1
|
Hong MJ, Ko CS, Kim JB, Kim DY. Enhancement of the Seed Color, Antioxidant Properties, and Agronomic Traits of Colored Wheat via Gamma Radiation Mutagenesis. Foods 2025; 14:487. [PMID: 39942080 PMCID: PMC11817659 DOI: 10.3390/foods14030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Wheat, a staple crop cultivated for over 8000 years, sustains more than 2.5 billion people globally, as a major source of carbohydrate, protein, fiber, and essential nutrients. Colored wheat, enriched with dietary fiber and antioxidants, offers valuable genetic resources for developing functional wheat varieties. Herein, a mutant pool of 1069 colored wheat lines was developed through gamma-ray irradiation to enhance genetic diversity. Mutant lines were classified into 10 groups based on seed color parameters (L*, a*, and b*), which were measured using the Hunter Lab system. K-means clustering categorized the mutant lines, and four representative lines from each group were analyzed for agronomic traits (plant height, spike length, thousand-seed weight, and kernels per spike) and antioxidant properties (radical-scavenging activity, ferric reducing antioxidant power, and total antioxidant capacity). Principal-component analysis revealed distinct clustering patterns, indicating associations between seed color, agronomic traits, and antioxidant activity. Darker seed color groups exhibited 3-16% higher levels of bioactive compounds and 10-18% higher antioxidant activities, whereas lighter groups showed 8-42% lower functional potential compared to the control wheat. These findings highlight the potential of mutation breeding in generating phenotypic diversity and developing wheat varieties with improved functional traits and bioactive compound content.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Republic of Korea; (M.J.H.); (C.S.K.); (J.-B.K.)
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Republic of Korea; (M.J.H.); (C.S.K.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup 56212, Republic of Korea; (M.J.H.); (C.S.K.); (J.-B.K.)
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-ro, Yesan-eup, Yesan-gun 32439, Republic of Korea
| |
Collapse
|
2
|
Hong MJ, Ko CS, Kim DY. Wheat E3 ligase TaPRP19 is involved in drought stress tolerance in transgenic Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:233-246. [PMID: 40070538 PMCID: PMC11890807 DOI: 10.1007/s12298-025-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/09/2024] [Accepted: 01/24/2025] [Indexed: 03/14/2025]
Abstract
TaPRP19, a wheat U-box E3 ligase gene, was isolated and characterized for its role in drought stress tolerance. The gene encodes a 531 amino acid protein with a U-box domain at the N-terminal and a WD40 domain at the C-terminal. Subcellular localization studies using TaPRP19-GFP fusion in Nicotiana benthamiana confirmed predominant nucleus localization. In vitro ubiquitination assays demonstrated that TaPRP19 possesses E3 ligase activity. RT-qPCR analysis revealed higher expression of TaPRP19 in wheat leaves, which increased under PEG, mannitol, and ABA treatments. Transgenic Arabidopsis lines overexpressing TaPRP19 exhibited improved seed germination rates and root elongation under mannitol and ABA stress, as well as enhanced survival rates under drought conditions compared to wild-type (WT) plants. Additionally, these transgenic lines showed upregulated expression of antioxidant-related and drought-marker genes, reduced ROS accumulation, and increased activities of antioxidant enzymes, suggesting enhanced oxidative stress mitigation. These findings highlight TaPRP19 as a potential target for developing drought-tolerant crops, providing insights into its functional mechanisms and paving the way for future genetic engineering applications in wheat and other crops. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01557-7.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212 Republic of Korea
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212 Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-Ro, Yesan-Eup, 32439 Republic of Korea
| |
Collapse
|
3
|
Hong MJ, Ko CS, Kim JB, Kim DY. Identification and transcriptomic profiling of salinity stress response genes in colored wheat mutant. PeerJ 2024; 12:e17043. [PMID: 38464747 PMCID: PMC10924784 DOI: 10.7717/peerj.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Background Salinity is a major abiotic stress that prevents normal plant growth and development, ultimately reducing crop productivity. This study investigated the effects of salinity stress on two wheat lines: PL1 (wild type) and PL6 (mutant line generated through gamma irradiation of PL1). Results The salinity treatment was carried out with a solution consisting of a total volume of 200 mL containing 150 mM NaCl. Salinity stress negatively impacted germination and plant growth in both lines, but PL6 exhibited higher tolerance. PL6 showed lower Na+ accumulation and higher K+ levels, indicating better ion homeostasis. Genome-wide transcriptomic analysis revealed distinct gene expression patterns between PL1 and PL6 under salt stress, resulting in notable phenotypic differences. Gene ontology analysis revealed positive correlations between salt stress and defense response, glutathione metabolism, peroxidase activity, and reactive oxygen species metabolic processes, highlighting