1
|
Bhadwal SS, Verma S, Hassan S, Kaur S. Unraveling the potential of hydrogen sulfide as a signaling molecule for plant development and environmental stress responses: A state-of-the-art review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108730. [PMID: 38763004 DOI: 10.1016/j.plaphy.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Over the past decade, a plethora of research has illuminated the multifaceted roles of hydrogen sulfide (H2S) in plant physiology. This gaseous molecule, endowed with signaling properties, plays a pivotal role in mitigating metal-induced oxidative stress and strengthening the plant's ability to withstand harsh environmental conditions. It fulfils several functions in regulating plant development while ameliorating the adverse impacts of environmental stressors. The intricate connections among nitric oxide (NO), hydrogen peroxide (H2O2), and hydrogen sulfide in plant signaling, along with their involvement in direct chemical processes, are contributory in facilitating post-translational modifications (PTMs) of proteins that target cysteine residues. Therefore, the present review offers a comprehensive overview of sulfur metabolic pathways regulated by hydrogen sulfide, alongside the advancements in understanding its biological activities in plant growth and development. Specifically, it centres on the physiological roles of H2S in responding to environmental stressors to explore the crucial significance of different exogenously administered hydrogen sulfide donors in mitigating the toxicity associated with heavy metals (HMs). These donors are of utmost importance in facilitating the plant development, stabilization of physiological and biochemical processes, and augmentation of anti-oxidative metabolic pathways. Furthermore, the review delves into the interaction between different growth regulators and endogenous hydrogen sulfide and their contributions to mitigating metal-induced phytotoxicity.
Collapse
Affiliation(s)
- Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shagun Verma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
2
|
Hilal B, Khan TA, Fariduddin Q. Recent advances and mechanistic interactions of hydrogen sulfide with plant growth regulators in relation to abiotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1065-1083. [PMID: 36921557 DOI: 10.1016/j.plaphy.2023.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Adverse environmental constraints such as drought, heat, cold, salinity, and heavy metal toxicity are the primary concerns of the agricultural industry across the globe, as these stresses negatively affect yield and quality of crop production and therefore can be a major threat to world food security. Recently, it has been demonstrated that hydrogen sulfide (H2S), which is well-known as a gasotransmitter in animals, also plays a potent role in various growth and developmental processes in plants. H2S, as a potent signaling molecule, is involved in several plant processes such as in the regulation of stomatal pore movements, seed germination, photosynthesis and plant adaptation to environmental stress through gene regulation, post-translation modification of proteins and redox homeostasis. Moreover, a number of experimental studies have revealed that H2S could improve the adaptation capabilities of plants against diverse environmental constraints by mitigating the toxic and damaging effects triggered by stressful environments. An attempt has been made to uncover recent development in the biosynthetic and metabolic pathways of H2S and various physiological functions modulated in plants, H2S donors, their functional mechanism, and application in plants. Specifically, our focus has been on how H2S is involved in combating the destructive effects of abiotic stresses and its role in persulfidation. Furthermore, we have comprehensively elucidated the crosstalk of H2S with plant growth regulators.
Collapse
Affiliation(s)
- Bisma Hilal
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Tanveer Ahmad Khan
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
3
|
Mondal R, Madhurya K, Saha P, Chattopadhyay SK, Antony S, Kumar A, Roy S, Roy D. Expression profile, transcriptional and post-transcriptional regulation of genes involved in hydrogen sulphide metabolism connecting the balance between development and stress adaptation in plants: a data-mining bioinformatics approach. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:602-617. [PMID: 34939301 DOI: 10.1111/plb.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Recent research focused on novel aspects of sulphur and sulphur-containing molecules in fundamental plant processes has highlighted the importance of these compounds. Currently, the focus has shifted to the efficacy of hydrogen sulphide (H2 S) as signalling compounds that regulate different development and stress mitigation in plants. Accordingly, we used an in silico approach to study the differential expression patterns of H2 S metabolic genes at different growth/development stages and their tissue-specific expression patterns under a range of abiotic stresses. Moreover, to understand the multilevel regulation of genes involved in H2 S metabolism, we performed computation-based promoter analysis, alternative splice variant analysis, prediction of putative miRNA targets and co-expression network analysis. Gene expression analysis suggests that H2 S biosynthesis is highly influenced by developmental and stress stimuli. The functional annotation of promoter structures reveales a wide range of plant hormone and stress responsive cis-regulatory elements (CREs) that regulate H2 S metabolism. Co-expression analysis suggested that genes involved in H2 S metabolism are also associated with different metabolic processes. In this data-mining study, the primary focus was to understand the genetic architecture governing pathways of H2 S metabolism in different cell compartments under various developmental and stress signalling cascades. The present study will help to understand the genetic architecture of H2 S metabolism via cysteine metabolism and the functional roles of these genes in development and stress tolerance mechanisms.
