1
|
Dong H, Ye H, Bai W, Zeng X, Wu Q. A comprehensive review of structure-activity relationships and effect mechanisms of polyphenols on heterocyclic aromatic amines formation in thermal-processed food. Compr Rev Food Sci Food Saf 2024; 23:e70032. [PMID: 39523696 DOI: 10.1111/1541-4337.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 11/16/2024]
Abstract
Heterocyclic aromatic amines (HAAs) are potent carcinogenic substances mainly generated in thermal-processed food. Natural polyphenols have been widely used for inhibiting the formation of HAAs, whereas the effect of natural polyphenols on HAAs formation is complex and the mechanisms are far from being clearly elucidated. In order to clarify the comprehensive effect of polyphenols on HAAs, this review focused on the structure-activity relationships and effect mechanisms of polyphenols on the formation of HAAs. In addition, the effects of polyphenols on HAAs toxicity were also first reviewed from cell, gene, protein, and animal aspects. An overview of the effect of polyphenol structures such as parent ring and exocyclic group on the mitigation of HAAs was emphasized, aiming to provide some valuable information for understanding their effect mechanism. The HAAs formation is inhibited by natural polyphenols in a dose-dependent manner largely through eliminating free radicals and binding precursors and intermediates. The inhibitory effect was probably affected by the quantity and position of hydroxyl groups in the aromatic rings, and polyphenols with m-hydroxyl group in the aromatic ring had the stronger inhibitory effect. However, the presence of other substituents and excessive hydroxyl groups in natural polyphenols might mitigate the inhibitory effect and even promote the formation of HAAs. This review can provide theoretical reference for effectively controlling the formation of HAAs in thermal-processed food by natural polyphenols and reducing their harm to human health.
Collapse
Affiliation(s)
- Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Huankai Microbiology Science & Technology Co., Ltd., Guangzhou, China
| | - Huiping Ye
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Dong H, Chen Q, Xu Y, Li C, Bai W, Zeng X, Wu Q, Xu H, Deng J. Effect and mechanism of polyphenols containing m-dihydroxyl structure on 2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) formation in chemical models and roast pork patties. Food Chem X 2024; 23:101672. [PMID: 39139490 PMCID: PMC11321440 DOI: 10.1016/j.fochx.2024.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) is a prevalent heterocyclic amine (HAA) found in heated processed meat. This study investigated the inhibitory impact of eight different types of polyphenols containing m-dihydroxyl structure on PhIP formation through a chemical model system. The structure-activity relationship and potential sites of action of polyphenols containing m-dihydroxyl structure were also analyzed. Then, the mechanism of inhibiting PhIP formation by kaempferol, naringenin and quercetin was speculated by UPLC-MS. Results showed that 8 kinds of polyphenols containing m-dihydroxyl structure had significant (P < 0.05) inhibition on the formation of PhIP in the chemical model system in a dose-dependent manner. In addition, PhIP was most significantly inhibited by naringenin at the same concentration, followed by kaempferol and quercetin (83.27%, 80.81% and 79.26%, respectively). UPLC-MS results speculated that kaempferol, naringenin, and quercetin formed a new admixture via an electrophilic aromatic substitution reaction with the intermediate product phenylacetaldehyde, preventing the formation of PhIP.
Collapse
Affiliation(s)
- Hao Dong
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Qi Chen
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yan Xu
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Chao Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Huan Xu
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| | - Jinhua Deng
- Guangdong Huankai Microbiology Science & Technology Co., Ltd, Guangzhou 510700, China
| |
Collapse
|
3
|
Guo Z, Feng X, He G, Yang H, Zhong T, Xiao Y, Yu X. Using bioactive compounds to mitigate the formation of typical chemical contaminants generated during the thermal processing of different food matrices. Compr Rev Food Sci Food Saf 2024; 23:e13409. [PMID: 39137003 DOI: 10.1111/1541-4337.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 01/04/2025]
Abstract
With rising consumer awareness of health and wellness, the demand for enhanced food safety is rapidly increasing. The generation of chemical contaminants during the thermal processing of food materials, including polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, and acrylamide happens every day in every kitchen all around the world. Unlike extraneous chemical contaminants (e.g., pesticides, herbicides, and chemical fertilizers), these endogenic chemical contaminants occur during the cooking process and cannot be removed before consumption. Therefore, much effort has been invested in searching for ways to reduce such thermally induced chemical contaminants. Recently, the addition of bioactive compounds has been found to be effective and promising. However, no systematic review of this practical science has been made yet. This review aims to summarize the latest applications of bioactive compounds for the control of chemical contaminants during food thermal processing. The underlying generation mechanisms and the toxic effects of these chemical contaminants are discussed in depth to reveal how and why they are suppressed by the addition of certain bioactive ingredients. Examples of specific bioactive compounds, such as phenolic compounds and organic acids, as well as their application scenarios, are outlined. In the end, outlooks and expectations for future development are provided based on a comprehensive summary and reflection of references.
