1
|
Jun SY, Hong SM, Jang KT. Prognostic Significance of Cyclin D1 Expression in Small Intestinal Adenocarcinoma. Cancers (Basel) 2023; 15:5032. [PMID: 37894399 PMCID: PMC10604933 DOI: 10.3390/cancers15205032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Cyclin D1, a critical cyclin-dependent kinase (CDK) 4/6-dependent regulator of G1/S transition, has attracted much interest as a therapeutic target. The cyclin D1 expression in small intestinal adenocarcinomas (SIACs) has not yet been comprehensively studied, owing to the rarity of this tumor. We investigated the clinicopathological and prognostic significance of the cyclin D1 expression in 232 surgically resected primary SIACs through a multi-institutional study. A high expression of cyclin D1 (cyclin D1High) was detected in 145 SIAC cases (63%), which was significantly higher than that in normal small intestinal mucosa (11%). Cyclin D1High was more commonly found in SIACs with a lower T-category and disease stage and KRAS mutation and predicted better patient survival. Multivariate analysis revealed that cyclin D1High, the absence of retroperitoneal seeding and lymphovascular invasion, and the lower N-category were identified as independent prognostic indicators for patients with SIACs. Specifically, cyclin D1High affected patient survival in the lower stage group (stages I and II). In conclusion, cyclin D1 was commonly overexpressed in SIACs, and cyclin D1High acted as a favorable prognostic indicator in patients with SIACs. These findings in SIACs may, thus, be important to further comprehend the mechanism of cyclin D1 in carcinogenesis and to strategize appropriate patient therapies.
Collapse
Affiliation(s)
- Sun-Young Jun
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 21431, Republic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| |
Collapse
|
2
|
Jun SY, Kim J, Yoon N, Maeng LS, Byun JH. Prognostic Potential of Cyclin D1 Expression in Colorectal Cancer. J Clin Med 2023; 12:jcm12020572. [PMID: 36675501 PMCID: PMC9867305 DOI: 10.3390/jcm12020572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Cyclin D1 is mainly known as an oncogenic driver in cancers, and the dysregulated cyclin D1/cyclin-dependent kinase (CDK) 4/6 axis is considered an attractive target for cancer therapy. Recent studies have reported that tumors respond to therapeutic interventions targeting altered cyclin D1 expression via application of the CDK4/6 inhibitor. However, the prognostic and therapeutic contributions of cyclin D1 to colorectal cancer (CRC) remain controversial. Herein, we assessed the associations between cyclin D1 expression and clinicopathological factors, including patients' overall survival (OS) and recurrence-free survival (RFS), in 495 surgically resected primary CRCs. We also examined previous studies for cyclin D1 in CRCs. High expressions of cyclin D1 (cyclin D1High) was observed in 389 CRC cases (78.6%). Cyclin D1High consistently predicted better patient OS and RFS in CRCs. Based on multivariate analysis, cyclin D1High and young age of patients remained as independent prognosticators of higher OS rate, whereas cyclin D1High, females, chemotherapy, absence of nodal metastasis, and lower T-category remained as independent prognosticators of better RFS. Cyclin D1 is commonly overexpressed in CRCs, and its expression can be used as a favorable prognostic indicator in patients with CRCs; this may be important for predicting responses to subsequent CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Sun-Young Jun
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
- Correspondence: ; Tel.: +82-32-280-7368
| | - Jiyoung Kim
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Nara Yoon
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Lee-So Maeng
- Department of Pathology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Jae Ho Byun
- Division of Oncology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| |
Collapse
|
3
|
Chang Chien YC, Beke L, Méhes G, Mokánszki A. Anastomosing Haemangioma: Report of Three Cases With Molecular and Immunohistochemical Studies and Comparison With Well-Differentiated Angiosarcoma. Pathol Oncol Res 2022; 28:1610498. [PMID: 35979530 PMCID: PMC9376968 DOI: 10.3389/pore.2022.1610498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Anastomosing haemangioma (AH) is a newly described distinct vascular neoplasm that histologically may confuse with well-differentiated angiosarcoma (AS) for those who are unfamiliar with this rare entity. We aimed to identify molecular genetic differences between AHs and ASs by carrying out immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS). Immunohistochemically, all six cases showed positivity for cyclinD1 and pERK. All cases of AH showed focal weak positive reaction for p53 and MIB-1, and the IHCs for HIF-1α were all negative for all three cases. Those three cases of angiosarcoma revealed strong, diffuse positivity for p53, 50%–70% MIB-1 labelling, and multifocal, moderate to strong HIF-1α expression. To further clarify the difference in p53 expression, we carried out a FISH which revealed 17p polysomy in all three ASs whereas copy number aberration was absent in the AH group. In one AH case, the GNA11 c.627G > T nucleotide variant was detected. Due to the rarity and overlapping morphological features, AH might be difficult to separate from other vascular tumours, in particular from well-differentiated AS also featured by mild hyperchromatic, hobnail-like endothelial cells. The potential molecular differences between these two entities presented here may be used in support of the correct diagnosis.
