1
|
Ma S, Li Y, Peng Y, Wang W. Toward commercial applications of LED and laser-induced fluorescence techniques for food identity, quality, and safety monitoring: A review. Compr Rev Food Sci Food Saf 2023; 22:3620-3646. [PMID: 37458292 DOI: 10.1111/1541-4337.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 09/13/2023]
Abstract
The assessment of food safety and quality is a matter of paramount importance, especially considering the challenges posed by climate change. Convenient, eco-friendly, and non-destructive techniques have attracted extensive attention in the food industry because they can retain food safety and quality. Fluorescence radiation, the process by which fluorophore emits light upon the absorption of ultraviolet or visible light, offers the advantages of high sensitivity and selectivity. The use of excitation-emission matrix (EEM) has been extensively explored in the food industry, but on-site detection of EEMs remain a challenge. To address this limitation, laser-induced fluorescence (LIF) and light emitting diode-induced fluorescence (LED-IF) have been implemented in many cases to facilitate the transition of fluorescence measurements from the laboratory to commercial applications. This review provides an overview of the application of commercially available LIF/LED-IF devices for non-destructive food measurement and recent studies that focus on the development of LIF/LED-IF devices for commercial applications. These studies were categorized into two stages: the preliminary exploration stage, which emphasizes the selection of an appropriate excitation wavelength based on the combination of EEM and chemometrics, and the pre-application stage, where experiments were conducted on scouting with specific excitation wavelength. Although commercially available devices have emerged in many research fields, only a limited number have been reported for use in the food industry. Future studies should focus on enhancing the diversity of test samples and parameters that can be measured by a single device, exploring the application of LIF techniques for detecting low-concentration substances in food, investigating more quantitative approaches, and developing embedded computing devices.
Collapse
Affiliation(s)
- Shaojin Ma
- College of Engineering, China Agricultural University, Beijing, China
| | - Yongyu Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Yankun Peng
- College of Engineering, China Agricultural University, Beijing, China
| | - Wei Wang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
New Constructed EEM Spectra Combined with N-PLS Analysis Approach as an Effective Way to Determine Multiple Target Compounds in Complex Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238378. [PMID: 36500471 PMCID: PMC9740148 DOI: 10.3390/molecules27238378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022]
Abstract
Excitation-emission matrix (EEM) fluorescence spectroscopy has been applied to many fields. In this study, a simple method was proposed to obtain the new constructed three-dimensional (3D) EEM spectra based on the original EEM spectra. Then, the application of the N-PLS method to the new constructed 3D EEM spectra was proposed to quantify target compounds in two complex data sets. The quantitative models were established on external sample sets and validated using statistical parameters. For validation purposes, the obtained results were compared with those obtained by applying the N-PLS method to the original EEM spectra and applying the PLS method to the extracted maximum spectra in the concatenated mode. The comparison of the results demonstrated that, given the advantages of less useless information and a high calculating speed of the new constructed 3D EEM spectra, N-PLS on the new constructed 3D EEM spectra obtained better quantitative analysis results with a correlation coefficient of prediction above 0.9906 and recovery values in the range of 85.6-95.6%. Therefore, one can conclude that the N-PLS method combined with the new constructed 3D EEM spectra is expected to be broadened as an alternative strategy for the simultaneous determination of multiple target compounds.
Collapse
|
3
|
UV-responsive fluorescent behavior of pharmaceuticals assessed by UV-induced fingerprint spectroscopy (UV-IFS). Int J Pharm 2022; 628:122289. [DOI: 10.1016/j.ijpharm.2022.122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/21/2022]
|
4
|
Tanioka M, Ebihana T, Uraguchi M, Shoji H, Nakamura Y, Ueda R, Ogura S, Wakiya Y, Obata T, Ida T, Horigome J, Kamino S. Visualization of the photodegradation of a therapeutic drug by chemometric-assisted fluorescence spectroscopy. RSC Adv 2022; 12:20714-20720. [PMID: 35919137 PMCID: PMC9295133 DOI: 10.1039/d2ra03534k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
The fluorescence spectral fingerprint, also known as the excitation-emission matrix (EEM), is used to assess and visualize therapeutic drug photodegradation in combination with chemometrics. Examination of EEM-parallel factor analysis (PARAFAC) data showed that an individual component was easily separated from a mixture of photogenerated products of a heterocyclic pharmacophore, in this case, phenothiazine drugs (PTZs). Detailed investigations of both structure-EEM relationships and kinetics revealed that the components extracted from EEM-PARAFAC could be quantitatively attributed to such photogenerated products as phenothiazine sulfoxide and carbazole derivatives. EEM in combination with principal component analysis (PCA) could be used as a mapping tool to visualize information of the photodegradation process of PTZs. We also assessed the photostability of various types of PTZs containing side chains by using validated EEM-PARAFAC methodology.
