1
|
Wu L, Chen X, Zeng Q, Lai Z, Fan Z, Ruan X, Li X, Yan J. NR5A2 gene affects the overall survival of LUAD patients by regulating the activity of CSCs through SNP pathway by OCLR algorithm and immune score. Heliyon 2024; 10:e28282. [PMID: 38601554 PMCID: PMC11004709 DOI: 10.1016/j.heliyon.2024.e28282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Objective Differentially expressed genes (DEGs) in lung adenocarcinoma (LUAD) tumor stem cells were screened, and the biological characteristics of NR5A2 gene were investigated. Methods The expression and prognosis of NR5A2 in human LUAD were predicted and analyzed through bioinformatics analysis from a human cancer database. Gene expression and clinical data of LUAD tumor and normal lung tissues were obtained from The Cancer Genome Atlas (TCGA) database, and DEGs associated with lung cancer tumor stem cells (CSCs) were screened. Univariate and multivariate Cox regression models were used to screen and establish prognostic risk prediction models. The immune function of the patients was scored according to the model, and the relative immune functions of the high- and low-risk groups were compared to determine the difference in survival prognosis between the two groups. In addition, we calculated the index of stemness based on the transcriptome of the samples using one-class linear regression (OCLR). Results Bioinformatics analysis of a clinical cancer database showed that NR5A2 was significantly decreased in human LUAD tissues than in normal lung tissues, and the decrease in NR5A2 gene expression shortened the overall survival and progression-free survival of patients with LUAD. Conclusion The NR5A2 gene may regulate LUAD tumor stem cells through selective splicing mutations, thereby affecting the survival and prognosis of patients with lung cancer, and the NR5A2 gene may regulate CSCs through single nucleotide polymorphism.
Collapse
Affiliation(s)
- Liusheng Wu
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xiaofan Chen
- Department of Traditional Chinese Medicine, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, 365000, China
| | - Qi Zeng
- Department of Information Technology, Union College of Fujian Normal University, Fuzhou, 350116, China
| | - Zelin Lai
- Department of Information and Computational Sciences, School of Mathematics, Liaoning Normal University, Liaoning, 116029, China
| | - Zhengyang Fan
- Department of Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Xin Ruan
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Jun Yan
- School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Ye W, Ya‐xuan C, Shan‐shan T, Qiu L, Ting M, Shao‐jie C, Yu C. NR5A2 promotes malignancy progression and mediates the effect of cisplatin in cutaneous squamous cell carcinoma. Immun Inflamm Dis 2024; 12:e1172. [PMID: 38358044 PMCID: PMC10868143 DOI: 10.1002/iid3.1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Nuclear receptor subfamily five group A member two (NR5A2) plays a key role in the development of many tumor types, while it is uncertain in cutaneous squamous cell carcinoma (cSCC). The aim of this work was to determine the role of NR5A2 in cSCC proliferation, and to determine whether NR5A2 mediates the effect of cisplatin in cSCC. METHODS We performed a systematic study of existing data and conducted a preliminary bioinformatics analysis of NR5A2 expression in cSCC using bioinformatics databases. Immunohistochemical staining was performed on cSCC tissues of seven patients to study NR5A2 expression. NR5A2 expression was examined in human keratin-forming cells (HaCaT) and human cSCC cells (A431, Colo-16, SCL-1, SCL-2, and HSC-5). Stable A431 and SCL-2 cell lines consisting of sh-RNA-NR5A2 were constructed to detect changes in cell proliferation, cell cycle, apoptosis, and to determine the key proteins in the Wnt/β-catenin pathway. We also investigated changes in the effects of cisplatin on cSCC cells by CCK-8, clone formation assay, and Flow apoptosis assay after NR5A2 knockdown. RESULTS NR5A2 showed enhanced expression in cSCC tissues than in healthy tissues. Downregulation of NR5A2 in cSCC cells led to the formation of a less malignant phenotype. In contrast, the proliferative capacity of the cSCC cells was enhanced posttreatment with RJW100, an NR5A2 agonist. Additionally, NR5A2 knockdown led to a decrease in the expression level of the proteins in the Wnt/β-catenin pathway, and this inhibition was reversed by LiCl and recombinant antibody, Wnt3a. Moreover, NR5A2 knockdown resulted in diminished proliferative capacity and increased apoptotic cells after the addition of cisplatin. CONCLUSION NR5A2 plays a crucial role in the progression of cSCC, and the Wnt/β-catenin signaling pathway may be involved in the regulation of NR5A2-mediated cSCC. Knockdown of NR5A2 enhanced both the proliferation inhibiting and apoptosis promoting effects of cisplatin on cSCC.