Collapse
|
4
|
Wu YY, Lai HF, Huang TC, Chen YG, Ye RH, Chang PY, Lai SW, Chen YC, Lee CH, Liu WN, Dai MS, Chen JH, Ho CL, Chiu YL. Aberrantly reduced expression of miR-342-5p contributes to CCND1-associated chronic myeloid leukemia progression and imatinib resistance. Cell Death Dis 2021; 12:908. [PMID: 34611140 PMCID: PMC8492784 DOI: 10.1038/s41419-021-04209-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with the Philadelphia chromosome, and the current standard of care is the use of tyrosine kinase inhibitors (TKI). However, some patients will not achieve a molecular response and may progress to blast crisis, and the underlying mechanisms remain to be clarified. In this study, next-generation sequencing was used to explore endogenous miRNAs in CML patients versus healthy volunteers, and miR-342-5p was identified as the primary target. We found that miR-342-5p was downregulated in CML patients and had a significant inhibitory effect on cell proliferation in CML. Through a luciferase reporter system, miR-342-5p was reported to target the 3'-UTR domain of CCND1 and downregulated its expression. Furthermore, overexpression of miR-342-5p enhanced imatinib-induced DNA double-strand breaks and apoptosis. Finally, by analyzing clinical databases, we further confirmed that miR-342-5p was associated with predicted molecular responses in CML patients. In conclusion, we found that both in vivo and in vitro experiments and database cohorts showed that miR-342-5p plays a key role in CML patients, indicating that miR-342-5p may be a potential target for future CML treatment or prognostic evaluation.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Base Sequence
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cell Survival/genetics
- Cyclin D1/genetics
- Cyclin D1/metabolism
- DNA Breaks, Double-Stranded
- Disease Models, Animal
- Disease Progression
- Down-Regulation/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Leukemic
- Gene Ontology
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukocytes/pathology
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation/genetics
- Mice
Collapse
Affiliation(s)
- Yi-Ying Wu
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
- Graduate Institute of Life Sciences, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Tzu-Chuan Huang
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Yu-Guang Chen
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Ren-Hua Ye
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Ping-Ying Chang
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Shiue-Wei Lai
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Yeu-Chin Chen
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Cho-Hao Lee
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Wei-Nung Liu
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Ming-Shen Dai
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Jia-Hong Chen
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Ching-Liang Ho
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, 11490, Taipei, Taiwan, ROC
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, 11490, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
López-Vega JM, Álvarez I, Antón A, Illarramendi JJ, Llombart A, Boni V, García-Velloso MJ, Martí-Climent JM, Pina L, García-Foncillas J. Early Imaging and Molecular Changes with Neoadjuvant Bevacizumab in Stage II/III Breast Cancer. Cancers (Basel) 2021; 13:3511. [PMID: 34298725 PMCID: PMC8307791 DOI: 10.3390/cancers13143511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
This prospective, phase II study evaluated novel biomarkers as predictors of response to bevacizumab in patients with breast cancer (BC), using serial imaging methods and gene expression analysis. Patients with primary stage II/III BC received bevacizumab 15 mg/kg (cycle 1; C1), then four cycles of neoadjuvant docetaxel doxorubicin, and bevacizumab every 3 weeks (C2-C5). Tumour proliferation and hypoxic status were evaluated using 18F-fluoro-3'-deoxy-3'-L-fluorothymidine (FLT)- and 18F-fluoromisonidazole (FMISO)-positron emission tomography (PET) at baseline, and during C1 and C5. Pre- and post-bevacizumab vascular changes were evaluated