Collapse
Affiliation(s)
- Masaru Tanioka
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Tsugumi Ebihana
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Manae Uraguchi
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Haruka Shoji
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Yuka Nakamura
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Rina Ueda
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Shota Ogura
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Yoshifumi Wakiya
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Tohru Obata
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Takahiro Ida
- Sony Group Corporation 1-7-1 Konan Minato-ku Tokyo 108-0075 Japan
| | - Jun Horigome
- Hitachi High-Tech Science Co., Ltd Hitachinaka-shi Ibaraki 312-0052 Japan
| | - Shinichiro Kamino
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| |
Collapse
|
5
|
Nejdl L, Havlikova M, Mravec F, Vaculovic T, Faltusova V, Pavelicova K, Baron M, Kumsta M, Ondrousek V, Adam V, Vaculovicova M. UV-Induced fingerprint spectroscopy. Food Chem 2022; 368:130499. [PMID: 34496333 DOI: 10.1016/j.foodchem.2021.130499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 01/04/2023]
Abstract
Here, we present the potential analytical applications of photochemistry in combination with fluorescence fingerprinting. Our approach analyzes the fluorescence of samples after ultraviolet light (UV) treatment. Especially in presence of metal ions and thiol-containing compounds, the fluorescence behavior changes considerably. The UV-induced reactions (changes) are unique to a given sample composition, resulting in distinct patterns or fingerprints (typically in the 230-600 nm spectral region). This method works without the need for additional chemicals or fluorescent probes, only suitable diluent must be used. The proposed method (UV fingerprinting) suggests the option of recognizing various types of pharmaceuticals, beverages (juices and wines), and other samples within only a few minutes. In some studied samples (e.g. pharmaceuticals), significant changes in fluorescence characteristics (mainly fluorescence intensity) were observed. We believe that the fingerprinting technique can provide an innovative solution for analytical detection.
Collapse
Affiliation(s)
- Lukas Nejdl
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Martina Havlikova
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Filip Mravec
- Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Masaryk University, Faculty of Science, Kamenice 5, 62500 Brno, Czech Republic
| | - Veronika Faltusova
- Department of Chemistry, Masaryk University, Faculty of Science, Kamenice 5, 62500 Brno, Czech Republic
| | - Kristyna Pavelicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic
| | - Mojmir Baron
- Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Michal Kumsta
- Department of Viticulture and Enology, Mendel University in Brno, Lednice, Czech Republic
| | - Vit Ondrousek
- Department of Informatics, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
6
|
Tamura Y, Inoue H, Takemoto S, Hirano K, Miyaura K. A Rapid Method to Measure Serum Retinol Concentrations in Japanese Black Cattle Using Multidimensional Fluorescence. J Fluoresc 2021; 31:91-96. [PMID: 33094367 PMCID: PMC7819940 DOI: 10.1007/s10895-020-02640-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/16/2020] [Indexed: 11/05/2022]
Abstract
Vitamin A levels in fattening Japanese Black cattle affect meat quality; therefore, it is important to monitor serum retinol concentrations. To simplify and accelerate the evaluation of serum retinol concentrations in cattle, we developed a new predictive method using excitation-emission matrix (EEM) fluorescence spectrophotometry. For analytical comparison, the concentration of serum retinol was also measured using the conventional HPLC method. We examined excitation (Ex) and emission (Em) wavelengths of cattle serum, which were 250-450 and 250-600 nm, respectively. Parallel factor analysis separated four components from EEM data, one of which was related to retinol. Next, a partial least square regression model was created using the obtained EEMs as explanatory variables and accrual measurement values as objective variables. The determination coefficient value (R2), root mean squared error of prediction (RMSEP), and the ratio of performance to deviation (RPD) of the model were determined. A comparison with reference values found that R2, RMSEP, and RPD of the calibration model were 0.95, 6.4 IU/dl, and 4.2, respectively. This implies that EEM can estimate the serum retinol concentration with high accuracy. Additionally, the fluorescent peaks that contributed to the calibration, which were extracted from the regression coefficient and variable importance in projection plots, were Ex/Em = 320/390 and 330/520 nm. Thus, we assume that this method observes not only free retinol, but also retinol-binding protein. In conclusion, multidimensional fluorescence analysis can accurately and quickly determine serum retinol concentrations in fattening cattle.