Collapse
Affiliation(s)
- Wang Ye
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Cao Ya‐xuan
- Department of DermatologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Tang Shan‐shan
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Long Qiu
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Ma Ting
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
| | - Chen Shao‐jie
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
- Department of Hepatobiliary SurgeryAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Cao Yu
- School of Clinical MedicineGuizhou Medical UniversityGuiyangChina
- Department of DermatologyAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
3
|
Raut P, Nimmakayala RK, Batra SK, Ponnusamy MP. Clinical and Molecular Attributes and Evaluation of Pancreatic Cystic Neoplasm. Biochim Biophys Acta Rev Cancer 2023; 1878:188851. [PMID: 36535512 PMCID: PMC9898173 DOI: 10.1016/j.bbcan.2022.188851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs) are all considered "Pancreatic cystic neoplasms (PCNs)" and show a varying risk of developing into pancreatic ductal adenocarcinoma (PDAC). These lesions display different molecular characteristics, mutations, and clinical manifestations. A lack of detailed understanding of PCN subtype characteristics and their molecular mechanisms limits the development of efficient diagnostic tools and therapeutic strategies for these lesions. Proper in vivo mouse models that mimic human PCNs are also needed to study the molecular mechanisms and for therapeutic testing. A comprehensive understanding of the current status of PCN biology, mechanisms, current diagnostic methods, and therapies will help in the early detection and proper management of patients with these lesions and PDAC. This review aims to describe all these aspects of PCNs, specifically IPMNs, by describing the future perspectives.
Collapse
Affiliation(s)
- Pratima Raut
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
4
|
Topham JT, Tsang ES, Karasinska JM, Metcalfe A, Ali H, Kalloger SE, Csizmok V, Williamson LM, Titmuss E, Nielsen K, Negri GL, Spencer Miko SE, Jang GH, Denroche RE, Wong HL, O'Kane GM, Moore RA, Mungall AJ, Loree JM, Notta F, Wilson JM, Bathe OF, Tang PA, Goodwin R, Morin GB, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Integrative analysis of KRAS wildtype metastatic pancreatic ductal adenocarcinoma reveals mutation and expression-based similarities to cholangiocarcinoma. Nat Commun 2022; 13:5941. [PMID: 36209277 PMCID: PMC9547977 DOI: 10.1038/s41467-022-33718-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/29/2022] [Indexed: 11/15/2022] Open
Abstract
Oncogenic KRAS mutations are absent in approximately 10% of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) and may represent a subgroup of mPDAC with therapeutic options beyond standard-of-care cytotoxic chemotherapy. While distinct gene fusions have been implicated in KRAS wildtype mPDAC, information regarding other types of mutations remain limited, and gene expression patterns associated with KRAS wildtype mPDAC have not been reported. Here, we leverage sequencing data from the PanGen trial to perform comprehensive characterization of the molecular landscape of KRAS wildtype mPDAC and reveal increased frequency of chr1q amplification encompassing transcription factors PROX1 and NR5A2. By leveraging data from colorectal adenocarcinoma and cholangiocarcinoma samples, we highlight similarities between cholangiocarcinoma and KRAS wildtype mPDAC involving both mutation and expression-based signatures and validate these findings using an independent dataset. These data further establish KRAS wildtype mPDAC as a unique molecular entity, with therapeutic opportunities extending beyond gene fusion events. KRAS wildtype metastatic pancreatic ductal adenocarcinoma (mPDAC) could represent a distinct molecular entity from other PDACs. Here, the authors analyse KRAS wildtype mPDAC tumours using genomics and transcriptomics and find molecular similarities with cholangiocarcinomas.