using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Molecular biomarkers were assessed using microarray analysis. A total of 70 patients were assessed for treatment efficacy. Significant decreases from baseline in tumour proliferation (FLT-PET), vascularity, and perfusion (DCE-MRI) were observed during C1 (p ≤ 0.001), independent of tumour subtype. Bevacizumab treatment did not affect hypoxic tumour status (FMISO-PET). Significant changes in the expression of 28 genes were observed after C1. Changes in vascular endothelial growth factor receptor (VEGFR)-2p levels were observed in 65 patients, with a > 20% decrease in VEGFR-2p observed in 13/65. Serial imaging techniques and molecular gene profiling identified several potentially predictive biomarkers that may predict response to neoadjuvant bevacizumab therapy in BC patients.
Collapse
Affiliation(s)
- José Manuel López-Vega
- Department of Medical Oncology, Marqués de Valdecilla University Hospital, 39008 Santander, Spain;
| | - Isabel Álvarez
- Department of Medical Oncology, University Hospital Donostia, 20080 Donostia-San Sebastián, Spain;
| | - Antonio Antón
- Department of Medical Oncology, University Hospital Miguel Servet, 50009 Zaragoza, Spain;
| | | | - Antonio Llombart
- Department of Medical Oncology, Hospital Arnau de Vilanova, 46015 Lleida, Spain;
| | - Valentina Boni
- START Madrid CIOCC, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain;
| | | | - Josep María Martí-Climent
- Department of Medical Physics and Radiation Safety, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Luis Pina
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain;
| | - Jesús García-Foncillas
- Translational Oncology Division, OncoHealth Institute, University Hospital “Fundación Jiménez Díaz”, Autonomous University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
6
|
Vilà González M, Eleftheriadou M, Kelaini S, Naderi-Meshkin H, Flanagan S, Stewart S, Virgili G, Grieve DJ, Stitt AW, Lois N, Margariti A. Endothelial Cells Derived From Patients With Diabetic Macular Edema Recapitulate Clinical Evaluations of Anti-VEGF Responsiveness Through the Neuronal Pentraxin 2 Pathway. Diabetes 2020; 69:2170-2185. [PMID: 32796081 DOI: 10.2337/db19-1068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 07/29/2020] [Indexed: 11/13/2022]
Abstract
Diabetic macular edema (DME) remains a leading cause of vision loss worldwide. DME is commonly treated with intravitreal injections of vascular endothelial growth factor (VEGF)-neutralizing antibodies. VEGF inhibitors (anti-VEGFs) are effective, but not all patients fully respond to them. Given the potential side effects, inconvenience, and high cost of anti-VEGFs, identifying who may not respond appropriately to them and why is essential. Herein we determine first the response to anti-VEGFs, using spectral-domain optical coherence tomography scans obtained from a cohort of patients with DME throughout the 1st year of treatment. We found that fluid fully cleared at some time during the 1st year in 28% of eyes ("full responders"); fluid cleared only partly in 66% ("partial responders"); and fluid remained unchanged in 6% ("nonresponders"). To understand this differential response, we generated induced pluripotent stem cells (iPSCs) from full responders and nonresponders, from subjects with diabetes but no DME, and from age-matched volunteers without diabetes. We differentiated these iPSCs into endothelial cells (iPSC-ECs). Monolayers of iPSC-ECs derived from patients with diabetes showed a marked and prolonged increase in permeability upon exposure to VEGF; the response was significantly exaggerated in iPSC-ECs from nonresponders. Moreover, phosphorylation of key cellular proteins in response to VEGF, including VEGFR2, and gene expression profiles, such as that of neuronal pentraxin 2, differed between full responders and nonresponders. In this study, iPSCs were used in order to predict patients' responses to anti-VEGFs and to identify key mechanisms that underpin the differential outcomes observed in the clinic. This approach identified NPTX2 as playing a significant role in patient-linked responses and as having potential as a new therapeutic target for DME.
