1
|
Kibble MJ, Ferreira MJS, Usta YH, van den Akker GGH, Moxon SR, Baird P, Hoyland JA, Domingos MAN, Richardson SM. Suspension bioprinted whole intervertebral disc analogues enable regional stiffness- and hypoxia-regulated matrix secretion by primary human nucleus pulposus and annulus fibrosus cells. Acta Biomater 2025:S1742-7061(25)00340-X. [PMID: 40339969 DOI: 10.1016/j.actbio.2025.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/10/2025]
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of back pain, and while studies have revealed the roles resident nucleus pulposus (NP) and annulus fibrosus (AF) cells play in degeneration, tissue-engineered IVD models are needed to better investigate the mechanisms underpinning these cell-driven changes. This study therefore integrated suspension baths with bioprinting to create four multi-material, whole IVD analogues and investigated the combined effect of reduced oxygen tension and increased regional matrix stiffness on disc cell phenotype since these factors correlate with IVD degeneration. Primary NP and AF cells were seeded into alginate-collagen hydrogels and bioprinted into biphasic IVD structures. The nascent area, intensity, and integrated density of pro-collagen type I, collagen type VI, aggrecan, and hyaluronic acid were quantified using immunofluorescence staining in each region. Stiffness-mediated collagen and glycosaminoglycan production was observed in the AF, and increased stiffness downregulated collagen type VI in the AF but upregulated it in NP. Oxygen tension impacted proteoglycan production, with hypoxia increasing aggrecan and hyaluronic acid in both regions. This work represents a step towards the automated biofabrication of whole IVD analogues and expands the state-of-the-art in suspension bioprinting using regionally specific matrix cues. The findings provide important insights into two key microenvironmental factors driving IVD degeneration. STATEMENT OF SIGNIFICANCE: This manuscript outlines an original application of suspended layer additive manufacturing to biofabricate novel, biphasic intervertebral disc analogues containing patient-derived primary human cells. Significantly, the bioprinted models demonstrated biological function and were used to assess the effect of stiffness and oxygen concentration on regional matrix production using a range of internationally-recognized phenotypic intervertebral disc cell markers. The study therefore furthers the state-of-the-art in suspended bioprinting using regionally specific matrix cues and paves the way for future bioprinted disc models that can serve as biosimulators capable of generating insights into key mechanisms governing tissue development, homeostasis, and degeneration.
Collapse
Affiliation(s)
- Matthew J Kibble
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Miguel J S Ferreira
- Henry Royce Institute, Royce Hub Building, University of Manchester, Oxford Road, M13 9PL, UK; Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yusuf H Usta
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Guus G H van den Akker
- Department of Experimental Orthopaedics, Maastricht University, P.O. Box 5800, 6202 AZ, The Netherlands
| | - Samuel R Moxon
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Pauline Baird
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Marco A N Domingos
- Henry Royce Institute, Royce Hub Building, University of Manchester, Oxford Road, M13 9PL, UK; Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK; Henry Royce Institute, Royce Hub Building, University of Manchester, Oxford Road, M13 9PL, UK; Manchester Cell-Matrix Centre, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
2
|
Guo X, Lu Z, Xiao W, Huang H, Wu J, Zou F, Ma X, Chen Z, Wang H, Jiang J. Exploring the Causes of Intervertebral Disc Annulus Fibrosus Impairment. Cell Mol Bioeng 2025; 18:109-121. [PMID: 40290107 PMCID: PMC12018660 DOI: 10.1007/s12195-025-00844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
Scope The annulus fibrosus (AF), as an important component of the intervertebral disc (IVD), contributes to the structural integrity and functional normality of IVD. Degenerative disc diseases (DDD), due to AF impairment, are common problems that could lead to low back pain or neck pain, resulting in considerable disability and financial costs globally. The exact causes and underlying mechanisms of AF impairment, however, remain complex and unclear. Methods A literature search was conducted to identify relevant articles published between 1952 and 2024. We summarize the current literature on the potential etiologies of AF damage, while also providing a brief overview of the basic characteristics of the AF and current therapeutic strategies for AF impairment. Results The findings suggest that several factors could induce or exacerbate AF impairment. We categorize them into distinct groups as physical and chemical stimuli, nutritional or metabolic disorders, immune and inflammatory responses, and genetic abnormalities. Conclusion Various factors could lead to AF impairment, such as particular physical and chemical stimuli, nutritional or metabolic disorders, immune and inflammatory responses, and genetic abnormalities. Meanwhile, enhancing our understanding and management of AF impairment could help discover potential preventive or therapeutic interventions for DDD.