the importance of antioxidant activities in salt tolerance. Additionally, hormone-related genes, transcription factors, and protein kinases showed differential expression, suggesting their roles in the differential salt stress response. Enrichment of pathways related to flavonoid biosynthesis and secondary metabolite biosynthesis in PL6 may contribute to its enhanced antioxidant activities. Furthermore, differentially expressed genes associated with the circadian clock system, cytoskeleton organization, and cell wall organization shed light on the plant's response to salt stress. Conclusions Understanding these mechanisms is crucial for developing stress-tolerant crop varieties, improving agricultural practices, and breeding salt-resistant crops to enhance global food production and address food security challenges.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Dae Yeon Kim
- Plant Resources, Kongju National University, Yesan-eup, Chungnam, South Korea
| |
Collapse
|
4
|
Park J, Kil YS, Ryoo GH, Jin CH, Hong MJ, Kim JB, Jung CH, Nam JW, Han AR. Phytochemical profile and anti-inflammatory activity of the hull of γ-irradiated wheat mutant lines ( Triticum aestivum L.). Front Nutr 2023; 10:1334344. [PMID: 38188878 PMCID: PMC10771830 DOI: 10.3389/fnut.2023.1334344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Wheat (Triticum aestivum Linn.; Poaceae) is the second most cultivated food crop among all global cereal crop production. The high carbohydrate content of its grains provides energy, multiple nutrients, and dietary fiber. After threshing, a substantial amount of wheat hull is produced, which serves as the non-food component of wheat. For the valorization of these by-products as a new resource from which functional components can be extracted, the hull from the seeds of cultivated wheat mutant lines bred after γ-irradiation were collected. Untargeted metabolite analysis of the hull of the original cultivar (a crossbreeding cultivar., Woori-mil × D-7) and its 983 mutant lines were conducted using ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry technique. A total of 55 molecules were tentatively identified, including 21 compounds found in the Triticum species for the first time and 13 compounds not previously described. Among them, seven flavonolignans with a diastereomeric structure, isolated as a single compound from the hull of T. aestivum in our previous study, were used as the standards in the metabolite analysis. The differences in their collision cross-section values were shown to contribute to the clear distinction between tricine-lignan stereoisomers. To select functionally active agents with anti-inflammatory activity among the identified compounds, the wheat hull samples were evaluated for their inhibitory effect on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. As a result of multivariate analysis based on the results of chemical and biological profiles of the wheat hull samples, 10 metabolites were identified as key markers, contributing to the distinction between active and inactive mutant lines. Considering that one of the four key markers attributed to anti-inflammatory activity has been identified to be a flavonolignan, the wheat hull could be a valuable source of diverse tricin-lignan type compounds and used as a natural health-promoting product in food supplements.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
5
|
Jeon D, Kim JB, Kang BC, Kim C. Deciphering the Genetic Mechanisms of Salt Tolerance in Sorghum bicolor L.: Key Genes and SNP Associations from Comparative Transcriptomic Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2639. [PMID: 37514252 PMCID: PMC10384642 DOI: 10.3390/plants12142639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Sorghum bicolor L. is a vital cereal crop for global food security. Its adaptability to diverse climates make it economically, socially, and environmentally valuable. However, soil salinization caused by climate extremes poses a threat to sorghum. This study aimed to identify candidate salt-tolerant genes and single nucleotide polymorphisms (SNPs) by performing a comparative transcriptome analysis on a mutant sorghum line and its wild type. The mutant line was generated through gamma ray exposure and selection for salt tolerance. Phenotypic measurements were taken, followed by mRNA sequencing and variant calling. In this study, potential genes and non-synonymous SNPs associated with salt tolerance were inferred, including LOC8071970, LOC8067721, LOC110430887, LOC8070256, and LOC8056880. These genes demonstrated notable differences in nsSNPs in comparison to the wild type, suggesting their potential roles in salt tolerance. Additionally, LOC8060874 (cyanohydrin beta-glucosyltransferase) was suggested as a key gene involved in salt tolerance due to its possible role in dhurrin biosynthesis under salt stress. In upcoming research, additional reverse genetics studies will be necessary in order to verify the function of those candidate genes in relation to salt stress. In conclusion, this study underscores the significance of investigating salt tolerance mechanisms and the potential key genes associated with salt tolerance in sorghum. Our findings may provide insights for future breeding strategies aimed at enhancing salinity tolerance and crop productivity.