Collapse
Affiliation(s)
| | | | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, Belfast, U.K
| | | | - Shonagh Flanagan
- Wellcome-Wolfson Institute for Experimental Medicine, Belfast, U.K
| | | | | | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Belfast, U.K
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Belfast, U.K
| | - Noemi Lois
- Wellcome-Wolfson Institute for Experimental Medicine, Belfast, U.K.
- The Belfast Health and Social Care Trust, Belfast, U.K
| | | |
Collapse
|
7
|
Teke ME, Emuakhagbon VS. Trends in Colorectal Cancer Surveillance: Current Strategies and Future Innovations-. CURRENT COLORECTAL CANCER REPORTS 2019. [DOI: 10.1007/s11888-019-00433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
8
|
Gill S, Meyerhardt JA, Arun M, Veenstra CM. Translating IDEA to Practice and Beyond: Managing Stage II and III Colon Cancer. Am Soc Clin Oncol Educ Book 2019; 39:226-235. [PMID: 31099666 DOI: 10.1200/edbk_237443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adjuvant fluoropyrimidine-based chemotherapy has been the standard of care for resected stage III colon cancer since the 1990s; the evolution from 12 to 6 months of fluoropyrimidine therapy and the addition of oxaliplatin to fluoropyrimidine therapy have led to the current accepted standard. However, controversies remain. What is the benefit of adjuvant chemotherapy in stage II disease, and in whom? What is the optimal duration of adjuvant chemotherapy? How should patients with early-stage colon cancer be followed after surgery and adjuvant treatment? Recent evidence has emerged to help inform these important questions, including the International Duration Evaluation of Adjuvant therapy (IDEA) collaboration, which is the largest, prospective study in colon cancer with 12,834 patients. This review discusses current and future risk stratification strategies in stage II disease: the optimal duration of adjuvant oxaliplatin-containing chemotherapy in stage II and III disease according to the IDEA study, and the recent evidence and updated recommendations for surveillance of early-stage colon cancer after resection.
Collapse
|
9
|
Huang MY, Tsai HL, Huang JJ, Wang JY. Clinical Implications and Future Perspectives of Circulating Tumor Cells and Biomarkers in Clinical Outcomes of Colorectal Cancer. Transl Oncol 2016; 9:340-347. [PMID: 27567958 PMCID: PMC5006809 DOI: 10.1016/j.tranon.2016.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a major public health problem. Early CRC detection, pretherapeutic responsiveness prediction, and postoperative micrometastasis monitoring are the hallmarks for successful CRC treatment. Here, the methodologies used for detecting circulating tumor cells (CTCs) from CRC are reviewed. In addition to the traditional CRC biomarkers, the persistent presence of posttherapeutic CTCs indicates resistance to adjuvant chemotherapy and/or radiotherapy; hence, CTCs also play a decisive role in the subsequent relapse of CRC. Moreover, the genetic and phenotypic profiling of CTCs often differs from that of the primary tumor; this difference can be used to select the most effective targeted therapy. Consequently, studying CTCs can potentially individualize treatment strategies for patients with CRC. Therefore, CTC detection and characterization may be valuable tools for refining prognosis, and CTCs can be used in a real-time tumor biopsy for designing individually tailored therapy against CRC.
