05 g/kg and 2 g/kg for 3 weeks, and then, the factors levels related to blood glucose, lipid, free radicals, and even nephropathy were determined. Pathological alterations on liver and kidney were examined. Data showed that, similar to metformin, Cordyceps militaris extracts displayed a significant reduction in blood glucose levels by promoting glucose metabolism and strongly suppressed total cholesterol and triglycerides concentration in serum. Cordyceps militaris extracts exhibit antioxidative effects indicated by normalized superoxide dismutase and glutathione peroxidase levels. The inhibitory effects on blood urea nitrogen, creatinine, uric acid, and protein revealed the protection of Cordyceps militaris extracts against diabetic nephropathy, which was confirmed by pathological morphology reversion. Collectively, Cordyceps militaris extract, a safe pharmaceutical agent, presents excellent antidiabetic and antinephropathic activities and thus has great potential as a new source for diabetes treatment.
Collapse
|
32
|
Gao Z, Zhang C, Jin L, Yao W. Efficacy of Sea Buckthorn Therapy in Patients with Nonalcoholic Fatty Liver Disease. Chin Med 2014. [DOI: 10.4236/cm.2014.54027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Simvastatin increases circulating endothelial progenitor cells and reduces the formation and progression of diabetic retinopathy in rats. Exp Eye Res 2012; 105:1-8. [DOI: 10.1016/j.exer.2012.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/18/2012] [Accepted: 09/30/2012] [Indexed: 11/16/2022]
|
34
|
Pichiah PT, Moon HJ, Park JE, Moon YJ, Cha YS. Ethanolic extract of seabuckthorn (Hippophae rhamnoides L) prevents high-fat diet–induced obesity in mice through down-regulation of adipogenic and lipogenic gene expression. Nutr Res 2012. [DOI: 10.1016/j.nutres.2012.09.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Zhou JY, Zhou SW, Du XH, Zeng SY. Protective effect of total flavonoids of seabuckthorn (Hippophae rhamnoides) in simulated high-altitude polycythemia in rats. Molecules 2012; 17:11585-97. [PMID: 23023684 PMCID: PMC6269044 DOI: 10.3390/molecules171011585] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 11/28/2022] Open
Abstract
Seabuckthorn (Hippophae rhamnoides L.) has been used to treat high altitude diseases. The effects of five-week treatment with total flavonoids of seabuckthorn (35, 70, 140 mg/kg, ig) on cobalt chloride (5.5 mg/kg, ip)- and hypobaric chamber (simulating 5,000 m)-induced high-altitude polycythemia in rats were measured. Total flavonoids decreased red blood cell number, hemoglobin, hematocrit, mean corpuscular hemoglobin levels, span of red blood cell electrophoretic mobility, aggregation index of red blood cell, plasma viscosity, whole blood viscosity, and increased deformation index of red blood cell, erythropoietin level in serum. Total flavonoids increased pH, pO2, SpO2, pCO2 levels in arterial blood, and increased Na+, HCO3−, Cl−, but decreased K+ concentrations. Total flavonoids increased mean arterial pressure, left ventricular systolic pressure, end-diastolic pressure, maximal rate of rise and decrease, decreased heart rate and protected right ventricle morphology. Changes in hemodynamic, hematologic parameters, and erythropoietin content suggest that administration of total flavonoids from seabuckthorn may be useful in the prevention of high altitude polycythaemia in rats.
Collapse
Affiliation(s)
- Ji-Yin Zhou
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; (J.-Y.Z.); (S.-Y.Z.)
| | - Shi-Wen Zhou
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; (J.-Y.Z.); (S.-Y.Z.)
- Author to whom correspondence should be addressed; ; Tel./Fax: +86-23-6875-5311
| | - Xiao-Huang Du
- Research Division, Southwest Hospital, Third Military Medical University, Chongqing 400038, China;
| | - Sheng-Ya Zeng
- Base for Drug Clinical Trial, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China; (J.-Y.Z.); (S.-Y.Z.)
