1
|
Marques SM, Salwa, Lewis CR, Devi V, Kumar L. Formulation and evaluation of HPMC and pullulan-based rapidly dissolving films containing cilnidipine nanosuspension. Int J Biol Macromol 2025; 310:143329. [PMID: 40254208 DOI: 10.1016/j.ijbiomac.2025.143329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cilnidipine is used to treat hypertension. However, it has poor solubility and undergoes extensive first-pass metabolism, which leads to poor bioavailability. This work aimed to prepare rapidly dissolving films (RDFs) containing nanosuspension of CLD with HPMC and pullulan as film-formers. These RDFs deliver the drugs through the buccal mucosa and bypass the first-pass metabolism, thereby increasing bioavailability. The nanosuspension was prepared using the nanoprecipitation technique and was optimized using the CCD. The optimized formulation had an average size and zeta potential of 362.23 nm and -39.1 mV, respectively. FT-IR studies indicated no interaction between CLD and stabilizers. DSC and XRD studies confirmed reduced crystallinity of CLD. SEM revealed the capsular morphology of nanoparticles. The optimized RDFs had a 2.83 ± 0.24 N/mm2 tensile strength, 11.61 ± 2.87 % elongation, 17.21 ± 1.06 s disintegration time, and in-vitro release of 91.77 ± 6.22 % in 60 min. A more than two-fold increase in drug permeation was recorded from the CLD NS-RDF as compared to the CLD CS-RDF. The CLD NS-RDF exhibited a significant increase in AUC0-24h, Cmax, and a decrease in Tmax and MRT as compared to the CLD CS-RDF. The CLD NS-RDF also had a superior effect to control the blood pressure in rats as compared to the CLD CS-RDF.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Cheryl Rhea Lewis
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576 104 Udupi, Karnataka, India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, 844 102 Vaishali, Bihar, India.
| |
Collapse
|
2
|
Yin Y, Jiang M, Liang Y, Htwe KK, Xiao N, Liu Y, Wang Z, Liu S. Ultrasound improves the digestibility of oxidized silver carp (Hypophthalmichthys molitrix) myofibrillar protein: Changes from structure to peptide release. Food Res Int 2025; 204:115962. [PMID: 39986800 DOI: 10.1016/j.foodres.2025.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
The objective of this study was to investigate the effect of ultrasound on the digestibility of oxidized silver carp myofibrillar protein (MP). The MP solutions were oxidized with a hydroxyl radical generating system, and subsequently subjected to 100 W, 150 W, 200 W ultrasound treatment, respectively. The results showed that ultrasound effectively recovered the reduction in the digestibility of oxidized MP, especially the 150 W ultrasound achieved the best effect. The 150 W ultrasound reduced the particle size and turbidity of oxidized MP by 26.71 % and 35.49 %, respectively. The analysis of sulfhydryl, disulfide bonds, intrinsic fluorescence, and surface hydrophobicity suggested that ultrasound caused the breakage of disulfide bonds, which promoted the depolymerization oxidized MP. The morphology observed by atomic force microscope further evidenced that ultrasound reduced the degree of oxidized MP aggregation. The results of peptidomics showed that ultrasound treatment largely increased the peptide release of oxidized MP during the gastrointestinal digestion, especially the peptide containing lysine and arginine. Take together, ultrasound promoted the break of disulfide bond, which led to the depolymerization of oxidized MP and thus improved the digestibility of oxidized MP.
Collapse
Affiliation(s)
- Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088 China
| | - Meiyan Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088 China
| | - Yiwen Liang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088 China
| | - Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088 China
| | - Naiyong Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088 China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088 China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088 China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088 China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034 China.