Collapse
Affiliation(s)
- Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Center for Biomarkers and Biotech Drugs, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiang-Lin Tsai
- Division of General Surgery Medicine, Department of Surgery, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Joh-Jong Huang
- Department of Family Medicine and Department of Community Medicine, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Jaw-Yuan Wang
- Center for Biomarkers and Biotech Drugs, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Division of Gastroenterology and General Surgery, Department of Surgery, Kaohsiung Medical University, Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institute of Clinical Medicine, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
10
|
WANG JUNPU, HU WANMING, WU XIAOYING, WANG KUANSONG, YU JUN, LUO BAIHUA, LUO GENGQIU, WANG WEIYUAN, WANG HUILING, LI JINGHE, WEN JIFANG. CXCR1 promotes malignant behavior of gastric cancer cells in vitro and in vivo in AKT and EKR1/2 phosphorylation. Int J Oncol 2016; 48:2184-2196. [DOI: 26983663 10.3892/ijo.2016.3428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
|
11
|
Wang J, Hu W, Wu X, Wang K, Yu J, Luo B, Luo G, Wang W, Wang H, Li J, Wen J. CXCR1 promotes malignant behavior of gastric cancer cells in vitro and in vivo in AKT and ERK1/2 phosphorylation. Int J Oncol 2016; 48:2184-96. [PMID: 26983663 DOI: 10.3892/ijo.2016.3428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023] Open
Abstract
CXCR1 is a member of the chemokine receptor family, which was reported to play an important role in several cancers. The present study investigated the influence of CXCR1 stable knockdown or overexpression on the malignant behavior of gastric cancer cells in vitro and in vivo and the potential mechanisms. MKN45 and BGC823 cells were stably transfected with plasmid pYr-1.1-CXCR1-shRNA (knockdown) and pIRES2-ZsGreen1-CXCR1 (overexpression), respectively. Malignant behavior was evaluated in vitro for changes in proliferation by MTT and colony forming assays; cell cycle and apoptosis by flow cytometry; and migration and invasion using transwell and wound-healing assays. Proliferation, cell cycle, apoptosis, migration and invasion-related signaling molecule expression were measured by real-time RT-PCR and western blot analysis. CXCR1 knockdown and overexpressing xenografts were monitored for in vivo tumor growth. Stable knockdown of CXCR1 inhibited MKN45 cell proliferation, migration and invasion, but were reversed in BGC823 cells stably overexpressing CXCR1. In addition, MKN45 cells stably transfected with CXCR1 shRNA inhibited AKT and ERK1/2 phosphorylation, protein expression of cyclin D1, EGFR, VEGF, MMP-9, MMP-2 and Bcl-2, and increased protein expression of Bax and E-cadherin (all P<0.05). In vivo CXCR1-shRNA-MKN45 cells transplanted into nude mice formed smaller tumors than non-transfected or scrambled-shRNA cells (both P<0.05). In contrast BGC823 cells overexpressing CXCR1 formed larger tumors in mice than cells carrying an empty expression plasmid or non-transfected cells (both P<0.05). CXCR1 promoted gastric cancer cell proliferation, migration and invasion. The present study provides preclinical data to support CXCR1 as a novel therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Junpu Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| | - Wanming Hu
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410083, P.R. China
| | - Xiaoying Wu
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| | - Kuansong Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| | - Jun Yu
- Department of Neurology, Third Xiang-ya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| | - Baihua Luo
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| | - Gengqiu Luo
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| | - Weiyuan Wang
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410083, P.R. China
| | - Huiling Wang
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan 410083, P.R. China
| | - Jinghe Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| | - Jifang Wen
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
12
|
