1
|
Suriyapha C, Phupaboon S, Dagaew G, Sommai S, Matra M, Prachumchai R, Haitook T, Wanapat M. In vitro fermentation end-products and rumen microbiome as influenced by microencapsulated phytonutrient pellets (LEDRAGON) supplementation. Sci Rep 2024; 14:14425. [PMID: 38910145 PMCID: PMC11194279 DOI: 10.1038/s41598-024-59697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/15/2024] [Indexed: 06/25/2024] Open
Abstract
The objective of this study was to investigate the effect of microencapsulated bioactive compounds from lemongrass mixed dragon fruit peel pellet (MiEn-LEDRAGON) supplementation on fermentation characteristics, nutrient degradability, methane production, and the microbial diversity using in vitro gas production technique. The study was carried out using a completely randomized design (CRD) with five levels of MiEn-LEDRAGON supplementation at 0, 1, 2, 3, and 4% of the total dry matter (DM) substrate. Supplementation of MiEn-LEDRAGON in the diet at levels of 3 or 4% DM resulted in increased (p < 0.05) cumulative gas production at 96 hours (h) of incubation time, reaching up to 84.842 ml/ 0.5 g DM. Furthermore, supplementation with 3% MiEn-LEDRAGON resulted in higher in vitro nutrient degradability and ammonia-nitrogen concentration at 24 h of the incubation time when compared to the control group (without supplementation) by 5.401% and 11.268%, respectively (p < 0.05). Additionally, supplementation with MiEn-LEDRAGON in the diet led to an increase in the population of Fibrobacter succinogenes at 24 h and Butyrivibrio fibrisolvens at 12 h, while decreasing the population of Ruminococcus albus, Ruminococcus flavefaciens, and Methanobacteriales (p < 0.05). Moreover, supplementation of MiEn-LEDRAGON in the diet at levels of 2 to 4% DM resulted in a higher total volatile fatty acids (VFA) at 24 h, reaching up to 73.021 mmol/L (p < 0.05). Additionally, there was an increased proportion of propionic acid (C3) and butyric acid (C4) at 12 h (p < 0.05). Simultaneously, there was a decrease in the proportion of acetic acid (C2) and the ratio of acetic acid to propionic acid (C2:C3), along with a reduction of methane (CH4) production by 11.694% when comparing to the 0% and 3% MiEn-LEDRAGON supplementation (p < 0.05). In conclusion, this study suggests that supplementing MiEn-LEDRAGON at 3% of total DM substrate could be used as a feed additive rich in phytonutrients for ruminants.
Collapse
Affiliation(s)
- Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rittikeard Prachumchai
- Division of Animal Science, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12130, Pathum Thani, Thailand
| | - Theerachai Haitook
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Zhang J, Yu K, Yu M, Dong X, Tariq Sarwar M, Yang H. Facet-engineering strategy of phosphogypsum for production of mineral slow-release fertilizers with efficient nutrient fixation and delivery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:259-270. [PMID: 38677143 DOI: 10.1016/j.wasman.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Phosphogypsum (PG) presents considerable potential for agricultural applications as a secondary primary resource. However, it currently lacks environmentally friendly, economically viable, efficient, and sustainable reuse protocols. This study firstly developed a PG-based mineral slow-release fertilizer (MSRFs) by internalization and fixation of urea within the PG lattice via facet-engineering strategy. The molecular dynamics simulations demonstrated that the binding energy of urea to the (041) facet of PG surpassed that of the (021) and (020) facets, with urea's desorption energy on the (041) facet notably higher than on the (021) and (020) facets. Guided by these calculations, we selectively exposed the (041) dominant facet of PG, and then achieving complete urea fixation within the PG lattice to form urea-PG (UPG). UPG exhibited a remarkable 48-fold extension in N release longevity in solution and a 45.77% increase in N use efficiency by plants compared to conventional urea. The facet-engineering of PG enhances the internalization and fixation efficiency of urea for slow N delivery, thereby promoting nutrient uptake for plant growth. Furthermore, we elucidated the intricate interplay between urea and PG at the molecular level, revealing the involvement of hydrogen and ionic bonding. This specific bonding structure imparts exceptional thermal stability and water resistance to the urea within UPG under environmental conditions. This study has the potential to provide insights into the high-value utilization of PG and present innovative ideas for designing efficient MSRFs.