| |
Collapse
|
3
|
Talens C, Alvarez‐Sabatel S, Sanmartín E, Garcia‐Fontanals L, Talens P. Comprehensive Sensory Evaluation in Low-Fat Emulsions: A Systematic Review of Diverse Food Applications. Food Sci Nutr 2025; 13:e4700. [PMID: 39803225 PMCID: PMC11717037 DOI: 10.1002/fsn3.4700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
The prevalence of diet-related health issues has driven the demand for healthier food options, particularly those with reduced fat content. This systematic review evaluates the integration of sensory analysis in low-fat emulsion research, highlighting a significant gap in current practices. From an initial pool of 400 articles, 227 unique studies were screened, but only 15 (6.6%) included sensory analysis, underscoring a major shortfall in evaluating consumer acceptance. The reviewed studies investigated various emulsion types, including simple emulsions, emulsion gels, and Pickering emulsions, utilizing a diverse range of fat replacers, such as plant-based oils, proteins, and modified starches. These fat replacers included natural and modified ingredients such as banana peel flour, lard-based diacylglycerols, cedar oil cake, microparticulated egg white proteins, Nigella sativa oil, avocado, whey protein, flaxseed oil, polyphenol extracts, okara, microcrystalline wax and cellulose, rapeseed cake, and polysaccharide nanoparticles. These innovative approaches aimed to improve the sensory attributes of meat products, dairy-type applications, salad dressings, and bakery products. The review highlights a disparity in the rigor and comprehensiveness of sensory evaluations among studies. While some studies have thoroughly assessed multiple attributes, others have been limited to general acceptability. This variability underscores the need for standardized, detailed sensory analysis in low-fat emulsion research to ensure a comprehensive understanding of consumer preferences and product quality.
Collapse
Affiliation(s)
- Clara Talens
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA)Parque Tecnológico de Bizkaia, Astondo BideaDerioBizkaiaSpain
| | - Saioa Alvarez‐Sabatel
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA)Parque Tecnológico de Bizkaia, Astondo BideaDerioBizkaiaSpain
| | - Esther Sanmartín
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA)Parque Tecnológico de Bizkaia, Astondo BideaDerioBizkaiaSpain
| | - Laura Garcia‐Fontanals
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA)Parque Tecnológico de Bizkaia, Astondo BideaDerioBizkaiaSpain
| | - Pau Talens
- Instituto Universitario de Ingeniería de Alimentos—FoodUPV Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
4
|
Wang Z, Chen Z, Tan L, Tu J, Sun Y, Ye Y, Zhang S, Wu L. Impact of high-speed shear homogenization pretreatment on structure, functional characteristics, and interfacial properties: A case of Rice Glutelin. Food Chem X 2025; 25:102219. [PMID: 39974539 PMCID: PMC11838111 DOI: 10.1016/j.fochx.2025.102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
In this study, rice glutelin (RG) was pretreated using high-speed shear homogenization (HSSH) to enhance its functional characteristics and interfacial properties through structural modification. Its structure was characterized using techniques such as SDS-PAGE, FT-IR, SEM, interface analyzer, dynamic and electrophoretic light scattering. The results indicated that HSSH preserved the primary structure of RG but significantly affected its secondary structure. It increased the surface hydrophobicity and conformational flexibility, enhanced electrostatic repulsion, reduced the particle size, and produced a loose and porous microstructure. These alterations resulted in variations in the functional and interfacial properties of RG. After HSSH treatment at 12,000 rpm for 2 min, RG exhibited optimal improvements in solubility (5.56 %), WHC (6.00 g/g) and OHC (2.20 g/g), EAI (10.19 m2/g) and ESI (341.98 min), as well as FC (16.20 %) and FS (64.21 %). However, excessive HSSH treatment induced the formation of aggregates, which is detrimental to the improvement of these properties.
Collapse
Affiliation(s)
- Zhuangpeng Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhangtao Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lufan Tan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jin Tu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuanping Ye
- Jiangxi Riyuan Food Co., Shangrao 334604, China
| | - Senwang Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Riyuan Food Co., Shangrao 334604, China
| |
Collapse
|
5
|
Huang X, Yang H, Lou A, Jiang S, Kang K, Wei Y, Li X, Wu Y, Yu M, Huang Q. Effect of psyllium husk powder on the gelation behavior, microstructure, and intermolecular interactions in myofibrillar protein gels from Andrias davidianus. Food Chem 2024; 458:140266. [PMID: 38964095 DOI: 10.1016/j.foodchem.2024.140266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The interaction between proteins and soluble dietary fibers plays a vital role in the development of animal-derived foods. Herein, the effects of different contents (0-3.0%) of round-bracted psyllium husk powder (PHP) on the gelation behavior, microstructure, and intermolecular interactions of Andrias davidianus myofibrillar protein (MP) were investigated. Rheological and chemical forces suggested that PHP (1.5%-2.0%) enhanced the functional properties of MP at low ionic strength, thereby increasing the viscoelasticity of mixed gels. SDS-PAGE revealed that PHP reinforced the cross-linking and aggregation of protein molecules. Circular dichroism spectroscopy, low-field nuclear magnetic resonance, and scanning electron microscopy demonstrated that PHP induced the transformation of α-helix (decreased by 14.85%) to an ordered β-sheet structure (increased by 81.58%), which was more favorable for the formation of dense network structure and improved (10.53%) the water retention of MP gels. This study provided new insights for PHP to effectively meliorate the heat-induced gelling properties of MP.