Shi D, Cai G, Peng J, Li D, Li X, Xu Y, Cai S. The preoperative SUVmax for (18)F-FDG uptake predicts survival in patients with colorectal cancer. BMC Cancer 2015; 15:991. [PMID: 26689966 PMCID: PMC4687154 DOI: 10.1186/s12885-015-1991-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023] Open
Abstract
Background The study was to investigate whether 18F-fluorodeoxyglucose (18F-FDG) uptake, analyzed by positron emission tomography (PET), can be used preoperatively to predict survival in Chinese patients with colorectal carcinoma. Methods A prospectively maintained colorectal cancer database was retrospectively reviewed between June 2009 and December 2011. All included patients had been newly diagnosed with colorectal cancer (of various stages) and evaluated by 18F-FDG-PET/computed tomography (CT) within the 2 weeks preceding surgery. Univariate and multivariate analyses were used to determine whether the maximal standardized uptake value (SUVmax) and various clinicopathological and immunohistochemical factors were correlated with survival. Receiver operating characteristics (ROC) curve and Kaplan-Meier survival curve analyses were used to explore whether SUVmax could predict survival in these patients. Results A total of 107 patients were enrolled in the study (mean age, 59.26 ± 12.66 years; 66.35 % males), with 77 surviving to the end of follow-up (average 60 months). Univariate analysis indicated that tumor size, TNM stage, nodal metastasis, the ratio of metastasized nodes to retrieved nodes, cyclin D1 immunostaining and SUVmax correlated with survival (P < 0.05). Multivariate analysis showed that only TNM stage and SUVmax were associated with survival (P < 0.05). ROC curve analysis determined the optimal SUVmax cutoff for predicting survival to be 11.85 (sensitivity, 73.3 %; specificity, 75.3 %). Survival was significantly longer in patients with preoperative SUVmax ≤11.85 (P < 0.001, log-rank test). Conclusions SUVmax, measured by 18F-FDG-PET/CT, provides a useful preoperative prognostic factor for patients with colorectal cancer.
Collapse
Affiliation(s)
- Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Gioacchini FM, Alicandri-Ciufelli M, Kaleci S, Magliulo G, Presutti L, Re M. The prognostic value of cyclin D1 expression in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2014; 273:801-9. [DOI: 10.1007/s00405-014-3426-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
14
|
Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies. PLoS One 2014; 9:e94508. [PMID: 24728073 PMCID: PMC3984178 DOI: 10.1371/journal.pone.0094508] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/17/2014] [Indexed: 01/26/2023] Open
Abstract
Objective Cyclin D1 plays a vital role in cancer cell cycle progression and is overexpressed in many human cancers, including colorectal cancer (CRC). However, the prognostic value of cyclin D1 overexpression in colorectal cancer is conflicting and heterogeneous. We conducted a meta-analysis to more precisely evaluate its prognostic significance. Methods A comprehensive literature search for relevant studies published up to January 2014 was performed using PubMed, EMBASE, and ISI Web of Science. The pooled hazard ratio (HR) with 95% confidence intervals (CI) was used to estimate the effects. Results 22 studies with 4150 CRC patients were selected to evaluate the association between cyclin D1 and overall survival (OS), disease-free survival (DFS) and clinicopathological parameters. In a random-effects model, the results showed that cyclin D1 overexpression in CRC was significantly associated with both poor OS (HR = 0.73, 95% CI: 0.63–0.85, P<0.001) and DFS (HR = 0.60, 95% CI: 0.44–0.82, P = 0.001). Additionally, cyclin D1 overexpression was significantly associated with more relative older patients (≥60 years) (OR 0.62, 95% CI 0.44–0.89, P = 0.009), T3,4 tumor invasion (OR 0.70, 95% CI 0.57–0.85, P<0.001), N positive (OR 0.75, 95% CI 0.60–0.95, P = 0.016) and distant metastasis (OR 0.60, 95% CI 0.36–0.99, P = 0.047) of CRC. Conclusion The meta-analysis results indicated that cyclin D1 is an unfavorable prognostic factor for CRC. Cyclin D1 overexpression might be associated with poor clinical outcome and some clinicopathological factors such as age, T category, N category and distant metastasis in CRC patients.