Collapse
Affiliation(s)
| | - Erica S Tsang
- Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | | | - Hassan Ali
- Pancreas Centre BC, Vancouver, BC, Canada
| | - Steve E Kalloger
- Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Karina Nielsen
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Gian Luca Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | - Hui-Li Wong
- Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patricia A Tang
- Departments of Surgery and Oncology, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rachel Goodwin
- The Ottawa Hospital Cancer Centre, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer J Knox
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, ON, Canada.,University Health Network, University of Toronto, Toronto, ON, Canada
| | - Janessa Laskin
- Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada.,Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada. .,Division of Medical Oncology, BC Cancer, Vancouver, BC, Canada. .,Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Sandhu N, Rana S, Meena K. Nuclear receptor subfamily 5 group A member 2 (NR5A2): role in health and diseases. Mol Biol Rep 2021; 48:8155-8170. [PMID: 34643922 DOI: 10.1007/s11033-021-06784-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Nuclear receptors are the regulatory molecules that mediate cellular signals as they interact with specific DNA sequences. NR5A2 is a member of NR5A subfamily having four members (Nr5a1-Nr5a4). NR5A2 shows involvement in diverse biological processes like reverse cholesterol transport, embryonic stem cell pluripotency, steroidogenesis, development and differentiation of embryo, and adult homeostasis. NR5A2 haploinsufficiency has been seen associated with chronic pancreatitis, pancreatic and gastrointestinal cancer. There is a close relationship between the progression of pancreatic cancer from chronic pancreatitis, NR5A2 serving a common link. NR5A2 activity is regulated by intracellular phospholipids, transcriptional coregulators and post-translational modifications. The specific ligand of NR5A2 is unknown hence called an orphan receptor, but specific phospholipids such as dilauroyl phosphatidylcholine and diundecanoyl phosphatidylcholine act as a ligand and they are established drug targets in various diseases. This review will focus on the NR5A2 structure, regulation of its activity, and role in biological processes and diseases. In future, need more emphasis on discovering small molecule agonists and antagonist, which act as a drug target for therapeutic applications.
Collapse
Affiliation(s)
- Nikita Sandhu
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, Uttarakhand, India
| | - Satyavati Rana
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, Uttarakhand, India
| | - Kiran Meena
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Rishikesh, Rishikesh, Uttarakhand, India.
| |
Collapse
|
6
|
Guo F, Zhou Y, Guo H, Ren D, Jin X, Wu H. NR5A2 transcriptional activation by BRD4 promotes pancreatic cancer progression by upregulating GDF15. Cell Death Discov 2021; 7:78. [PMID: 33850096 PMCID: PMC8044179 DOI: 10.1038/s41420-021-00462-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/24/2022] Open
Abstract
NR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Guo
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Michalek S, Brunner T. Nuclear-mitochondrial crosstalk: On the role of the nuclear receptor liver receptor homolog-1 (NR5A2) in the regulation of mitochondrial metabolism, cell survival, and cancer. IUBMB Life 2020; 73:592-610. [PMID: 32931651 DOI: 10.1002/iub.2386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Liver receptor homolog-1 (LRH-1, NR5A2) is an orphan nuclear receptor with widespread activities in the regulation of development, stemness, metabolism, steroidogenesis, and proliferation. Many of the LRH-1-regulated processes target the mitochondria and associated activities. While under physiological conditions, a balanced LRH-1 expression and regulation contribute to the maintenance of a physiological equilibrium, deregulation of LRH-1 has been associated with inflammation and cancer. In this review, we discuss the role and mechanism(s) of how LRH-1 regulates metabolic processes, cell survival, and cancer in a nuclear-mitochondrial crosstalk, and evaluate its potential as a pharmacological target.