Collapse
Affiliation(s)
- Zilong Guo
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huanqi Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
4
|
Xie R, Zhang H, Lv X, Lin Q, Chen BH, Lai YW, Chen L, Teng H, Cao H. The evaluation of catechins reducing heterocyclic aromatic amine formation: Structure-activity relationship and mechanism speculation. Curr Res Food Sci 2024; 8:100727. [PMID: 38577418 PMCID: PMC10990945 DOI: 10.1016/j.crfs.2024.100727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
The favorable inhibitory effect of tea polyphenols on heterocyclic aromatic amines (HAAs) has been confirmed in many past studies. The objective of this study was to investigate the structure-activity relationship of catechins that act as inhibitors of HAA formation in chemical models. Two kinds of quantitative structure-activity relationship models for catechin-inhibiting-HAA were established. We chose two kinds of HAAs including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and five catechins including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), epicatechin (EC), and catechin (C). The inhibitory effect of five catechins were in the following order: EGCG > ECG > EGC > C > EC. Thereinto, EGCG and ECG showed dramatically better inhibition on the formation of PhIP and MeIQx, especially EGCG. Further, the mechanisms of catechin-inhibiting-HAA were speculated by correlation analysis. The free radical-scavenging ability was predicted to be the most relevant to the inhibitory effect of ECG, EGC, EC and C on HAAs. Differently, the phenylacetaldehyde-trapping ability might be the more important mechanism of EGCG inhibiting PhIP in chemical model system. This study may bring a broader idea for controlling the formation of HAAs according to the structure of catechins.
Collapse
Affiliation(s)
- Ruiwei Xie
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, China
| | - Haolin Zhang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, China
- Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaomei Lv
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, China
| | - Qiuyi Lin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, China
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, China
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang, 524088, China
| |
Collapse
|
5
|
Zeng T, Song Y, Qi S, Zhang R, Xu L, Xiao P. A comprehensive review of vine tea: Origin, research on Materia Medica, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116788. [PMID: 37343650 DOI: 10.1016/j.jep.2023.116788] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vine tea is a popular folk tea that has been consumed in China for more than 1200 years. It is often used in ethnic medicine by ethnic groups in southwest China with at least 35 aliases in 10 provinces. In coastal areas, vine tea is mostly used to treat heatstroke, aphtha, aphonia, toothache, etc. In contrast, in the southwest inland regions, vine tea is mostly used to clear away heat and toxic materials, antiphlogosis and relieving sore-throat, lowering blood pressure and lipid levels, and alleviating fatigue. Three main species have been used as the source of vine tea, Nekemias grossedentata, Nekemias cantonensis and Nekemias megalophylla. Among them, the leaves of Nekemias grossedentata were considered as new food resource in complicance with regulations, according to the Food Safety Standards published by the Monitoring and Evaluation Department of the National Health and Family Planning Commission in China. AIM OF THE STUDY At present, the comprehensively summary of Materia Medica on the history and source of vine tea is currently unavailable. The current article summed up the Materia Medica, species origin and pharmacological effects of all 3 major species used in vine tea to fill the knowledge gaps. We also aim to provide a reference for future research on historical textual, resource development and medicinal utilization of vine tea. MATERIALS AND METHODS Adhering to the literature screening methodology outlined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this review encompasses 148 scholarly research papers from three database, paper ancient books, local chronicles and folklore through field investigations. We then comprehensively summarized and discussed research progresses in scientific and application studies of vine tea. RESULTS The historical records indicated that vine tea could have been used as early as Southern and Northern Dynasties (AC 420-589). Nekemias grossedentata, Nekemias cantonensis and Nekemias megalophylla, were used to considered as vine tea in the ethnic medicine. The main phytochemicals found in three plants are flavonoids, polyphenols and terpenoids, among which dihydromyricetin (DHM) is the most important and most studied active substance. The key words "Ampelopsis grossedentata" (Synonym of Nekemias grossedentata) and "dihydromyricetin/DHM" showed the highest frequency over the last 27 year based on the research trend analysis. And the ethnopharmacology studies drawn the main activities of vine tea are antioxidant, antibacterial, hepatoprotective, neuroprotective and anti-atherosclerosis activities. CONCLUSIONS This review systematically summarized and discussed vine tea from the following five aspects, history, genetic relationship, phytochemistry, research trend and ethnopharmacology. Vine tea has a long historical usage in Chinese ethnic medicine. Its outstanding therapeutic efficacies have attracted extensive attention in other places in the world at present. Nekemias cantonensis and Nekemias megalophylla are quite similar to Nekemias grossedentata in terms of many aspects. However, the current research has a narrow focus on mainly Nekemias grossedentata and DHM. We propose that future studies could be carried out to determine the synergistic effect of multi-components and multi-targets of vine tea including all 3 species to provide valuable knowledge.