Collapse
Affiliation(s)
- Xiang Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, 550025, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Yang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China.
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 420128, China
| | - Shuiyan Jiang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China
| | - Kelang Kang
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China
| | - Yingjuan Wei
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China.
| | - Xin Li
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China
| | - Yingmei Wu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China.
| | - Meijuan Yu
- DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan, Academy of Agricultural Sciences, Changsha 410125, China.
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
6
|
Zhao J, Xu S, Gu L, Yang F, Fang X, Gao S. High internal phase emulsions gels stabilized by soy protein isolate and rutin complexes: Encapsulation, interfacial properties and in vitro digestibility. Lebensm Wiss Technol 2024; 203:116317. [DOI: 10.1016/j.lwt.2024.116317] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
|
7
|
Zhang F, Wang P, Huang M, Xu X. Modulating the properties of myofibrillar proteins-stabilized high internal phase emulsions using chitosan for enhanced 3D-printed foods. Carbohydr Polym 2024; 324:121540. [PMID: 37985113 DOI: 10.1016/j.carbpol.2023.121540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
The 3D printability of myofibrillar proteins (MP)-based high internal phase emulsions (HIPEs) is a concern. This study investigated the influence of chitosan (CS) concentrations (0-1.5 wt%) on the physicochemical properties, microstructure, rheological properties, and stability of MP-based HIPEs. Results showed that the interaction between MP and CS efficiently modulated the formation of HIPEs by modifying interfacial tension and network structure. The addition of CS (≤ 0.9 wt%, especially at 0.6 wt%) acted as a spatial barrier, filling the network between droplets, which triggered electrostatic repulsion between CS and MP particles, enhancing MP's interfacial adsorption capacity. Consequently, droplet sizes decreased, emulsion stability increased, and HIPEs became more stable during freeze-thaw cycles, centrifugation, and heat treatment. The rheological analysis further demonstrated that the low energy storage modulus (G', 330.7 Pa) of MP-based HIPEs exhibited sagging and deformation during the self-supporting phase. However, adding CS (0.6 wt%) significantly increased the G' (1034 Pa) of MP-based HIPEs. Conversely, increasing viscosity and spatial resistance attributed to CS (> 0.9 wt%) noticeably caused larger droplet sizes, thereby diminishing the printability of MP-based HIPEs. These findings provide a promising strategy for developing high-performance and consumer-satisfaction 3D printing inks using MP-stabilized HIPEs.
Collapse
Affiliation(s)
- Feiyu Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
8
|
Liu R, Yang Y, Cui X, Mwabulili F, Xie Y. Effects of Baking and Frying on the Protein Oxidation of Wheat Dough. Foods 2023; 12:4479. [PMID: 38137283 PMCID: PMC10742965 DOI: 10.3390/foods12244479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Protein oxidation caused by food processing is harmful to human health. A large number of studies have focused on the effects of hot processing on protein oxidation of meat products. As an important protein source for human beings, the effects of hot processing on protein oxidation in flour products are also worthy of further study. This study investigated the influences on the protein oxidation of wheat dough under baking (0-30 min, 200 °C or 20 min, 80-230 °C) and frying (0-18 min, 180 °C or 10 min, 140-200 °C). With the increase in baking and frying time and temperature, we found that the color of the dough deepened, the secondary structure of the protein changed from α-helix to β-sheet and β-turn, the content of carbonyl and advanced glycation end products (AGEs) increased, and the content of free sulfhydryl (SH) and free amino groups decreased. Furthermore, baking and frying resulted in a decrease in some special amino acid components in the dough, and an increase in the content of amino acid oxidation products, dityrosine, kynurenine, and N'-formylkynurenine. Moreover, the nutritional value evaluation results showed that excessive baking and frying reduced the free radical scavenging rate and digestibility of the dough. These results suggest that frying and baking can cause protein oxidation in the dough, resulting in the accumulation of protein oxidation products and decreased nutritional value. Therefore, it is necessary to reduce excessive processing or take reasonable intervention measures to reduce the effects of thermal processing on protein oxidation of flour products.