Collapse
Affiliation(s)
- R Mondal
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - K Madhurya
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - P Saha
- Department of Botany, Durgapur Government College, Durgapur, India
| | - S K Chattopadhyay
- Directorate of Distance Education, Vidyasagar University Midnapore (West), Midnapore, India
| | - S Antony
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - A Kumar
- Host Plant Division, Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textile, Govt. of India, Jorhat, India
| | - S Roy
- Department of Botany, Santipur College, Nadia, India
| | - D Roy
- Department of Botany, Seth Anandram Jaipuria College, Kolkata, India
| |
Collapse
|
4
|
Mathur P, Roy S, Nasir Khan M, Mukherjee S. Hydrogen sulphide (H 2 S) in the hidden half: Role in root growth, stress signalling and rhizospheric interactions. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:559-568. [PMID: 35334141 DOI: 10.1111/plb.13417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Apart from nitric oxide (NO) and carbon monoxide (CO), hydrogen sulphide (H2 S) has emerged as a potential gasotransmitter that has regulatory roles in root differentiation, proliferation and stress signalling. H2 S metabolism in plants exhibits spatio-temporal differences that are intimately associated with sulphide signalling in the cytosol and other subcellular components, e.g. chloroplast and mitochondria. H2 S biosynthesis in plant organs uses both enzymatic and non-enzymatic pathways. H2 S generation in roots and aerial organs is modulated by developmental phase and changes in environmental stimuli. H2 S has an influential role in root development and in the nodulation process. Studies have revealed that H2 S is a part of the auxin and NO signalling pathways in roots, which induce lateral root formation. At the molecular level, exogenous application of H2 S regulates expression of several transcription factors, viz. LBD (Lateral organ Boundaries Domain), MYB (myeloblastosis) and AP2/ERF (Apetala 2/ Ethylene Response Factor), which stimulate upregulation of PpLBD16 (Lateral organ boundaries domain 16), thereby significantly increasing the number of lateral roots. Concomitantly, H2 S acts as a crucial signalling molecule in roots during various abiotic stresses, e.g. drought, salinity heavy metals (HMs), etc., and augments stress tolerance in plants. Interestingly, extensive crosstalk exists between H2 S, NO, ABA, calcium and ethylene during stress, which escalate plant defence and regulate plant growth and productivity. Hence, the present review will elaborate the role of H2 S in root development, stress alleviation, legume-Rhizobium symbiosis and rhizosphere signalling. The review also examines the mechanism of H2 S-mediated abiotic stress mitigation and cross-talk with other signaling molecules.
Collapse
Affiliation(s)
- P Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Darjeeling, India
| | - S Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Darjeeling, India
| | - M Nasir Khan
- Department of Biology, Faculty of Science, College of Haql, University of Tabuk, Tabuk, Saudi Arabia
| | - S Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Jangipur, India
| |
Collapse
|
5
|
Li H, Chen H, Chen L, Wang C. The Role of Hydrogen Sulfide in Plant Roots during Development and in Response to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23031024. [PMID: 35162947 PMCID: PMC8835357 DOI: 10.3390/ijms23031024] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2S) is regarded as a “New Warrior” for managing plant stress. It also plays an important role in plant growth and development. The regulation of root system architecture (RSA) by H2S has been widely recognized. Plants are dependent on the RSA to meet their water and nutritional requirements. They are also partially dependent on the RSA for adapting to environment change. Therefore, a good understanding of how H2S affects the RSA could lead to improvements in both crop function and resistance to environmental change. In this review, we summarized the regulating effects of H2S on the RSA in terms of primary root growth, lateral and adventitious root formation, root hair development, and the formation of nodules. We also discussed the genes involved in the regulation of the RSA by H2S, and the relationships with other signal pathways. In addition, we discussed how H2S regulates root growth in response to abiotic stress. This review could provide a comprehensive understanding of the role of H2S in roots during development and under abiotic stress.
Collapse
Affiliation(s)
- Hua Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
- Correspondence: (H.L.); (C.W.)
| | - Hongyu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Lulu Chen
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China; (H.C.); (L.C.)
| | - Chenyang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University,
Zhengzhou 450002, China
- Correspondence: (H.L.); (C.W.)
| |
Collapse
|
6
|
Kowalska J, Tyburski J, Matysiak K, Jakubowska M, Łukaszyk J, Krzymińska J. Cinnamon as a Useful Preventive Substance for the Care of Human and Plant Health. Molecules 2021; 26:molecules26175299. [PMID: 34500731 PMCID: PMC8433798 DOI: 10.3390/molecules26175299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Cinnamon is widely used as a food spice, but due to its antibacterial and pharmacological properties, it can also be used in processing, medicine and agriculture. The word “Cinnamon” can refer to the plant, processed material, or an extract. It is sometimes used as a substance, and sometimes used as a mixture or as compounds or a group. This article reviews research into the effectiveness of various forms of cinnamon for the control of plant diseases and pests in crops and during storage of fruit and vegetables. Cinnamon acts on pests mainly as a repellent, although in higher doses it has a biocidal effect and prevents egg-laying. Cinnamon and its compounds effectively hinder bacterial and fungal growth, and the phytotoxic effects of cinnamon make it a possible herbicide. This article presents the wide practical use of cinnamon for various purposes, mainly in agriculture. Cinnamon is a candidate for approval as a basic substance with protective potential. In particular, it can be used in organic farming as a promising alternative to chemical pesticides for use in plant protection, especially in preventive treatments. The use of natural products is in line with the restriction of the use of chemical pesticides and the principles of the EU’s Green Deal.