Collapse
Affiliation(s)
- Yoshio Tamura
- Zennoh Central Research Institute for Feed and Livestock, 1708-2 Tsukuriya, Tsukuba, Ibaraki, 300-4204, Japan.
| | - Hiroki Inoue
- Zennoh Central Research Institute for Feed and Livestock, 1708-2 Tsukuriya, Tsukuba, Ibaraki, 300-4204, Japan
| | - Satoshi Takemoto
- Zennoh Central Research Institute for Feed and Livestock, 1708-2 Tsukuriya, Tsukuba, Ibaraki, 300-4204, Japan
| | - Kazuo Hirano
- Zennoh Central Research Institute for Feed and Livestock, 1708-2 Tsukuriya, Tsukuba, Ibaraki, 300-4204, Japan
| | - Kazutoshi Miyaura
- Zennoh Central Research Institute for Feed and Livestock, 1708-2 Tsukuriya, Tsukuba, Ibaraki, 300-4204, Japan
| |
Collapse
|
7
|
Rahman MM, Bui MV, Shibata M, Nakazawa N, Rithu MNA, Yamashita H, Sadayasu K, Tsuchiyama K, Nakauchi S, Hagiwara T, Osako K, Okazaki E. Rapid noninvasive monitoring of freshness variation in frozen shrimp using multidimensional fluorescence imaging coupled with chemometrics. Talanta 2020; 224:121871. [PMID: 33379081 DOI: 10.1016/j.talanta.2020.121871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022]
Abstract
Shrimp is one of the most delicious and popular food commodities worldwide due to its exceptional taste and characteristics. Freshness is considered as a key factor for shrimp consumers because freshness has a significant relationship with taste and shelf-life of shrimp. However, post-mortem metabolism of shrimp differs from that of fish as they are highly susceptible to post-harvest quality loss, and it is hard to distinguish the freshness variation of shrimp at frozen state instantly. Thus, instant monitoring of frozen shrimp freshness is challenging for the seafood and aquaculture industries and a reliable, expeditious, and noninvasive technique to estimate shrimp quality is in high demand. Accordingly, this study aimed to visualize changes in post-mortem freshness of frozen shrimp using multidimensional fluorescence imaging. Live coonstripe shrimp (Pandalus hypsinotus) were harvested and instantly killed by beheading, cooled on ice for 0, 6, 24, 48, 72 and 96 h (n = 8), followed by processing into frozen peeled deveined shrimp product and stored at -60 °C. 50% of frozen shrimp were analyzed for excitation-emission matrix (EEM), ATP-related compounds, and pH using a fiber optic supported fluorescence spectrophotometer (F-7100), high performance liquid chromatography (HPLC) and pH meter, respectively at each time point (n = 4). Then, fluorescence images were obtained from the remaining 50% of frozen shrimp (n = 4) by computer vision method equipped with a charge-coupled device (CCD) camera, MAX-303 xenon light source for an excitation light (Ex. 330 nm), and an automatic filter changer for emission band-pass filters (Em. 380-610 nm at 10 nm intervals). Chemical analysis of frozen shrimp revealed that K-value and pH of shrimp increased from 1.61 to 66.56% and 6.49-7.31, respectively, during storage on ice. Repeated partial least squares regression (PLSR) models of EEM for K-value prediction suggested an efficient excitation wavelength (330 nm) and its corresponding emission wavelengths (380-610 nm) to produce fluorescence images. Spatial-temporal changes of K-value and pH were visualized successfully in frozen shrimp by fluorescence imaging. K-value visualization was then validated effectively using another group of frozen shrimp (0-72 h ice stored) with different killing method (super chilling) and the prediction accuracy was R2 = 0.80. This novel approach using a CCD camera coupled with EEM provides a state-of-the-art authentication method for practical assessment of frozen seafood freshness.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan; Department of Fisheries Technology, Patuakhali Science and Technology University, Dumki-8602, Patuakhali, Bangladesh
| | - Minh Vu Bui
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Naho Nakazawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Mst Nazira Akhter Rithu
- Department of Ocean Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Hideyuki Yamashita
- Marine Fisheries Research and Development Center (JAMARC) of Japan Fisheries Research and Education Agency, 2-3-3 Minatomirai, Nishi-ku, Yokohama-City, Kanagawa, 220-6115, Japan
| | - Kazuhiro Sadayasu
- Marine Fisheries Research and Development Center (JAMARC) of Japan Fisheries Research and Education Agency, 2-3-3 Minatomirai, Nishi-ku, Yokohama-City, Kanagawa, 220-6115, Japan
| | - Kazuhiko Tsuchiyama
- Marine Fisheries Research and Development Center (JAMARC) of Japan Fisheries Research and Education Agency, 2-3-3 Minatomirai, Nishi-ku, Yokohama-City, Kanagawa, 220-6115, Japan