Collapse
Affiliation(s)
- Tiexin Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Shunyao Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Ruyue Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, China.
| |
Collapse
|
6
|
Shen X, Chen Y, Ojobi Omedi J, Zeng M, Xiao C, Zhou Y, Chen J. Effects of volatile organic compounds of smoke from different woods on the heterocyclic amine formation and quality changes in pork patty. Food Res Int 2023; 173:113262. [PMID: 37803575 DOI: 10.1016/j.foodres.2023.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 10/08/2023]
Abstract
This study investigated the effects of smoke derived from cypress (CY), mulberry (MU), metasequoia (ME), pine (PI), and camphor (CA) on the heterocyclic aromatic amines (HAs), flavor, and sensory attributes of smoked pork patty. The results showed that the smoke derived from the five kinds of wood and the flavor of the corresponding smoked meat were classified into three types. Moreover, the smoke of CY and PI, and the smoke of MU and ME can be classified into one category respectively, which significantly improved the flavor of the smoked meat. Both free and protein-bound HAs were detected in smoked meat, while the smoking process significantly increased the HAs content, especially free Norharman (3.26 ng/g in control meat, and 82.24 ng/g in meat smoked with CY). Correlation analysis showed that various volatile organic compounds (VOCs) and HAs were closely associated. Future research should pay attention to the VOCs in smoked meat including vanillin, Close attention should be paid to tridecane and crotonic acid, as well as tetradecane and α-Dehydro-ar-himachalene in smoke, which were consistently correlated with various HAs and may participate in HAs formation. These results may reveal how the smoking process influences the formation of HAs and which factors should be targeted to inhibit HAs in smoked meat products.
Collapse
Affiliation(s)
- Xing Shen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jacob Ojobi Omedi
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Li B, Wang J, Cheng Z, Song B, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J. Flavonoids mitigation of typical food thermal processing contaminants: Potential mechanisms and analytical strategies. Food Chem 2023; 416:135793. [PMID: 36898335 DOI: 10.1016/j.foodchem.2023.135793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/12/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Due to unique chemical structure, flavonoids are secondary metabolites with numerous biological activities. Thermal processing of food usually produces some chemical contaminants, which cause an adverse effect on food quality and nutrition. Therefore, it is vital to reduce these contaminants in food processing. In this study, current researches around the inhibitory effect of flavonoids on acrylamide, furans, α-dicarbonyl compounds and heterocyclic amines (HAs) were summarized. It has been shown that flavonoids inhibited the formation of these contaminants to varying degrees in chemical or food models. The mechanism was mainly associated with natural chemical structure and partly with antioxidant activity of flavonoids. Additionally, methods and tools of analyzing interactions between flavonoids and contaminants were discussed. In summary, this review demonstrated potential mechanisms and analytical strategies of flavonoids in food thermal processing, providing new insight of flavonoids applying on the food engineering.
Collapse
Affiliation(s)
- Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
8
|
The role of flavonoids in mitigating food originated heterocyclic aromatic amines that concerns human wellness. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Deng H, He Y, Cao H, Chen L, Teng H. New insight into the effect of hydroxyl substituted flavonoids on the cytotoxicity of 2‐amino‐3‐methylimidazo[4,5‐f]quinoline. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Hongting Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and TechnologyGuangdong Ocean University ZhanjiangChina
| | - Yuanju He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and TechnologyGuangdong Ocean University ZhanjiangChina
| | - Hui Cao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and TechnologyGuangdong Ocean University ZhanjiangChina
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and TechnologyGuangdong Ocean University ZhanjiangChina
| | - Hui Teng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and TechnologyGuangdong Ocean University ZhanjiangChina
| |
Collapse
|
10
|
Revealing inhibitory mechanism of thiamine on the formation of 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline based on quantum chemistry calculations and experimental verification. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Chen Y, Xi J. Effects of the non-covalent interactions between polyphenols and proteins on the formations of the heterocyclic amines in dry heated soybean protein isolate. Food Chem 2022; 373:131557. [PMID: 34799131 DOI: 10.1016/j.foodchem.2021.131557] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
Soybean proteins are the main component of plant-based meat alternatives in the Chinese market. The effects of non-covalent interactions between polyphenols and proteins on the protein structures, the rest physicochemical properties, and formations of heterocyclic amines (HAs) were examined using a polyphenols-containing soybean protein isolate (SPI) complex as a model to dry heating at 170℃ for 10 min. The results showed that tetrahydro-curcumin had extensive inhibitory effects on the HA formation. In addition, tea polyphenols, grapeseed procyanidins, and dihydromyricetin were also found to have inhibitory effects only on some HAs. Correlation analysis showed that polyphenols altered the secondary structure and steric structure of the protein by interacting with the protein, which affects the HA formation. The results provided theoretical references and a basis for the formation mechanisms of HAs in polyphenol-inhibiting protein foods.