Collapse
Affiliation(s)
- Jolanta Kowalska
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland; (J.Ł.); (J.K.)
- Correspondence:
| | - Józef Tyburski
- Department of Agroecosystems and Horticulture, University of Warmia and Mazury in Olsztyn, Michała Oczapowskiego 2, 10-719 Olsztyn, Poland;
| | - Kinga Matysiak
- Department of Weed Science and Plant Protection Techniques, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland;
| | - Magdalena Jakubowska
- Department of Monitoring and Signalling of Agrophages, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland;
| | - Joanna Łukaszyk
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland; (J.Ł.); (J.K.)
| | - Joanna Krzymińska
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland; (J.Ł.); (J.K.)
| |
Collapse
|
7
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
8
|
Li Y, Yu T, Wu T, Wang R, Wang H, Du H, Xu X, Xie D, Xu X. The dynamic transcriptome of pepper (Capsicum annuum) whole roots reveals an important role for the phenylpropanoid biosynthesis pathway in root resistance to Phytophthora capsici. Gene 2020; 728:144288. [DOI: 10.1016/j.gene.2019.144288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
|
9
|
Wang H, Hu Z, Huang K, Han Y, Zhao A, Han H, Song L, Fan C, Li R, Xin M, Peng H, Yao Y, Sun Q, Ni Z. Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:976-987. [PMID: 29932270 DOI: 10.1111/tpj.14005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Common wheat is an allohexaploid (BBAADD) that originated from the hybridization and polyploidization of the diploid Aegilops tauschii (DD) with the allotetraploid Triticum turgidum (BBAA). Phenotypic changes often arise with the formation and evolution of allopolyploid wheat, but little is known about the evolution of root traits in different wheat species with varying ploidy levels. Here, we reported that the lateral root number on the primary root (LRNPR) of synthetic and natural allohexaploid wheats (BBAADD) is significantly higher than that of their allotetraploid (BBAA) and diploid (AA and SS) progenitors, but is much lower than that of their diploid (DD) progenitors. The expression of the wheat gene TaLBD16, an ortholog of the Arabidopsis LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18 (LBD16), which is involved in lateral root development in Arabidopsis, was positively correlated with the LRNPR in diploid and allopolyploid wheats. In natural and synthetic allohexaploid wheats, the transcript of the TaLBD16 from the D genome (TaLBD16-D) was relatively more abundant compared with TaLBD16-A and TaLBD16-B. Consistent with the observed variation in LRNPR, the divergence in the expression of TaLBD16 homoeologous genes occurred before the formation of polyploidy wheat. Collectively, our observations indicate that the D genome played a crucial role in the increased lateral root number of allohexaploid wheats compared with their allotetraploid progenitors, and that TaLBD16-D was one of the key genes involved in the formation of lateral root number during wheat evolution.
Collapse
Affiliation(s)
- Huifang Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Ke Huang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yao Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Aiju Zhao
- Hebei Crop Genetic Breeding Laboratory Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Haiming Han
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Long Song
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Chaofeng Fan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Run Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Wang SS, Zhang YX, Yang F, Huang ZQ, Tang J, Hu KD, Zhang H. Sulfur dioxide alleviates programmed cell death in barley aleurone by acting as an antioxidant. PLoS One 2017; 12:e0188289. [PMID: 29155872 PMCID: PMC5695815 DOI: 10.1371/journal.pone.0188289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 11/03/2017] [Indexed: 11/19/2022] Open
Abstract
Sulfur dioxide (SO2), a gaseous signaling molecule in animal cells, has recently been found to play a physiological role in plants. Here we studied the role of SO2 in gibberellic acid (GA3)-induced programmed cell death (PCD) in barley (Hordeum vulgare L.) aleurone layers. The application of the SO2 donor (NaHSO3/Na2SO3, 1:3 M/M) effectively alleviated PCD in barley aleurone layers in a dose-dependent manner with an optimal concentration of 50 μM. Further investigations showed that SO2 reduced the accumulation of hydrogen peroxide (H2O2), superoxide anion (⋅O2-) and malondialdehyde (MDA) in aleurone layers. Moreover, the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (POD) were enhanced by SO2 donor treatment. Meanwhile, lipoxygenase (LOX) activity was attenuated by SO2 donor treatment. Furthermore, an induction of endogenous H2S and NO were also observed in SO2-treated aleurone layers, suggesting interactions of SO2 with other well-known signaling molecules. Taken together, we show that SO2 negatively regulated PCD by acting as an antioxidant to scavenge excessive reactive oxygen species (ROS) generated during PCD.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Ying-Xin Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Feng Yang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Zhong-Qin Huang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Kang-Di Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Hua Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
11
|
|