Collapse
Affiliation(s)
- Svenja Michalek
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
8
|
Xiang Y, Tian Q, Guan L, Niu SS. The Dual Role of miR-186 in Cancers: Oncomir Battling With Tumor Suppressor miRNA. Front Oncol 2020; 10:233. [PMID: 32195180 PMCID: PMC7066114 DOI: 10.3389/fonc.2020.00233] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which regulate gene expression at post-transcriptional level. Alterations of miR-186 expression were demonstrated in numerous cancers, shown to play a vital role in oncogenesis, invasion, metastasis, apoptosis, and drug resistance. MiR-186 was documented as a tumor suppressor miRNA in the majority of studies, while conflicting reports verified miR-186 as an oncomir. The contradictory role in cancers may impede the application of miR-186, as well as other dual-functional miRNAs, as a diagnostic and therapeutic target. This review emphasizes the alterations and functions of miR-186 in cancers and discusses the mechanisms behind the contradictory findings. Among these, target abundance and dose-dependent effects of miR-186 are highlighted. The paper aims to review the challenges involved in developing diagnostic and therapeutic strategies for cancer treatment based on dual-functional miRNAs.
Collapse
Affiliation(s)
- Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Qing Tian
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Li Guan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Shuai-Shuai Niu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Hubei, China
| |
Collapse
|
9
|
Pharmacological LRH-1/Nr5a2 inhibition limits pro-inflammatory cytokine production in macrophages and associated experimental hepatitis. Cell Death Dis 2020; 11:154. [PMID: 32111818 PMCID: PMC7048823 DOI: 10.1038/s41419-020-2348-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Liver receptor homolog-1 (LRH-1, Nr5a2) is an orphan nuclear receptor mainly expressed in tissues of endodermal origin, where its physiological role has been extensively studied. LRH-1 has been implicated in liver cell differentiation and proliferation, as well as glucose, lipid, and bile acid metabolism. In addition, increasing evidence highlights its role in immunoregulatory processes via glucocorticoid synthesis in the intestinal epithelium. Although the direct function of LRH-1 in immune cells is fairly elucidated, a role of LRH-1 in the regulation of macrophage differentiation has been recently reported. In this study, we aimed to investigate the role of LRH-1 in the regulation of pro-inflammatory cytokine production in macrophages. Our data demonstrate that pharmacological inhibition, along with LRH-1 knockdown, significantly reduced the lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines in the macrophage line RAW 264.7 cells, as well as in primary murine macrophages. This inhibitory effect was found to be independent of defects of LRH-1-regulated cell proliferation or toxic effects of the LRH-1 inhibitors. In contrast, LRH-1 inhibition reduced the mitochondrial ATP production and metabolism of macrophages through downregulation of the LRH-1 targets glucokinase and glutminase-2, and thus impairing the LPS-induced macrophage activation. Interestingly, in vivo pharmacological inhibition of LRH-1 also resulted in reduced tumor necrosis factor (TNF) production and associated decreased liver damage in a macrophage- and TNF-dependent mouse model of hepatitis. Noteworthy, despite hepatocytes expressing high levels of LRH-1, pharmacological inhibition of LRH-1 per se did not cause any obvious liver damage. Therefore, this study proposes LRH-1 as an emerging therapeutic target in the treatment of inflammatory disorders, especially where macrophages and cytokines critically decide the extent of inflammation.