| |
Collapse
|
36
|
Boušová I, Skálová L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev 2012; 44:267-86. [PMID: 22998389 DOI: 10.3109/03602532.2012.713969] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many studies reviewed herein demonstrated the potency of some flavonoids to modulate the activity and/or expression of glutathione S-transferases (GSTs). Because GSTs play a crucial role in the detoxification of xenobiotics, their inhibition or induction may significantly affect metabolism and biological effects of many drugs, industrials, and environmental contaminants. The effect of flavonoids on GSTs strongly depends on flavonoid structure, concentration, period of administration, as well as on GST isoform and origin. Moreover, the results obtained in vitro are often contrary to the vivo results. Based on these facts, the revelation of important flavonoid-drug or flavonoid-pollutant interaction has been complicated. However, it should be borne in mind that ingestion of certain flavonoids in combination with drugs or pollutants (e.g., acetaminophen, simvastatin, cyclophosphamide, cisplatine, polycyclic aromatic hydrocarbons, chlorpyrifos, acrylamide, and isocyanates), which are GST substrates, could have significant pharmacological and toxicological consequences. Although reasonable consumptions of a flavonoids-rich diet (that may lead to GST induction) are mostly beneficial, the uncontrolled intake of high concentrations of certain flavonoids (e.g., quercetin and catechins) in dietary supplements (that may cause GST inhibition) may threaten human health.
Collapse
Affiliation(s)
- Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic, European Union
| | | |
Collapse
|
37
|
Arimboor R, Arumughan C. Effect of Polymerization on Antioxidant and Xanthine Oxidase Inhibitory Potential of Sea Buckthorn (H. rhamnoides) Proanthocyanidins. J Food Sci 2012; 77:C1036-41. [DOI: 10.1111/j.1750-3841.2012.02884.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Zhuang X, Zhang W, Pang X, Wu W, Qu W. Combined effect of total flavonoids from seed residues of Hippophae rhamnoides L. and zinc on advanced glycation end products-induced endothelial cell dysfunction. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
39
|
Ruan CJ, Rumpunen K, Nybom H. Advances in improvement of quality and resistance in a multipurpose crop: sea buckthorn. Crit Rev Biotechnol 2012; 33:126-44. [PMID: 22676076 DOI: 10.3109/07388551.2012.676024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sea buckthorn is a berry crop with multiple uses. The berries are highly appreciated for their unique taste but are also very rich in bioactive compounds with powerful nutritional and medicinal values. In addition, the plants grow well under adverse conditions, and are often used to fight soil erosion. Utilization of sea buckthorn has therefore increased around the world but serious problems have, nevertheless, been encountered due to drought, salinity, diseases and insect pests. This review covers important aspects of sea buckthorn research, such as heritable and environmentally induced variation in biochemical compounds, causes and effects of the devastating dried-shrink disease, susceptibility to insect pests, methods for conventional breeding, and the utilization of DNA markers for taxonomical and population genetic analyses, and for investigating the inheritance of quality and resistance traits. We also present possibilities to implement innovative biotechnological breeding methods, especially metabolite profiling and MAS/GRC-based markers, for fast and efficient development of elite genotypes with specific nutritional- and health-related bioactive compounds and strong resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Cheng-Jiang Ruan
- Institute of Bio-Resources, Dalian Nationalities University, Dalian City, Liaoning, China
| | | | | |
Collapse
|
40
|
Arimboor R, Arumughan C. HPLC-DAD-MS/MS profiling of antioxidant flavonoid glycosides in sea buckthorn (Hippophae rhamnoidesL.) seeds. Int J Food Sci Nutr 2012; 63:730-8. [DOI: 10.3109/09637486.2011.652075] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Suryakumar G, Gupta A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). JOURNAL OF ETHNOPHARMACOLOGY 2011; 138:268-78. [PMID: 21963559 DOI: 10.1016/j.jep.2011.09.024] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 05/10/2023]
Abstract
UNLABELLED ETHNOPHARMACOLOGICAL CONTEXT: This review explores the medicinal and therapeutic applications of Sea buckthorn (Hippophae rhamnoides L.) in curtailing different types of acute as well as chronic maladies. The plant is being used in different parts of the world for its nutritional and medicinal properties. MATERIALS AND METHODS Sea buckthorn based preparations have been extensively exploited in folklore treatment of slow digestion, stomach malfunctioning, cardiovascular problems, liver injury, tendon and ligament injuries, skin diseases and ulcers. In the recent years, medicinal and pharmacological activities of Sea buckthorn have been well investigated using various in vitro and in vivo models as well as limited clinical trials. RESULTS Sea buckthorn has been scientifically analyzed and many of its traditional uses have been established using several biochemical and pharmacological studies. Various pharmacological activities such as cytoprotective, anti-stress, immunomodulatory, hepatoprotective, radioprotective, anti-atherogenic, anti-tumor, anti-microbial and tissue regeneration have been reported. CONCLUSION It is clear that Sea buckthorn is an important plant because of its immense medicinal and therapeutic potential. However, several knowledge gaps identified in this paper would give impetus to new academic and R&D activities especially for the development of Sea buckthorn based herbal medicine and nutraceuticals.
Collapse
Affiliation(s)
- Geetha Suryakumar
- Department of Biochemistry, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India.
| | | |
Collapse
|