Collapse
Affiliation(s)
- Ru Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaojie Cui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Rodríguez-Cortina A, Hernández-Carrión M. Microcapsules of Sacha Inchi seed oil (Plukenetia volubilis L.) obtained by spray drying as a potential ingredient to formulate functional foods. Food Res Int 2023; 170:113014. [PMID: 37316081 DOI: 10.1016/j.foodres.2023.113014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Sacha Inchi seed oil (SIO) is rich in omega 3, 6, and 9 fatty acids with important health benefits, but is temperature sensitive. Spray drying is a technology that improves the long-term stability of bioactive compounds. This work aimed to study the effect of three different homogenization techniques on some physical properties and bioavailability of microcapsules of Sacha Inchi seed oil (SIO) emulsions obtained by spray drying. Emulsions were formulated with SIO (5%, w/w), maltodextrin:sodium caseinate as wall material (10%, w/w; 85:15), Tween 20 (1%, w/w) and Span 80 (0.5%, w/w) as surfactants and water up to 100% (w/w). Emulsions were prepared using high-speed (Dispermat D-51580, 18,000 rpm, 10 min), conventional (Mixer K-MLIM50N01, Turbo speed, 5 min), and ultrasound probe (Sonics Materials VCX 750, 35% amplitude, 750 W, 30 min) homogenization. SIO microcapsules were obtained in a Mini Spray B-290 (Büchi) using two inlet temperatures of the drying air (150 and 170 °C). Moisture, density, dissolution rate, hygroscopicity, drying efficiency (EY), encapsulation efficiency (EE), loading capacity, and oil release in digestive fluids in vitro were studied. Results showed that the microcapsules obtained by spray-drying had low moisture values and high encapsulation yield and efficiency values (greater than 50% and 70%, respectively). The thermogravimetric analysis indicates that heat protection was assured, enhancing the shelf life and the ability to withstand thermal food processing. Results suggest that spray-drying encapsulation could be a suitable technology to successfully microencapsulate SIO and enhance the absorption of bioactive compounds in the intestine. This work highlights the use of Latin American biodiversity and spray drying technology to ensure the encapsulation of bioactive compounds. This technology represents an opportunity for the development of new functional foods, improving the safety and quality of conventional foods.
Collapse
Affiliation(s)
- A Rodríguez-Cortina
- Universidad de los Andes, Department of Chemical and Food Engineering. Grupo de Diseño de Productos y Procesos (GDPP). Bogotá, Colombia
| | - M Hernández-Carrión
- Universidad de los Andes, Department of Chemical and Food Engineering. Grupo de Diseño de Productos y Procesos (GDPP). Bogotá, Colombia.
| |
Collapse
|
10
|
Zhou L, Jiang J, Feng F, Wang J, Cai J, Xing L, Zhou G, Zhang W. Effects of carboxymethyl cellulose on the emulsifying, gel and digestive properties of myofibrillar protein-soybean oil emulsion. Carbohydr Polym 2023; 309:120679. [PMID: 36906362 DOI: 10.1016/j.carbpol.2023.120679] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/13/2023]
Abstract
Improving the qualities of vegetable oil replaced animal fat meat products is particularly fascinating for the development of healthy meat products. This work was designed to investigate the effects of different carboxymethyl cellulose (CMC) concentrations (0.01 %, 0.05 %, 0.1 %, 0.2 %, and 0.5 %) on the emulsifying, gelation, and digestive properties of myofibrillar protein (MP)-soybean oil emulsions. The changes in MP emulsion characteristics, gelation properties, protein digestibility, and oil release rate were determined. Results demonstrated that CMC addition decreased the average droplet size and increased the apparent viscosity, storage modulus, and loss modulus of MP emulsions, and a 0.5 % CMC addition significantly increased the storage stability during 6 weeks. Lower CMC addition (0.01 % to 0.1 %) increased the hardness, chewiness, and gumminess of emulsion gel especially for the 0.1 % CMC addition, while higher CMC (0.5 %) content decreased the texture properties and water holding capacity of emulsion gels. The addition of CMC decreased protein digestibility during the gastric stage, and 0.01 % and 0.05 % CMC addition significantly decreased the free fatty acid release rate. In summary, the addition of CMC could improve the stability of MP emulsion and the texture properties of the emulsion gels, and decrease protein digestibility during the gastric stage.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jinyuan Jiang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Fan Feng
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jingyu Wang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Jiaming Cai
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Guanghong Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| | - Wangang Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China..