Collapse
Affiliation(s)
- Yang Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
12
|
Zhou Q, Xu H, Zhao Y, Liu B, Cheng KW, Chen F, Wang M. 6-C-(E-Phenylethenyl)-naringenin, a Styryl Flavonoid, Inhibits Advanced Glycation End Product-Induced Inflammation by Upregulation of Nrf2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3842-3851. [PMID: 35297642 DOI: 10.1021/acs.jafc.2c00163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Styryl flavonoids can be formed during the thermal processing of meats and flavonoid-enriched foods, showing high potentials in the prevention of different diseases. In this study, the protective effects of several styryl flavonoids against advanced glycation end product (AGE)-induced inflammation were evaluated, with 6-C-(E-phenylethenyl)-naringenin (6-PN) showing the strongest activity among them. The results indicated that 6-PN significantly ameliorated AGE-induced damages in human umbilical vein endothelial cells, including inhibition of pro-inflammatory cytokines and reactive oxygen species (ROS) production through downregulating the protein levels of the receptor for AGEs (RAGE) and NADPH oxidase. Notably, 6-PN possessed a much higher bioavailability than its parental compound, naringenin. Furthermore, 6-PN also promoted the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway that was suppressed by AGEs, and the anti-inflammatory effects of 6-PN disappeared when the cells were treated with ML385, a Nrf2 inhibitor. Hence, 6-PN might inhibit AGE-induced inflammation by the RAGE/ROS/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qian Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Hui Xu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
13
|
Zhang H, Caprioli G, Hussain H, Khoi Le NP, Farag MA, Xiao J. A multifaceted review on dihydromyricetin resources, extraction, bioavailability, biotransformation, bioactivities, and food applications with future perspectives to maximize its value. EFOOD 2021. [DOI: 10.53365/efood.k/143518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Natural bioactive compounds present a better alternative to prevent and treat chronic diseases owing to their lower toxicity and abundant resources. (+)-Dihydromyricetin (DMY) is a flavanonol, possessing numerous interesting bioactivities with abundant resources. This review provides a comprehensive overview of the recent advances in DMY natural resources, stereoisomerism, physicochemical properties, extraction, biosynthesis, pharmacokinetics, and biotransformation. Stereoisomerism of DMY should be considered for better indication of its efficacy. Biotechnological approach presents a potential tool for the production of DMY using microbial cell factories. DMY high instability is related to its powerful antioxidant capacity due to pyrogallol moiety in ring B, and whether preparation of other analogues could demonstrate improved properties. DMY demonstrates poor bioavailability based on its low solubility and permeability with several attempts to improve its pharmacokinetics and efficacy. DMY possesses various pharmacological effects, which have been proven by many in vitro and in vivo experiments, while clinical trials are rather scarce, with underlying action mechanisms remaining unclear. Consequently, to maximize the usefulness of DMY in nutraceuticals, improvement in bioavailability, and better understanding of its actions mechanisms and drug interactions ought to be examined in the future along with more clinical evidence.
Collapse
|
14
|
Wang W, Ren X, Bao Y, Zhu Y, Zhang Y, Li J, Peng Z. Inhibitory effects of hyperoside and quercitrin from Zanthoxylum bungeanum Maxim. leaf on 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine formation by trapping phenylacetaldehyde. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03676-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract2-amino-1-methyl-6-phenylimidazole[4,5-b]pyridine (PhIP) is one of the most abundant Heterocyclic amines (HAs) in meat products. Zanthoxylum bungeanum Maxim. leaf (ZML) extract has been shown to be rich in polyphenols, which are gaining increasing interest as efficient tools for inhibiting the formation of HAs. In the present work, the effects of ZML extract, major polyphenols, chlorogenic acid, hyperoside and quercitrin on the formation of PhIP in both roast beef patties and chemical model systems were investigated. UPLC-MS showed that ZML extract and those three polyphenols effectively inhibited PhIP formation. Additionally, GC-MS analysis showed that those three polyphenols significantly reduced the content of phenylacetaldehyde in the model systems, a key intermediate involved in PhIP formation. The subsequent UPLC-MS and TOF-MS/MS analysis found that hyperoside and quercitrin reacted with phenyacetaldehyde to form those four adducts, 8-C-(E-Phenylethenyl)hyperoside, 6-C-(E-Phenylethenyl)hyperoside, 8-C-(E-Phenylethenyl)quercitrin and 6-C-(E-Phenylethenyl)quercitrin, respectively. The results revealed that hyperoside and quercitrin could trap phenylacetaldehyde to form adducts, thereby, retarding the reaction of phenylacetaldehyde and creatinine, blocking the generation of PhIP.
Collapse
|
15
|
Wang Q, Li J, Li K, Li C. Effects of turmeric on reducing heterocyclic aromatic amines in Chinese tradition braised meat products and the underlying mechanism. Food Sci Nutr 2021; 9:5575-5582. [PMID: 34646527 PMCID: PMC8498065 DOI: 10.1002/fsn3.2518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Braised meat products are kinds of popular traditional meat food in China. However, current data on the formation of Amino-carboline congeners Heterocyclic aromatic amines (HAAs) and the inhibitory methods in braised meat products are limited. In the present study, the inhibition effect of turmeric and curcumin on the formation of β-carboline heterocyclic aromatic amines in braised meat were investigated. And the preliminary mechanism of curcumin inhibiting the formation of β-carboline heterocyclic amines was also explored in the chemical model. The results indicated that 5% of turmeric could significantly inhibit the formation of harman (94.8%) and norharman (49.56%) in braised meat, and curcumin was one of the key active compound accounting for this effect. In the tryptophan model, 0.05 mmol of curcumin significantly inhibited the formation of norharman and harman by over 70% (p < .05). Further investigation indicated that curcumin inhibited the formation of β-carboline heterocyclic amines mainly by inhibiting the formation of carbonyl compounds and 1,2,3,4-Tetrahydro-β-carboline-3-carboxylic acid and scavenging β-carboline HAAs. These results could provide a natural spice-based method for reducing heterocyclic aromatic amines in Chinese tradition braised meat products.