Collapse
Affiliation(s)
- Donghyun Jeon
- Department of Science in Smart Agriculture System, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Beum-Chang Kang
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Changsoo Kim
- Department of Science in Smart Agriculture System, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Crop Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Garg M, Kaur S, Sharma A, Kumari A, Tiwari V, Sharma S, Kapoor P, Sheoran B, Goyal A, Krishania M. Rising Demand for Healthy Foods-Anthocyanin Biofortified Colored Wheat Is a New Research Trend. Front Nutr 2022; 9:878221. [PMID: 35634383 PMCID: PMC9131936 DOI: 10.3389/fnut.2022.878221] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 01/13/2023] Open
Abstract
Wheat is a vital and preferred energy source in many parts of the world. Its unique processing quality helps prepare many products such as bread, biscuit, pasta, and noodles. In the world of rapid economic growth, food security, in terms of nutritional profile, began to receive more significant interest. The development of biofortified colored wheat (black, purple, and blue) adds nutritional and functional health benefits to the energy-rich wheat. Colored wheat exists in three forms, purple, blue, and black, depending upon the types and position of the anthocyanins in wheat layers, regulated by the bHLH-MYC transcription factor. Colored wheat lines with high anthocyanin, iron, and zinc contents showed antioxidant and anti-inflammatory activity and possessed desirable product-making and commercial utilization features. The anthocyanin in colored wheat also has a broad spectrum of health implications, such as protection against metabolic syndromes like obesity, diabetes, hypertension, and dyslipidemia. The idea of developing anthocyanin-biofortified wheat shapes human beings' lifestyles as it is a staple food crop in many parts of the world. This review is a compilation of the currently available information on colored wheat in the critical aspects, including biochemistry, food processing, nutrition, genetics, breeding, and its effect on human health. Market generation and consumer awareness creation are vital challenges for its exploitation as a function food on a large scale.
Collapse
Affiliation(s)
- Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Satveer Kaur
- National Agri-Food Biotechnology Institute, Mohali, India.,Panjab University, Chandigarh, India
| | - Anjali Sharma
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Anita Kumari
- National Agri-Food Biotechnology Institute, Mohali, India.,Panjab University, Chandigarh, India
| | - Vandita Tiwari
- National Agri-Food Biotechnology Institute, Mohali, India.,Panjab University, Chandigarh, India
| | - Saloni Sharma
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Payal Kapoor
- National Agri-Food Biotechnology Institute, Mohali, India.,Panjab University, Chandigarh, India
| | - Bhawna Sheoran
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Ajay Goyal
- Chitkara University School of Engineering & Technology, Chitkara University, Solan, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Mohali, India
| |
Collapse
|
7
|
Dwivedi SL, Mattoo AK, Garg M, Dutt S, Singh B, Ortiz R. Developing Germplasm and Promoting Consumption of Anthocyanin-Rich Grains for Health Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.867897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malnutrition, unhealthy diets, and lifestyle changes are the major risk factors for overweight and obesity-linked chronic diseases in humans adversely impact achieving sustainable development goals. Colored grains are a source of anthocyanins, a group of flavonoids, that contribute positively to human health. This review focuses on genetic variation harnessed through breeding and biotechnology tools for developing anthocyanin-rich grain crops. Agronomic practices, genotype × environment interactions, different stresses, seed development and seed maturity are factors that impact the content and composition of anthocyanins. Significant progress has been made in characterizing genes associated with anthocyanin biosynthesis in cereal and other crops. Breeding has led to the development and release of grain anthocyanin-rich crop cultivars in Europe, America and in some countries in Asia. Notably, genetic engineering utilizing specific transcription factors and gene editing has led to the development of anthocyanin-rich genetic variants without any significant yield penalty. A variety of food products derived from colored grains or flours are now available in grocery stores and supermarkets worldwide. The public perception about anthocyanin-rich food is positive, but availability, affordability, and willingness to pay a higher price than before limit consumption. Together with other seed nutrition traits in breeding programs the inclusion of anthocyanins can ensure the development of cultivars that meet nutrition needs of humans, especially in the developing world.