| |
Collapse
|
11
|
Zhou L, Zhang R, Zhang J, Yin Y, Wei L, Xing L, Zhang W. Effects of ultrasound on the oxidation and structures of the myofibrillar protein in the presence or absence of soybean oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37186089 DOI: 10.1002/jsfa.12661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/10/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ultrasound is widely used as a novel non-thermal processing technique to improve protein properties. In recent decades, applying ultrasound-assisted emulsification (UAE) to produce protein-stabilized emulsion has attracted people's attention. Instead of applying ultrasound to treat a single protein solution, UAE treatment refers to the use of sonication to a mixture of protein and oil. The purpose of this study was to compare the different effects of ultrasound treatment on the properties of the myofibrillar protein (MP) in the presence or absence of soybean oil. A suitable sonication power was selected based on the change in emulsion properties. RESULTS The 300W sonication power was selected due to its most effectively decreased emulsion droplet size and increased absolute zeta potential. Sonication more significantly increased the protein carbonyl content and disulfide bonds of the MP-soybean oil sample than MP sample. Due to the existence of oil, ultrasound could unfold more protein molecules illustrated by a lower α-helix content and intrinsic fluorescence intensity, and a higher surface hydrophobicity. LC-MS/MS results illustrated that sonication enhanced the myosin heavy chain and actin content at the soybean oil interface as well as accelerated the myosin light chain to separate from myosin in the MP-soybean oil system. CONCLUSION In summary, ultrasound treatment could lead to a higher level of protein oxidation and more protein molecule exposure in the MP with the presence of oil system than in the oil-free MP system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruyu Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yantao Yin
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lanlan Wei
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lujuan Xing
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Yin Y, Xing L, Zhang W. Moderate Protein Oxidation Improves Bovine Myofibril Digestibility by Releasing Peptides in the S2 Region of Myosin: A Peptidomics Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2514-2522. [PMID: 36703551 DOI: 10.1021/acs.jafc.2c07708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study aimed to investigate the influence of protein oxidation on the digestive properties of beef myofibrillar protein (MP). MP was treated with a hydroxyl radical-generating system containing various concentrations of H2O2. The increased content in a free sulfhydryl group and surface hydrophobicity indicated that oxidation treatment with 1 mM H2O2 induced unfolding of MP. Reducing and nonreducing SDS-PAGE results suggested that 10 mM H2O2 oxidation treatment resulted in aggregation of MP; meanwhile, the disulfide bond was the major covalent bond involved in aggregation. Peptidomics showed that peptides in the digestion products of MP were mainly derived from myosin tail. Moderate oxidation (1 mM H2O2) facilitated the release of peptide in the rod portion (S2) of myosin, whereas excessive oxidation (10 mM H2O2) inhibited peptide release in the light meromyosin region. This work presents insightful information for the crucial impact of oxidation on meat protein digestibility from the peptidomics perspective.