| | - Shigeki Nakauchi
- Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Emiko Okazaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
| |
Collapse
|
8
|
Estimation of ‘Hass’ Avocado (Persea americana Mill.) Ripeness by Fluorescence Fingerprint Measurement. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01705-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Rahman MM, Shibata M, ElMasry G, Nakazawa N, Nakauchi S, Hagiwara T, Osako K, Okazaki E. Expeditious prediction of post-mortem changes in frozen fish meat using three-dimensional fluorescence fingerprints. Biosci Biotechnol Biochem 2019; 83:901-913. [DOI: 10.1080/09168451.2019.1569494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ABSTRACT
The present study was conducted to characterize fluorophores in the fish body using three-dimensional fluorescence fingerprints (3D-FFs) and to utilize these 3D-FFs obtained from frozen horse mackerel (Trachurus japonicus) fillets to predict early post-mortem changes. Alive fish were sacrificed instantly, preserved in ice until 2 days, and then filleted, vacuum packed, and frozen. Subsequently, 3D-FFs of the frozen fillets were acquired using F-7000 aided with a fiber probe. Post-mortem freshness changes were tracked by measuring adenylate energy charge (AEC) values and nicotinamide adenine dinucleotide (NAD and NADH) content. Partial least squares regression models for predicting AEC values and NADH content in frozen fish meat showed good fittings, with R2 of 0.90 and 0.85, by utilizing eight and five excitation wavelengths, respectively, based on their fluorescence features acquired from standard fluorophores. This novel approach of 3D-FFs could be utilized as an efficient technique for at-line monitoring of frozen fish quality.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Fisheries Technology, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Gamal ElMasry
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Agricultural Engineering Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Naho Nakazawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Shigeki Nakauchi
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazufumi Osako
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Emiko Okazaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
10
|
Trivittayasil V, Kameya H, Shoji T, Tsuta M, Kokawa M, Sugiyama J. Simultaneous estimation of scavenging capacities of peach extract for multiple reactive oxygen species by fluorescence fingerprint method. Food Chem 2017; 232:523-530. [DOI: 10.1016/j.foodchem.2017.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 01/23/2023]
|
11
|
Fluorescence Spectroscopy for the Monitoring of Food Processes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 161:121-151. [PMID: 28424827 DOI: 10.1007/10_2017_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Different analytical techniques have been used to examine the complexity of food samples. Among them, fluorescence spectroscopy cannot be ignored in developing rapid and non-invasive analytical methodologies. It is one of the most sensitive spectroscopic approaches employed in identification, classification, authentication, quantification, and optimization of different parameters during food handling, processing, and storage and uses different chemometric tools. Chemometrics helps to retrieve useful information from spectral data utilized in the characterization of food samples. This contribution discusses in detail the potential of fluorescence spectroscopy of different foods, such as dairy, meat, fish, eggs, edible oil, cereals, fruit, vegetables, etc., for qualitative and quantitative analysis with different chemometric approaches.
Collapse
|
12
|
Kokawa M, Ikegami S, Chiba A, Koishihara H, Trivittayasil V, Tsuta M, Fujita K, Sugiyama J. Measuring Cheese Maturation with the Fluorescence Fingerprint. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mito Kokawa
- Research Fellow of Japan Society for the Promotion of Science
- Analytical Science Division, National Food Research Institute, National Agriculture and Food Research Organization
| | - Shoma Ikegami
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd
| | - Akira Chiba
- Food Research & Development Institute, Morinaga Milk Industry Co., Ltd
| | | | - Vipavee Trivittayasil
- Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization
| | - Mizuki Tsuta
- Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization
| | - Kaori Fujita
- Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization
| | - Junichi Sugiyama
- Food Engineering Division, National Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|