Collapse
|
8
|
Biological Effect of Gamma Rays According to Exposure Time on Germination and Plant Growth in Wheat. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gamma rays as a type of ionizing radiation constitute a physical mutagen that induces mutations and could be effectively used in plant breeding. To compare the effects of gamma and ionizing irradiation according to exposure time in common wheat (Keumgang, IT 213100), seeds were exposed to 60Co gamma rays at different dose rates. To evaluate the amount of free radical content, we used electron spin resonance spectroscopy. Significantly more free radicals were generated in the case of long-term compared with short-term gamma-ray exposure at the same dose of radiation. Under short-term exposure, shoot and root lengths were slightly reduced compared with those of the controls, whereas long-term exposure caused severe growth inhibition. The expression of antioxidant-related and DNA-repair-related genes was significantly decreased under long-term gamma-ray exposure. Long-term exposure caused higher radiosensitivity than short-term exposure. The results of this study could help plant breeders select an effective mutagenic induction dose rate in wheat.
Collapse
|
9
|
Kil YS, Han AR, Hong MJ, Kim JB, Park PH, Choi H, Nam JW. 1H NMR-Based Chemometrics to Gain Insights Into the Bran of Radiation-Induced Colored Wheat Mutant. Front Nutr 2022; 8:806744. [PMID: 35059428 PMCID: PMC8764193 DOI: 10.3389/fnut.2021.806744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, wheat has attracted attention as a functional food, rather than a simple dietary energy source. Accordingly, whole-grain intake increases with an understanding of bioactive phytochemicals in bran. The development of colored wheat has drawn more attention to the value of bran owing to its nutritional quality, as well as the antioxidant properties of the colorant. The present 1H NMR-based chemometric study evaluated the compositional improvement of radiation-induced mutants in purple wheat by focusing on the predominant metabolites with high polarity. A total of 33 metabolites, including three choline derivatives, three sugar alcohols, four sugars, 13 amino acids, eight organic acids, and two nucleosides, were identified throughout the 1H NMR spectra, and quantification data were obtained for the identified metabolites via peak shape-based quantification. Principal component and hierarchical cluster analyses were conducted for performing multivariate analyses. The colored original wheat was found to exhibit improvements compared to yellow wheat in terms of the contents of primary metabolites, thus highlighting the importance of conducting investigations of polar metabolites. The chemometrics studies further revealed mutant lines with a compositional enhancement for metabolites, including lysine, proline, acetate, and glycerol.
Collapse
Affiliation(s)
- Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, South Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Min-Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan-si, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
10
|
Kan J, Hui Y, Xie W, Chen C, Liu Y, Jin C. Lily bulbs' polyphenols extract ameliorates oxidative stress and lipid accumulation in vitro and in vivo. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5038-5048. [PMID: 33570774 DOI: 10.1002/jsfa.11148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Polyphenols have the potential to reduce the risk of many metabolic disorders. Lily bulbs are rich in polyphenols; however, their effects on lipid metabolism remain unclear. This study aimed to explore the effects of lily bulbs' polyphenols (LBPs) on oxidative stress and lipid metabolism. RESULTS A total of 14 polyphenolic compounds in LBPs were identified by high-performance liquid chromatography equipped with diode-array detection mass spectrometry. Total phenolic compound in LBPs was 53.76 ± 1.12 g kg-1 dry weight. In cellular experiments, LBPs