Collapse
Affiliation(s)
- Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, PR China
| | - Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, PR China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing210095, PR China
| |
Collapse
|
13
|
Cui Y, Liu J, Han S, Li P, Luo D, Guo J. Physical Stability of Chestnut Lily Beverages (CLB): Effects of Shear Homogenization on Beverage Rheological Behavior, Particle Size, and Sensory Properties. Foods 2022. [PMCID: PMC9601390 DOI: 10.3390/foods11203188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The processing parameters have a crucial influence on the stability and sensory quality of beverages. The focus of this study is to observe the rheological behavior, particle size distribution, stability, color change, and sensory evaluation of chestnut lily beverages (CLB) at different rotational speeds (0~20,000 rpm) using a high-shear homogeneous disperser. The CLB system exhibited non-Newtonian shear-thinning behavior. As the homogenization speed increased (0~12,000 rpm), the viscosity increased (0.002~0.059 Pa.s). However, when the rotational speed shear continued to increase (12,000~20,000 rpm), the viscosity decreased slightly (0.035~0.027 Pa.s). Under all homogeneous conditions, the turbidity and precipitation fractions were the lowest when the rotational speed was 12,000 rpm: the sedimentation index was lowest at this point (2.87%), and the relative turbidity value of CLB was largest at this point (80.29%). The average beverage particle diameter and ascorbic acid content showed a downward trend at the homogenization speed from 0 to 20,000 rpm, whereas the total soluble solids (TSS) content followed the opposite trend. The results show that these physical properties can be correlated with different rotational speeds of homogenization. This study explained the effect of homogenization speed on CLB properties, which needs to be considered in beverage processing, where high-speed shear homogenization can serve as a promising technique.
Collapse
Affiliation(s)
- Yao Cui
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianxue Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
- Correspondence:
| | - Sihai Han
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Peiyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| | - Jinying Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Education Department of Henan Province, Luoyang 471023, China
| |
Collapse
|
14
|
Pompilio da Capela A, Artigiani Lima Tribst A, Esteves Duarte Augusto P, Ricardo de Castro Leite Júnior B. Use of physical processes to maximize goat milk cream hydrolysis: Impact on structure and enzymatic hydrolysis. Food Res Int 2022; 156:111343. [DOI: 10.1016/j.foodres.2022.111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
|
15
|
Recent advances in the study of modified cellulose in meat products: Modification method of cellulose, meat quality improvement and safety concern. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Zhou L, Zhang W, Wang J, Zhang R, Zhang J. Comparison of oil-in-water emulsions prepared by ultrasound, high-pressure homogenization and high-speed homogenization. ULTRASONICS SONOCHEMISTRY 2022; 82:105885. [PMID: 34952342 PMCID: PMC8799620 DOI: 10.1016/j.ultsonch.2021.105885] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 05/20/2023]
Abstract
This study was designed to compare the properties of myofibrillar protein (MP) stabilized soybean oil-in-water emulsions fabricated by ultrasound-assisted emulsification (UAE), high-pressure homogenization (HPH) and high-speed homogenization (HSH). The emulsion properties, droplet characteristics, interfacial proteins, protein exposure extent, microrheological properties, multiple light scattering results, and 7 d storage stabilities of the three emulsions were specifically investigated. Our results indicate that UAE and HPH were better emulsification methods than HSH to obtain high-quality emulsions with higher emulsifying activity index (UAE 20.73 m2·g-1, HPH 11.76 m2·g-1 and HSH 6.80 m2·g-1), whiteness (UAE 81.05, HPH 80.67 and HSH 74.09), viscosity coefficient (UAE 0.44 Pa·sn, HPH 0.49 Pa·sn and HSH 0.22 Pa·sn), macroscopic viscosity index (UAE 2.31 nm-2·s, HPH 0.38 nm-2·s and HSH 0.34 nm-2·s), and storage stability, especially for the UAE. Furthermore, UAE was a more efficient emulsification method than HPH to prepare the fine MP-soybean oil emulsion. The protein-coated oil droplets were observed in the three emulsions. The emulsion droplet size of the UAE-fabricated emulsion was the lowest (0.15 μm) while the interfacial protein concentration (93.37%) and the protein exposure extent were the highest among the three emulsions. During the 7 d storage, no separation was observed for the UAE-fabricated emulsion, while the emulsions fabricated by HPH and HSH were separated after storage for 5 d and 2 h. Therefore, this work suggests that UAE could be a better method than HPH and HSH to fabricate MP-soybean oil emulsion.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jingyu Wang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ruyu Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