Collapse
|
15
|
MicroRNA-130b promotes tumor development and is associated with poor prognosis in colorectal cancer. Neoplasia 2014; 15:1086-99. [PMID: 24027433 DOI: 10.1593/neo.13998] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-130b (miR-130b) is involved in several biologic processes; its role in colorectal tumorigenesis has not been addressed so far. Herein, we demonstrate that miR-130b up-regulation exhibits clinical relevance as it is linked to advanced colorectal cancers (CRCs), poor patients' prognosis, and molecular features of enhanced epithelial-mesenchymal transition (EMT) and angiogenesis. miR-130b high-expressing cells develop large, dedifferentiated, and vascularized tumors in mouse xenografts, features that are reverted by intratumor injection of a specific antisense RNA. In contrast, injection of the corresponding mimic in mouse xenografts from miR-130b low-expressing cells increases tumor growth and angiogenic potential while reduces the epithelial hallmarks. These biologic effects are reproduced in human CRC cell lines. We identify peroxisome proliferator-activated receptor γ (PPARγ) as an miR-130b direct target in CRC in vitro and in vivo. Notably, the effects of PPARγ gain- and loss-of-function phenocopy those due to miR-130b down-regulation or up-regulation, respectively, underscoring their biologic relevance. Furthermore, we provide mechanistic evidences that most of the miR-130b-dependent effects are due to PPARγ suppression that in turn deregulates PTEN, E-cadherin, Snail, and vascular endothelial growth factor, key mediators of cell proliferation, EMT, and angiogenesis. Since higher levels of miR-130b are found in advanced tumor stages (III-IV), we propose a novel role of the miR-130b-PPARγ axis in fostering the progression toward more invasive CRCs. Detection of onco-miR-130b and its association with PPARγ may be useful as a prognostic biomarker. Its targeting in vivo should be evaluated as a novel effective therapeutic tool against CRC.
Collapse
|
16
|
Rose J, Augestad KM, Cooper GS. Colorectal cancer surveillance: what's new and what's next. World J Gastroenterol 2014; 20:1887-97. [PMID: 24587668 PMCID: PMC3934459 DOI: 10.3748/wjg.v20.i8.1887] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/27/2013] [Accepted: 01/03/2014] [Indexed: 02/06/2023] Open
Abstract
The accumulated evidence from two decades of randomized controlled trials has not yet resolved the question of how best to monitor colorectal cancer (CRC) survivors for early detection of recurrent and metachronous disease or even whether doing so has its intended effect. A new wave of trial data in the coming years and an evolving knowledge of relevant biomarkers may bring us closer to understanding what surveillance strategies are most effective for a given subset of patients. To best apply these insights, a number of important research questions need to be addressed, and new decision making tools must be developed. In this review, we summarize available randomized controlled trial evidence comparing alternative surveillance testing strategies, describe ongoing trials in the area, and compare professional society recommendations for surveillance. In addition, we discuss innovations relevant to CRC surveillance and outline a research agenda which will inform a more risk-stratified and personalized approach to follow-up.
Collapse
|
17
|
JIAO FENG, JIN ZILIANG, WANG LEI, WANG LIWEI. Research and clinical applications of molecular biomarkers in gastrointestinal carcinoma (Review). Biomed Rep 2013; 1:819-827. [PMID: 24649035 PMCID: PMC3917016 DOI: 10.3892/br.2013.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/12/2013] [Indexed: 11/06/2022] Open
Abstract
Gastrointestinal (GI) carcinoma is a common malignant disease worldwide. Its development and progression is a multistage process involving a multifactorial etiology. Although the detailed mechanisms of the development of GI carcinoma remain controversial, the elucidation of its molecular biology over the last few years has resulted in a better perspective on its epidemiology, carcinogenesis and pathogenesis. More significantly, it is currently possible to use biological indicators or biomarkers in differential diagnosis, prognostic evaluation and specific clinical interventions. In this review, we aimed to describe the biomarkers of pathogenesis, invasion, metastasis and prognosis of GI carcinoma and discuss their potential clinical applications. The majority of these biomarkers, such as tumor-associated antigens, oncogenes and tumor suppressor genes, metastasis-associated genes, cell adhesion molecules, cytokines, growth factors and microRNAs, are currently broadly applicable.
Collapse
Affiliation(s)
- FENG JIAO
- Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - ZILIANG JIN
- Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - LEI WANG
- Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| | - LIWEI WANG
- Department of Oncology, The First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 201620, P.R. China
| |
Collapse
|