Collapse
Affiliation(s)
- Qiang Wang
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jin Li
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Kaikai Li
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Environment Correlative Food ScienceMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Chunmei Li
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Environment Correlative Food ScienceMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
16
|
Antibacterial Effect of Dihydromyricetin on Specific Spoilage Organisms of Hybrid Grouper. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5569298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study aimed to investigate the mechanism of antibacterial activity level inhibition of dihydromyricetin (DMY) against specific spoilage bacteria of grouper. Firstly, the specific spoilage bacteria of grouper in the cold storage process are Pseudomonas antarctica (P. antarctica), which are selected by calculating the spoilage metabolite yield factor. It was determined that the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DMY against grouper spoilage bacteria were 2.0 mg/mL and 6.4 mg/mL, respectively. DMY was added to the matrix of chitosan and sodium alginate, and DMY emulsions of different concentrations (0 MIC, 1 MIC, 2 MIC, 4 MIC) were prepared and characterized by differential calorimetry methods. Through analyzing cell permeability, enzyme activity, and images of the confocal laser scanning microscope (CLSM), we further studied the antibacterial mechanism of DMY emulsion on specific spoilage bacteria. The results showed that, with the increase of DMY concentration in the treatment group, the leakage of nucleic acid and protein increased significantly, the activity of ATPase and three critical enzymes in the Embden-Meyerhof-Parnas (EMP) pathway decreased significantly, and the activity of AKPase did not decrease significantly, . The metabolic activity and viability are reduced considerably. Analysis of the above results shows that DMY inhibits the growth and reproduction of P. antarctica by interfering with the metabolic activity of bacteria and destroying the function of bacterial cell membranes but has no inhibitory effect on the activity of AKPase. This study proves that DMY could be an effective and natural antibacterial agent against specific spoilage bacteria in aquatic products.
Collapse
|
17
|
Yan XT, Zhang Y, Yang ML, Feng XS, Zhang F. An accurate, rapid, and sensitive method for simultaneous determination of four typical heterocyclic amines in roasted pork patties: Application in the study of inhibitory effects of astaxanthin. J Sep Sci 2021; 44:1833-1842. [PMID: 33586849 DOI: 10.1002/jssc.202001229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/27/2022]
Abstract
Heterocyclic aromatic amines, as a group of mutagenic and carcinogenic compounds, have gained worldwide concern. In this study, an accurate, rapid, and sensitive confirmation and quantification method of four major heterocyclic aromatic amines in roasted pork was developed based on Q-Orbitrap along with Quick, Easy, Cheap, Effective, Rugged, and Safe extraction. The limit of detections and limit of quantitations were found to be 0.2-1.2 μg/kg and 0.6-3.5 μg/kg, respectively, revealing the high sensitivity of this method. Obtained results showed recoveries ranging from 78.1 to 97.4%, depending on the different heterocyclic aromatic amines and spiked levels. Precision was in the range of 2.6-4.5% for four heterocyclic aromatic amines at different levels. In addition, the developed method had been applied to investigate the inhibitory effects of astaxanthin on the above-mentioned heterocyclic aromatic amines in roasted pork. The amount of astaxanthin with the best inhibitory effects was 7.5 mg (0.0375%), which led to significant reduction in heterocyclic aromatic amines levels over 50%.
Collapse
Affiliation(s)
- Xiao-Ting Yan
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China.,School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Min-Li Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, P.R. China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing, P.R. China
| |
Collapse
|
18
|
Zhao T, Xi J, Zhang C, Ma Y, Wang X. Using Adinandra nitida leaf extract to prevent heterocyclic amine formation in fried chicken patties. RSC Adv 2021; 11:6831-6841. [PMID: 35423193 PMCID: PMC8694915 DOI: 10.1039/d0ra09790j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Adinandra nitida leaf extract (ANE) is rich in phenols and flavonoids. In this study, the effects of ANE as an additive on the formation of major heterocyclic amines (HCAs), namely, PhIP, norharman and harman, in both chemical model systems and fried chicken patties were explored. In model systems, treatment with various amounts of ANE (0, 15, 30, 45, 60 mg) led to the most effective inhibition of PhIP, norharman and harman, with levels reduced by 47.88%, 49.73% and 29.63% when treated with 45 mg, 60 mg and 60 mg, respectively. Further, the effect of diverse dosages of ANE (0, 0.2, 0.4, 0.6%, w/w) on the formation of HCAs in chicken patties fried at 170 °C and 190 °C was evaluated. Statistics showed that the temperature significantly increased the formation of HCAs. Total HCA contents of patties fried at 170 °C and 190 °C ranged from 1.52 ng g-1 to 2.52 ng g-1 and from 6.05 ng g-1 to 13.76 ng g-1, respectively. The inhibitory efficacy of various concentrations of ANE on the total HCA content was higher (38.95-56.03%) in patties fried at 190 °C than at 170 °C (18.65-40.08%). External parts of the meat patties showed higher HCA contents than the interior. The current study presents evidence that ANE at moderate dosages can reduce the formation of HCAs in fried chicken. By extension it suggests that ANE has potential applications as a natural antioxidant for preventing the formation of HCAs in foods.