Collapse
Affiliation(s)
- Jun Zhang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Kun Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Inácio AG, Ítavo CCBF, Dias AM, Dos Santos Difante G, de Queiroz JF, de Oliveira LCS, Dos Santos GT, Ítavo LCV. A new feed additive composed of urea and soluble carbohydrate coated with wax for controlled release in ruminal fluid. Sci Rep 2022; 12:4487. [PMID: 35296709 PMCID: PMC8927347 DOI: 10.1038/s41598-022-08372-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Urea is a compound widely used as a feed additive for ruminants; however, when used profusely, it can lead animals to intoxication. Another factor that affects the effectiveness of urea is the lack of synchronization between the nitrogen and the availability of carbohydrates, necessary for better development of the ruminal microbiota. In order to circumvent these problems and improve the efficiency in urea use, the present study developed two new nutritional additives (F16 and F17) with different carbohydrate sources. One of the products developed (F16) used sugarcane molasses as a carbohydrate source, while the other (F17) used cassava starch. In addition to the carbohydrate source, both products contained the same amounts of urea, sulfur, calcium carbonate and were coated with carnauba wax. The supplements developed and two other commercial products based on extruded urea (UE) and polymer-coated urea (UP) were tested for solubility and cumulative gas production. The wax used in the coating process of the developed products (F16 and F17) proved to be efficient in reducing the solubility of the ingredients used. During chemical composition analysis it was verified that both supplements developed contained protein equivalent above 150% of crude protein. The cumulative gas production showed a higher production related to the product F17 (p < 0.05). Through thermogravimetric analysis, it was found the chemical integrity of the ingredients that make up the supplements developed. Therefore, is possible to reduce the solubility of urea using carnauba wax as a coating material. The formula with cassava starch associated with urea (F17) had a better synchronization during the degradation of its ingredients.
Collapse
Affiliation(s)
- Alexandre Guimarães Inácio
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Camila Celeste Brandão Ferreira Ítavo
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Alexandre Menezes Dias
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Gelson Dos Santos Difante
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Joice Ferreira de Queiroz
- Chemistry Institute, Federal University of Mato Grosso do Sul, 1555 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Lincoln Carlos Silva de Oliveira
- Chemistry Institute, Federal University of Mato Grosso do Sul, 1555 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Geraldo Tadeu Dos Santos
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil
| | - Luís Carlos Vinhas Ítavo
- Faculty of Veterinary Medicine and Animal Science, Federal University of Mato Grosso do Sul, 2443 Senador Filinto Muller Ave., Campo Grande, MS, 79070-900, Brazil.
| |
Collapse
|
4
|
Li T, Teng D, Mao R, Hao Y, Wang X, Wang J. Recent progress in preparation and agricultural application of microcapsules. J Biomed Mater Res A 2019; 107:2371-2385. [PMID: 31161699 DOI: 10.1002/jbm.a.36739] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in life science technology have prompted the need to develop microcapsule delivery systems that can encapsulate many different functional or active materials such as drugs, peptides, and live cells, etc. The encapsulation technology is now commonly used in medicine, agriculture, food, and other many fields. The application of biodegradable microcapsule systems can not only effectively prevent the degradation of core materials in the body or the biological environment, but also improve the bioavailability, control the release and prolong the halftime or storage of core active materials. Various wall materials, preparation methods, encapsulation processes, and release mechanisms are covered in this review, as well as several main factors including pH values, temperatures, particle sizes, and additives, which can strongly influence the encapsulation efficiency, the strength, and release of microcapsules. The improvement of coating materials, preparation techniques, and challenges are also highlighted, as well as application prospects.
Collapse
Affiliation(s)
- Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|