LI L. Effects of high pressure versus conventional thawing on the quality changes and myofibrillar protein denaturation of slow/fast freezing beef rump muscle. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.91421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Li LI
- Harbin University of Commerce, China
| |
Collapse
|
18
|
Zhang R, Xing L, Kang D, Zhou L, Wang L, Zhang W. Effects of ultrasound-assisted vacuum tumbling on the oxidation and physicochemical properties of pork myofibrillar proteins. ULTRASONICS SONOCHEMISTRY 2021; 74:105582. [PMID: 33975184 PMCID: PMC8122357 DOI: 10.1016/j.ultsonch.2021.105582] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 05/02/2021] [Indexed: 05/09/2023]
Abstract
The present research aimed to investigate the effects of high-intensity ultrasound (HIU, 20 kHz, 0 W, 100 W, 300 W and 500 W)-assisted vacuum tumbling (UVT) for 60 min and 120 min on the oxidation and physicochemical properties of the pork myofibrillar proteins (MPs). Compared with the vacuum tumbling (VT) groups without the HIU assistance, the carbonyl content increased, while the total sulfhydryl (SH) content was reduced with the increase of HIU power and treatment time (P < 0.05). The reactive SH content was increased significantly after treated by UVT with 300 W compared with the VT group (P < 0.05) regardless of the treatment time. Similarly, the surface hydrophobicity (S0), the intrinsic tryptophan intensity, and the solubility in the UVT group (300 W) were remarkably higher than those of the VT group (P < 0.05). In contrast, the α-helix content and the particle size of MPs significantly decreased when the HIU power was at 100 W and 300 W (P < 0.05). The results suggest that UVT treatment could change the structure and physicochemical properties of MPs accompanied by protein oxidation.
Collapse
Affiliation(s)
- Ruyu Zhang
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dacheng Kang
- School of Life Sciences, Linyi University, Linyi, Shandong 276012, China
| | - Lei Zhou
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Wang
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
19
|
Potential mechanism of different gelation properties of white and red muscle fibre from crocodile (Crocodylus siamensis) meat: Study of myofibrillar protein. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Zhou L, Zhang J, Xing L, Zhang W. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Kim TK, Lee MH, Yong HI, Jung S, Paik HD, Jang HW, Choi YS. Effect of Interaction between Mealworm Protein and Myofibrillar Protein on the Rheological Properties and Thermal Stability of the Prepared Emulsion Systems. Foods 2020; 9:E1443. [PMID: 33053732 PMCID: PMC7601821 DOI: 10.3390/foods9101443] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/23/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated the effect of replacing myofibrillar protein (pork ham) with edible insect proteins (Tenebrio molitor L.) in meat emulsion systems and examined the interaction between the two types of proteins. We also evaluated the rheological properties and thermal stability of these meat emulsions. The replacement ratios of myofibrillar protein and edible insect protein were as follows: 100:0 (EI0), 80:20 (EI20), 60:40 (EI40), 40:60 (EI60), 20:80 (EI80), and 0:100 (EI100). The pH, redness, and yellowness of the emulsion systems, after replacing myofibrillar protein with T. molitor protein, significantly increased with T. molitor protein concentrations. In contrast, the lightness, hardness, cohesiveness, gumminess, chewiness, apparent viscosity, and differential scanning calorimetry (DSC) of the emulsion systems decreased significantly with increasing T. molitor protein concentrations. The backscattering values of EI0, EI20, and EI40 decreased evenly in all spots of the dispersions as the storage time increased. Thus, up to 40% of pork myofibrillar protein could be replaced with T. molitor protein in meat emulsion systems. The results also suggest that the interaction between edible insect protein and myofibrillar protein degrades the rheological properties and thermal stability of the meat emulsion systems.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (M.H.L.); (H.I.Y.)
| | - Min Hyeock Lee
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (M.H.L.); (H.I.Y.)
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (M.H.L.); (H.I.Y.)
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| | - Hae Won Jang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (M.H.L.); (H.I.Y.)
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (T.-K.K.); (M.H.L.); (H.I.Y.)
| |
Collapse
|
22
|
Cao S, Wang Y, Xing L, Zhang W, Zhou G. Structure and physical properties of gelatin from bovine bone collagen influenced by acid pretreatment and pepsin. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|