attenuated the disruption of mitochondrial membrane potential, impeded reactive oxygen species production, alleviated oxidative stress, and reduced lipid accumulation in oleic acid induced HepG2 cells. In in vivo studies, LBPs significantly inhibited body weight gain, reduced lipid levels in serum and liver, and improved oxidative damage in a dose-dependent manner in mice fed a high-fat diet. Moreover, LBPs ameliorated hepatic steatosis and suppressed the expression of hepatic-lipogenesis-related genes (SREBP-1c, FAS, ACC1, and SCD-1) and promoted lipolysis genes (SRB1 and HL) and lipid oxidation genes (PPARα and CPT-1) in mice fed a high-fat diet. CONCLUSION It was concluded that LBPs are a potential complementary therapeutic alternative in the development of functional foods to curb obesity and obesity-related diseases, such as metabolic syndrome. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yaoyao Hui
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Wangjing Xie
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Cuicui Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ying Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - ChangHai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Nam B, Jang HJ, Han AR, Kim YR, Jin CH, Jung CH, Kang KB, Kim SH, Hong MJ, Kim JB, Ryu HW. Chemical and Biological Profiles of Dendrobium in Two Different Species, Their Hybrid, and Gamma-Irradiated Mutant Lines of the Hybrid Based on LC-QToF MS and Cytotoxicity Analysis. PLANTS 2021; 10:plants10071376. [PMID: 34371579 PMCID: PMC8309310 DOI: 10.3390/plants10071376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022]
Abstract
The Dendrobium species (Orchidaceae) has been cultivated as an ornamental plant as well as used in traditional medicines. In this study, the chemical profiles of Dendrobii Herba, used as herbal medicine, Dendrobium in two different species, their hybrid, and the gamma-irradiated mutant lines of the hybrid, were systematically investigated via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QToF MS). Among the numerous peaks detected, 17 peaks were unambiguously identified. Gigantol (1), (1R,2R)-1,7-hydroxy-2,8-methoxy-2,3-dihydrophenanthrene-4(1H)-one (2), tristin (3), (−)-syringaresinol (4), lusianthridin (5), 2,7-dihydroxy-phenanthrene-1,4-dione (6), densiflorol B (7), denthyrsinin (8), moscatilin (9), lusianthridin dimer (10), batatasin III (11), ephemeranthol A (12), thunalbene (13), dehydroorchinol (14), dendrobine (15), shihunine (16), and 1,5,7-trimethoxy-2-phenanthrenol (17), were detected in Dendrobii Herba, while 1, 2, and 16 were detected in D. candidum, 1, 11, and 16 in D. nobile, and 1, 2, and 16 in the hybrid, D. nobile × candidum. The methanol extract taken of them was also examined for cytotoxicity against FaDu human hypopharynx squamous carcinoma cells, where Dendrobii Herba showed the greatest cytotoxicity. In the untargeted metabolite analysis of 436 mutant lines of the hybrid, using UPLC-QToF MS and cytotoxicity measurements combined with multivariate analysis, two tentative flavonoids (M1 and M2) were evaluated as key markers among the analyzed metabolites, contributing to the distinction between active and inactive mutant lines.
Collapse
Affiliation(s)
- Bomi Nam
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
- Institute of Natural Cosmetic Industry for Namwon, Namwon-si 55801, Jeollabuk-do, Korea
| | - Hyun-Jae Jang
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju-si 28116, Chungbuk-do, Korea;
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Ye-Ram Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Chang-Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si 54810, Jeollabuk-do, Korea;
| | - Kyo-Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Sang-Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Min-Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeongeup-si 56212, Jeollabuk-do, Korea; (B.N.); (A.-R.H.); (Y.-R.K.); (C.-H.J.); (S.-H.K.); (M.-J.H.); (J.-B.K.)