Collapse
Affiliation(s)
- Tianpei Zhao
- College of Food Science and Engineering, Henan University of Technology Zhengzhou 450001 China +86-371-67758025 +86-371-67758025
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology Zhengzhou 450001 China +86-371-67758025 +86-371-67758025
| | - Chenxia Zhang
- College of Food Science and Engineering, Henan University of Technology Zhengzhou 450001 China +86-371-67758025 +86-371-67758025
| | - Yuxiang Ma
- College of Food Science and Engineering, Henan University of Technology Zhengzhou 450001 China +86-371-67758025 +86-371-67758025
| | - Xuede Wang
- College of Food Science and Engineering, Henan University of Technology Zhengzhou 450001 China +86-371-67758025 +86-371-67758025
| |
Collapse
|
19
|
Yang H, Ji Z, Wang R, Fan D, Zhao Y, Wang M. Inhibitory effect of selected hydrocolloids on 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) formation in chemical models and beef patties. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123486. [PMID: 32707466 DOI: 10.1016/j.jhazmat.2020.123486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/27/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mutagen and a rodent carcinogen mainly formed in thermally processed muscle foods. Hydrocolloids are widely used as thickeners, gelling agents and stabilizers to improve food quality in the food industry. In this study, the inhibitory effects of eight hydrocolloids on the formation of PhIP were investigated in both chemical models and beef patties. 1% (w/w) of carboxymethylcellulose V, κ-carrageenan, alginic acid, and pectin significantly reduced PhIP formation by 53 %, 54 %, 48 %, and 47 %, respectively in chemical models. In fried beef patties, κ-carrageenan appeared to be most capable of inhibiting PhIP formation among the eight tested hydrocolloids. 1% (w/w) of κ-carrageenan caused a decreased formation of PhIP by 90 %. 1% (w/w) of κ-carrageenan also significantly reduced the formation of other heterocyclic aromatic amines including MeIQx and 4,8-DiMeIQx by 64 % and 48 %, respectively in fried beef patties. Further mechanism study showed that κ-carrageenan addition decreased the PhIP precursor creatinine residue and reduced the content of Maillard reaction intermediates including phenylacetaldehyde and aldol condensation product in the chemical model. κ-Carrageenan may inhibit PhIP formation via trapping both creatinine and phenylacetaldehyde. The structures of adducts formed between κ-carrageenan and creatinine and κ-carrageenan and phenylacetaldehyde merits further study.
Collapse
Affiliation(s)
- Hongmei Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Zhiwei Ji
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Ru Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China.
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, 201306, China; School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
20
|
Carneiro RC, Ye L, Baek N, Teixeira GH, O'Keefe SF. Vine tea (Ampelopsis grossedentata): A review of chemical composition, functional properties, and potential food applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Wang Q, Cheng W, Zhang Y, Kang Q, Gowd V, Ren Y, Chen F, Cheng KW. A novel potent inhibitor of 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) formation from Chinese chive: Identification, inhibitory effect and action mechanism. Food Chem 2020; 345:128753. [PMID: 33302112 DOI: 10.1016/j.foodchem.2020.128753] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Differential solvent extraction and phytochemical profiling of Chinse chive were employed to identify its principal PhIP-formation inhibitory constituents. Six compounds (mangiferin, isorhamnetin, luteolin, rosmarinic acid, 6-methylcoumarin, and cyanidin-3-glucoside) were further analyzed in a PhIP-producing chemical model to identify the dominant inhibitor. Its inhibitory mechanism was investigated by assessing the contribution of antioxidation and scavenging of key PhIP precursor/intermediate. No significant correlation was observed between PhIP inhibition rates and antioxidant activities. Further evaluation of the novel potent inhibitor mangiferin revealed a highly significant correlation between its dose-dependent inhibition of PhIP formation and phenylacetaldehyde scavenging. Finally, the proposed mechanism was corroborated through organic synthesis and structural elucidation of the mangiferin-phenylacetaldehyde adduct. This study has identified a potent novel inhibitor of the most abundant HA in heat-processed food and characterized its action mechanism. These findings may provide insight for future studies on mitigation of dietary exposure to toxic Maillard products by polyphenolic phytochemicals.
Collapse
Affiliation(s)
- Qi Wang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Weiwei Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yifeng Zhang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Qingzheng Kang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Ren
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
22
|
Zhang N, Zhao Y, Fan D, Xiao J, Cheng KW, Wang M. Inhibitory effects of some hydrocolloids on the formation of heterocyclic amines in roast beef. Food Hydrocoll 2020; 108:106073. [DOI: 10.1016/j.foodhyd.2020.106073] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Correlation between the Characteristic Flavour of Youtiao and Trans Fatty Acids Assessed via Gas Chromatography Mass Spectrometry and Partial Least Squares Regression Analyses. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8845401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to analyse trans fatty acid (TFA) levels and key volatile flavour substances in fried youtiao prepared using five common edible oils and the relationship between TFAs and key volatile flavour substances via partial least squares regression (PLSR) analysis. Total TFA levels were the highest on using rapeseed oil during frying (approximately 1.061 mg/g), probably owing to the high content of unsaturated fatty acids in rapeseed oil and their instability. In total, 22 key flavour substances were detected. Although the flavours differed with different oils, flavour compounds including 3-(methyl sulphide) propionic aldehyde, (E,E)-2,4-sebacedienal, nonaldehyde, and 3-hydroxy-2-butanone contributed to overall flavour. PLSR analysis revealed that C18:2, 9t12t is produced with (E)-2-hexenaldehyde and nonaldehyde. (E,E)-2,4-sebacedienal levels were positively correlated with those of C18:2, 9c12t and C18:2, 9t12c. Most aliphatic aldehydes and pyrazines yield C18:3, 9t12t15c TFAs. These results indicate the characteristic flavour profile of youtiao and promote the preparation of healthy fried food.