Collapse
|
10
|
Sun YM, Zheng S, Chen X, Gao F, Zhang J. Lower Nr5a2 Level Downregulates the β-Catenin and TCF-4 Expression in Caerulein-Induced Pancreatic Inflammation. Front Physiol 2020; 10:1549. [PMID: 31992986 PMCID: PMC6962314 DOI: 10.3389/fphys.2019.01549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptor subfamily 5 group A member 2 (Nr5a2) is widely involved in the physiological and pathological processes of the pancreas. However, the cytological and molecular evidence regarding how Nr5a2 implicated in acute pancreatitis (AP) remains insufficient. Here, we explored this problem by using cellular AP model in both normal and Nr5a2 silenced AR42J pancreatic acinar cells. An in vitro cellular model of AP was established by stimulating AR42J cells with caerulein (CAE) for 24 h. Reduced Nr5a2 expression was observed in the CAE-treated cells. Nr5a2 silencing led to AP-like inflammation, with increased interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α mRNA levels. In the cellular AP model, Nr5a2 silencing further increased IL-1β, IL-6, and TNF-α mRNA levels, as well as amylase activity. In addition, we found that Nr5a2 silencing did not affect IL-10 level under physiological conditions but inhibited the anti-inflammatory response of IL-10 in AP model. Moreover, in CAE-induced pancreatic inflammation, Nr5a2 silencing increased the apoptosis and necrosis of acinar cells and inhibited the proliferation of acinar cells, which has not been shown previously. Further experiments showed, for the first time, that Nr5a2 silencing downregulated the expression of β-catenin and its downstream target gene T-cell factor (TCF)-4 in the cellular AP model but increased the expression of nuclear factor (NF)-κB. In conclusion, in CAE-induced pancreatic inflammation, lower Nr5a2 level leads to downregulation of β-catenin and its downstream target gene TCF-4 and upregulation of NF-κB, which exacerbates the inflammatory response and cell damage and inhibits the proliferation and regeneration of acinar cells.
Collapse
Affiliation(s)
- Ya Mei Sun
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Shuai Zheng
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xue Chen
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Feng Gao
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Zhang
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
11
|
Macchini M, Chiaravalli M, Zanon S, Peretti U, Mazza E, Gianni L, Reni M. Chemotherapy in elderly patients with pancreatic cancer: Efficacy, feasibility and future perspectives. Cancer Treat Rev 2018; 72:1-6. [PMID: 30414985 DOI: 10.1016/j.ctrv.2018.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/27/2018] [Indexed: 12/27/2022]
Abstract
By 2030 70% of newly diagnosed pancreatic ductal adenocarcinoma (PDAC) will occur in older adults. Elderly patients, defined by the World Health Organization (WHO) as people older than 65 years, represent a heterogeneous group with different biological and functional characteristics that need personalized anticancer treatments. Since older patients are under-represented in randomized phase III trials, their management is mostly extrapolated from studies performed in younger patients, without robust evidence-based recommendations. However, data from retrospective studies and case-control series show that elderly may benefit from chemotherapy in both the adjuvant and advanced disease settings. Although with discordant results, gemcitabine-based treatment and dose-adapted fluorouracil combination regimens seem to be effective and well tolerated in this subset of patients. A proper balance of potential treatment benefits and side effects represent the crucial point for managing elderly patients with PDAC. Therefore an appropriate patient selection is essential to maximize the therapeutic benefit in the older population: randomized studies aiming to better standardizing fitness parameters and implementing the routine use of comprehensive geriatric assessments are strongly warranted. In this light, the detection of molecular prognostic markers able to detect patients who may benefit more from oncological treatments should be a primary endpoint of age-focused clinical trials. Altogether, the field of geriatric oncology will expand in the next years, and the clinical management of elderly patients affected by PDAC will become a major public health issue.
Collapse
Affiliation(s)
- Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Marta Chiaravalli
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia Zanon
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Elena Mazza
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Luca Gianni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
12
|
Melstrom LG, Singh G, Fong Y. Accelerating progress in the fight against pancreatic cancer Proceedings of the 2017 Leo and Anne Albert Symposium for Pancreatic Cancer Research. J Surg Oncol 2017; 116:5-6. [PMID: 28608945 DOI: 10.1002/jso.24672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Laleh G Melstrom
- Assistant Professor of Surgery and Experimental Therapeutics, City of Hope Medical Center
| | | | - Yuman Fong
- Professor and Sangiacomo Chair and Chairman Department of Surgery, City of Hope Medical Center
| |
Collapse
|