| | - Hyung-Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Cheongju-si 28116, Chungbuk-do, Korea;
- Correspondence: ; Tel.: +82-43-240-6117
| |
Collapse
|
12
|
Zou YF, Zhang YY, Zhu ZK, Fu YP, Paulsen BS, Huang C, Feng B, Li LX, Chen XF, Jia RY, Song X, He CL, Yin LZ, Ye G, Lv C, Yin ZQ. Characterization of inulin-type fructans from two species of Radix Codonopsis and their oxidative defense activation and prebiotic activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2491-2499. [PMID: 33063324 DOI: 10.1002/jsfa.10875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Codonopsis pilosula and C. tangshen are both plants widely used in traditional Chinese medicine. Polysaccharides, which are their primary active components, are thought to be important in their extensive use. In this study, two neutral polysaccharide fractions of C. pilosula (CPPN) and C. tangshen (CTPN) were obtained by fractionation on a DEAE-Sepharose column and characterized. RESULTS It was confirmed that the neutral polymers CPPN and CTPN were β-(2,1)-linked inulin-type fructans with non-reducing terminal glucose, and degree of polymerization (DP) of 19.6 and 25.2, respectively. The antioxidant and prebiotic activities in vitro were assayed based on IPEC-J2 cell lines and five strains of Lactobacillus. Results indicated that the effects of CPPN and CTPN were increased antioxidant defense in intestinal epithelial cells through enhanced cell viability, improved expression of total antioxidant capacity, glutathione peroxidase, superoxide dismutase and catalase, and reduced levels of malondialdehyde and lactic dehydrogenase. The prebiotic activity of CPPN and CTPN was demonstrated by the promoting effect on Lactobacillus proliferation in vitro. The different biological activities obtained between the two fractions are probably due to the different DP and thus molecular weights of CPPN and CTPN. CONCLUSION The inulin fractions from C. pilosula and C. tangshen were natural sources of potential intestinal antioxidants as well as prebiotics, which will be valuable in further studies and new applications of inulin-containing health products. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Yan-Yun Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Zhong-Kai Zhu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Berit S Paulsen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, Area of Pharmacognosy, University of Oslo, Oslo, Norway
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Chang-Liang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Li-Zi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, PR China
| |
Collapse
|
13
|
Anti-Inflammatory Flavonolignans from Triticum aestivum Linn. Hull. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wheat (Triticum aestivum Linn.; Poaceae) is a very common and important food grain and ranks second in total cereal crop production. A large amount of wheat hull is produced after threshing that, as the non-food part of wheat, is agro-waste, accounting for 15~20% of the wheat. This study aimed at biologically and phytochemically investigating wheat hull for its valorization as a by-product. In our ongoing search for natural product-derived anti-inflammatory agents, T. aestivum hull was evaluated for its nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-activated RAW 264.7 cells, and the phytochemical investigation of the ethyl acetate fraction showing inhibitory effect led to the isolation of a flavone (1) and seven flavonolignans (2–8). Compounds 2–8 have not yet been isolated from Triticum species. All compounds were evaluated for their LPS-induced NO production inhibition, and 1, 2, 4, 6, and 8 exhibited inhibitory effects with IC50 values ranging from 24.14 to 58.95 μM. These results suggest the potential of using T. aestivum hull as a source for producing anti-inflammatory components, enhancing its valorization as a by-product.
Collapse
|
14
|
Isolation and characterization of kelch repeat-containing F-box proteins from colored wheat. Mol Biol Rep 2020; 47:1129-1141. [PMID: 31907740 DOI: 10.1007/s11033-019-05210-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022]
Abstract
F-box proteins play important roles in the regulation of various developmental processes in plants. Approximately 1796 F-box genes have been identified in the wheat genome, but details of their functions remain unknown. Moreover, not much was known about the roles of kelch repeat domain-containing F-box genes (TaKFBs) in wheat. In the present study, we isolated five TaKFBs to investigate the roles of KFBs at different stages of colored wheat grain development. The cDNAs encoding TaKFB1, TaKFB2, TaKFB3, TaKFB4, and TaKFB5 contained 363, 449, 353, 382, and 456 bp open reading frames, respectively. All deduced TaKFBs contained an F-box domain (IPR001810) and a kelch repeat type 1 domain (IPR006652), except TaKFB2. Expression of TaKFBs was elevated during the pigmentation stages of grain development. To clarify how TaKFB and SKP interact in wheat, we investigated whether five TaKFB proteins showed specificity for six SKP proteins using a yeast two-hybrid (Y2H) assay. An Y2H screen was performed to search for proteins capable of binding the TaKFBs and interaction was identified between TaKFB1 and aquaporin PIP1. To examine the subcellular localization of TaKFBs, we transiently expressed TaKFB-green fluorescent protein (GFP) fusions in tobacco leaves; the TaKFB-GFP fusions were detected in the nucleus and the cytoplasm. Y2H and bimolecular fluorescence complementation (BiFC) assays revealed that TaKFB1 specifically interacts with aquaporin PIP1. These results will provide useful information for further functional studies on wheat F-box proteins and their possible roles.