Collapse
|
24
|
Jing J, He Y, Wang Y, Zeng M. Inhibitory effects of Portulaca oleracea L. and selected flavonoid ingredients on heterocyclic amines in roast beef patties and Density Function Theory calculation of binding between heterocyclic amines intermediates and flavonoids. Food Chem 2020; 336:127551. [PMID: 32795783 DOI: 10.1016/j.foodchem.2020.127551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 11/24/2022]
Abstract
The inhibitory effects of Portulaca oleracea L. (PO) and its flavonoid ingredients on the formation of heterocyclic amines (HAs) in roast beef patties were investigated. Ten HAs were found in control patties, and the total content was 212.73 ± 7.13 ng/g. With the addition of PO (1%, 5%, and 10%, w/w), HAs decreased by 62.39%, 68.03%, and 73.75%, respectively. The main flavonoid ingredients (rutin, hesperidin, and flavanone) also present a similar inhibitory effect. The Density Function Theory (DFT) methods were adopted to investigate the inhibitory mechanism. These ingredients bonded with the intermediate to block the formation of norharman. Both experimental and calculated data of the ingredients were analyzed on their HAs inhibitory capacity. Our results provide a novel and valuable strategy to reduce HAs via a low additive level of medicinal and edible plants. And the correlation between experimental and calculated data could be applied to predict the inhibitory ability of inhibitors.
Collapse
Affiliation(s)
- Jing Jing
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau; School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Nationalities University, Kunming 650500, China
| | - Yali Wang
- Key Laboratory of Traditional Chinese Medicine Quality and Standard, Gansu University of Chinese Medicine, Lanzhou 730101, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
25
|
Bao X, Miao J, Huang Y, Lai K. Revealing a key inhibitory mechanism of 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline via trapping of methylglyoxal. J Food Sci 2020; 85:2090-2097. [PMID: 32579728 DOI: 10.1111/1750-3841.15305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/12/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
The inhibitory effects of vitamins (nicotinic acid, pyridoxamine [PM], and l-ascorbic acid) and phenolic acids (ferulic acid and p-coumaric acid) on the formation of 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx) were studied in a glycine/glucose/creatinine model system and fried tilapia cakes. The results showed that PM was the most potential inhibitor and the inhibition rates reached 82.72% and 78.54% in model system and fried tilapia cakes, respectively. Detailed formation mechanism of MeIQx was put forward to find the inevitable species in the non-free radical formation mechanism of MeIQx. Dose-dependent analysis of PM on methylglyoxal (MGO ) and MeIQx formation were studied by using model systems and the results showed that MGO and MeIQx were both reduced about 60% in reaction mixtures when the molar ratio of PM to glycine was 1:16, which indicated that MGO is a key intermediate on the pathway of MeIQx formation. Quantum chemistry calculations showed that PM can act as a useful inhibitor to inhibit the formation of MeIQx and react with MGO to form new compounds. A pathway for the inhibitory activity of PM against MeIQx formation was proposed. PRACTICAL APPLICATION: Pyridoxamine was the most effective inhibitor against heterocyclic aromatic amines (HAAs) and could be applied to a variety of food systems. While the inhibitory mechanism is still unclear. Detailed formation mechanism of MeIQx was put forward first and suggested methylglyoxal as an inevitable species in the non-free radical formation mechanism of MeIQx in this study. Pyridoxamine trapping methylglyoxal is likely a key mechanism against the generation of MeIQx was demonstrated by quantum chemistry calculation and experimental demonstration. These findings may provide effective suggestions for reducing HAAs and similar toxicants in daily cuisine.