Collapse
|
15
|
de Camargo AC, Favero BT, Morzelle MC, Franchin M, Alvarez-Parrilla E, de la Rosa LA, Geraldi MV, Maróstica Júnior MR, Shahidi F, Schwember AR. Is Chickpea a Potential Substitute for Soybean? Phenolic Bioactives and Potential Health Benefits. Int J Mol Sci 2019; 20:E2644. [PMID: 31146372 PMCID: PMC6600242 DOI: 10.3390/ijms20112644] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023] Open
Abstract
Legume seeds are rich sources of protein, fiber, and minerals. In addition, their phenolic compounds as secondary metabolites render health benefits beyond basic nutrition. Lowering apolipoprotein B secretion from HepG2 cells and decreasing the level of low-density lipoprotein (LDL)-cholesterol oxidation are mechanisms related to the prevention of cardiovascular diseases (CVD). Likewise, low-level chronic inflammation and related disorders of the immune system are clinical predictors of cardiovascular pathology. Furthermore, DNA-damage signaling and repair are crucial pathways to the etiology of human cancers. Along CVD and cancer, the prevalence of obesity and diabetes is constantly increasing. Screening the ability of polyphenols in inactivating digestive enzymes is a good option in pre-clinical studies. In addition, in vivo studies support the role of polyphenols in the prevention and/or management of diabetes and obesity. Soybean, a well-recognized source of phenolic isoflavones, exerts health benefits by decreasing oxidative stress and inflammation related to the above-mentioned chronic ailments. Similar to soybeans, chickpeas are good sources of nutrients and phenolic compounds, especially isoflavones. This review summarizes the potential of chickpea as a substitute for soybean in terms of health beneficial outcomes. Therefore, this contribution may guide the industry in manufacturing functional foods and/or ingredients by using an undervalued feedstock.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Bruno Trevenzoli Favero
- University of Copenhagen, Department of Plant and Environmental Sciences, 2630 Taastrup, Denmark.
| | - Maressa Caldeira Morzelle
- Department of Food and Nutrition, Faculty of Nutrition, Federal University of Mato Grosso, Fernando Correa Avenue, P.O. box 2367, Cuiabá, MT 78060-900, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP 13414-903, Brazil.
| | - Emilio Alvarez-Parrilla
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Laura A de la Rosa
- Department of Chemical Biological Sciences, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo, s/n, Cd, Juárez, Chihuahua 32310, México.
| | - Marina Vilar Geraldi
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas, SP 13083-862, Brazil.
| | | | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| |
Collapse
|
16
|
Onda Y, Inoue K, Sawada Y, Shimizu M, Takahagi K, Uehara-Yamaguchi Y, Hirai MY, Garvin DF, Mochida K. Genetic Variation for Seed Metabolite Levels in Brachypodium distachyon. Int J Mol Sci 2019; 20:ijms20092348. [PMID: 31083584 PMCID: PMC6540107 DOI: 10.3390/ijms20092348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/27/2022] Open
Abstract
Metabolite composition and concentrations in seed grains are important traits of cereals. To identify the variation in the seed metabolotypes of a model grass, namely Brachypodium distachyon, we applied a widely targeted metabolome analysis to forty inbred lines of B. distachyon and examined the accumulation patterns of 183 compounds in the seeds. By comparing the metabolotypes with the population structure of these lines, we found signature metabolites that represent different accumulation patterns for each of the three B. distachyon subpopulations. Moreover, we found that thirty-seven metabolites exhibited significant differences in their accumulation between the lines Bd21 and Bd3-1. Using a recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21, we identified the quantitative trait loci (QTLs) linked with this variation in the accumulation of thirteen metabolites. Our metabolite QTL analysis illustrated that different genetic factors may presumably regulate the accumulation of 4-pyridoxate and pyridoxamine in vitamin B6 metabolism. Moreover, we found two QTLs on chromosomes 1 and 4 that affect the accumulation of an anthocyanin, chrysanthemin. These QTLs genetically interacted to regulate the accumulation of this compound. This study demonstrates the potential for metabolite QTL mapping in B. distachyon and provides new insights into the genetic dissection of metabolomic traits in temperate grasses.
Collapse
Affiliation(s)
- Yoshihiko Onda
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yuji Sawada
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Minami Shimizu
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Kotaro Takahagi
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yukiko Uehara-Yamaguchi
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Masami Y Hirai
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - David F Garvin
- Plant Science Research Unit, United States Department of Agriculture, Agricultural Research Service, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Institute of Plant Science and Resource, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|