Collapse
Affiliation(s)
- Xiangxiang Bao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Engineering Research Center of Food Thermal-Processing Technology, Shanghai, 201306, China
| | - Yiqun Huang
- School of Chemical and Biological Engineering, Changsha University of Science and Technology, Hunan, 410000, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,Engineering Research Center of Food Thermal-Processing Technology, Shanghai, 201306, China
| |
Collapse
|
26
|
Ren X, Wang W, Bao Y, Zhu Y, Zhang Y, Lu Y, Peng Z, Zhou G. Isorhamnetin and Hispidulin from Tamarix ramosissima Inhibit 2-Amino-1-Methyl-6-Phenylimidazo[4,5- b]Pyridine (PhIP) Formation by Trapping Phenylacetaldehyde as a Key Mechanism. Foods 2020; 9:E420. [PMID: 32260060 PMCID: PMC7230572 DOI: 10.3390/foods9040420] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
Tamarix has been widely used as barbecue skewers to obtain a good taste and a unique flavor of roast lamb in China. Many flavonoids have been identified from Tamarix, which is an important strategy employed to reduce the formation of heterocyclic amines (HAs) in roast meat. Isorhamnetin, hispidulin, and cirsimaritin from Tamarix ramosissima bark extract (TRE) effectively inhibit the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP), the most abundant HAs in foods, both in roast lamb patties and in chemical models. According to the results of the GC-MS analysis, TRE and the three flavonoids significantly reduced the contents of phenylacetaldehyde, an important intermediate involved in PhIP formation at three levels. A subsequent ultra performance liquid chromatography-mass spectrometry (UPLC-MS) analysis revealed that these flavonoids trapped phenylacetaldehyde by forming interaction adducts. The formation of three postulated adducts, 8-C-(E-phenylethenyl)isorhamnetin, 6-C-(E-phenylethenyl)isorhamnetin and 8-C-(E-phenylethenyl)hispidulin, in the chemical models and roast lamb patties was further confirmed by a TOF-MS/MS analysis. Our results demonstrate that TRE and the corresponding flavonoids trap phenylacetaldehyde to form adducts and thus inhibit PhIP formation, suggesting their great potential beneficial effects on human health.
Collapse
Affiliation(s)
- Xiaopu Ren
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.R.); (W.W.); (Y.B.); (Y.Z.); (Y.Z.); (G.Z.)
- Xinjiang Production & Construction Group Key Laboratory of Agricultural Products Processing in Xinjiang South, College of Life Science, Tarim University, Alar 843300, China
| | - Wei Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.R.); (W.W.); (Y.B.); (Y.Z.); (Y.Z.); (G.Z.)
| | - Yingjie Bao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.R.); (W.W.); (Y.B.); (Y.Z.); (Y.Z.); (G.Z.)
| | - Yuxia Zhu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.R.); (W.W.); (Y.B.); (Y.Z.); (Y.Z.); (G.Z.)
| | - Yawei Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.R.); (W.W.); (Y.B.); (Y.Z.); (Y.Z.); (G.Z.)
| | - Yaping Lu
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zengqi Peng
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.R.); (W.W.); (Y.B.); (Y.Z.); (Y.Z.); (G.Z.)
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.R.); (W.W.); (Y.B.); (Y.Z.); (Y.Z.); (G.Z.)
| |
Collapse
|
27
|
Dong H, Xian Y, Li H, Bai W, Zeng X. Potential carcinogenic heterocyclic aromatic amines (HAAs) in foodstuffs: Formation, extraction, analytical methods, and mitigation strategies. Compr Rev Food Sci Food Saf 2020; 19:365-404. [DOI: 10.1111/1541-4337.12527] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/16/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Hao Dong
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering Guangzhou China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute Guangzhou China
| | - Haixia Li
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering Guangzhou China
| | - Weidong Bai
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering Guangzhou China
| | - Xiaofang Zeng
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering Guangzhou China
| |
Collapse
|
28
|
Chen X, Jia W, Zhu L, Mao L, Zhang Y. Recent advances in heterocyclic aromatic amines: An update on food safety and hazardous control from food processing to dietary intake. Compr Rev Food Sci Food Saf 2019; 19:124-148. [DOI: 10.1111/1541-4337.12511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaoqian Chen
- Zhejiang Key Laboratory for Agro‐Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Wei Jia
- Zhejiang Key Laboratory for Agro‐Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Li Zhu
- Zhejiang Key Laboratory for Agro‐Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Lei Mao
- Department of NutritionSchool of Public Health, Zhejiang University School of Medicine Hangzhou China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro‐Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| |
Collapse
|
29
|
Effects of smoking or baking procedures during sausage processing on the formation of heterocyclic amines measured using UPLC-MS/MS. Food Chem 2019; 276:195-201. [DOI: 10.1016/j.foodchem.2018.09.160] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 01/04/2023]
|
30
|
Dihydromyricetin as a Functional Additive to Enhance Antioxidant Capacity and Inhibit the Formation of Thermally Induced Food Toxicants in a Cookie Model. Molecules 2018; 23:molecules23092184. [PMID: 30200189 PMCID: PMC6225208 DOI: 10.3390/molecules23092184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/15/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
Recently, there is a growing interest in fortifying food products with flavonoids to enhance health benefits. Naringenin, naringin, hesperetin, and dihydromyricetin are four typical flavonoids constituting a natural part of our diet. In the present work, they were fortified into a chia oil cookie model to evaluate their thermal stability during baking as well as their impact on antioxidant capacity and toxicant formation. Among them dihydromyricetin was the most unstable one (only 36.1% of which was left after baking at 180 °C for 20 min) and led to a loss of brightness in cookie. However, the antioxidant capacity of cookie fortified with dihydromyricetin was significantly enhanced compared with untreated cookie; on the other hand, dihydromyricetin showed the strongest effect to attenuate lipid and protein oxidation as well as decrease the level of fluorescent advanced glycation endproducts and carboxymethyl lysine in cookie model. Overall, among the four selected flavonoids, dihydromyricetin might be the most promising functional bakery additive enhancing the antioxidant capacity while decreasing the formation of toxicants.
Collapse
|