Collapse
Affiliation(s)
- Xingyu Guo
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Zian Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Wenbiao Xiao
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Han Huang
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Jianwei Wu
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Zhenhao Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, 12 Wulumuqizhong Rd, Shanghai, 200040 China
| |
Collapse
|
3
|
Sun Y, Li Z, Duan J, Liu E, Yang L, Sun F, Chen L, Yang S. From structure to therapy: the critical influence of cartilaginous endplates and microvascular network on intervertebral disc degeneration. Front Bioeng Biotechnol 2024; 12:1489420. [PMID: 39530056 PMCID: PMC11550963 DOI: 10.3389/fbioe.2024.1489420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular structure in the human body. The cartilaginous endplate (CEP) is a layer of translucent cartilage located at the upper and lower edges of the vertebral bodies. On one hand, CEPs endure pressure from within the IVD and the tensile and shear forces of the annulus fibrosus, promoting uniform distribution of compressive loads on the vertebral bodies. On the other hand, microvascular diffusion channels within the CEP serve as the primary routes for nutrient supply to the IVD and the transport of metabolic waste. Degenerated CEP, characterized by increased stiffness, decreased permeability, and reduced water content, impairs substance transport and mechanical response within the IVD, ultimately leading to intervertebral disc degeneration (IDD). Insufficient nutrition of the IVD has long been considered the initiating factor of IDD, with CEP degeneration regarded as an early contributing factor. Additionally, CEP degeneration is frequently accompanied by Modic changes, which are common manifestations in the progression of IDD. Therefore, this paper comprehensively reviews the structure and physiological functions of CEP and its role in the cascade of IDD, exploring the intrinsic relationship between CEP degeneration and Modic changes from various perspectives. Furthermore, we summarize recent potential therapeutic approaches targeting CEP to delay IDD, offering new insights into the pathological mechanisms and regenerative repair strategies for IDD.
Collapse
Affiliation(s)
- Yu Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Zhaoyong Li
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Jiahao Duan
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Enxu Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Lei Yang
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Fei Sun
- Graduate School of Hunan University of Chinese Medicine, Changsha, China
| | - Long Chen
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shaofeng Yang
- Department of Orthopaedics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Shu Y, Li B, Ma H, Liu J, Cheng YY, Li X, Liu T, Yang C, Ma X, Song K. Three-dimensional breast cancer tumor models based on natural hydrogels: a review. J Zhejiang Univ Sci B 2024; 25:736-755. [PMID: 39308065 PMCID: PMC11422793 DOI: 10.1631/jzus.b2300840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Breast cancer is the most common cancer in women and one of the deadliest cancers worldwide. According to the distribution of tumor tissue, breast cancer can be divided into invasive and non-invasive forms. The cancer cells in invasive breast cancer pass through the breast and through the immune system or systemic circulation to different parts of the body, forming metastatic breast cancer. Drug resistance and distant metastasis are the main causes of death from breast cancer. Research on breast cancer has attracted extensive attention from researchers. In vitro construction of tumor models by tissue engineering methods is a common tool for studying cancer mechanisms and anticancer drug screening. The tumor microenvironment consists of cancer cells and various types of stromal cells, including fibroblasts, endothelial cells, mesenchymal cells, and immune cells embedded in the extracellular matrix. The extracellular matrix contains fibrin proteins (such as types I, II, III, IV, VI, and X collagen and elastin) and glycoproteins (such as proteoglycan, laminin, and fibronectin), which are involved in cell signaling and binding of growth factors. The current traditional two-dimensional (2D) tumor models are limited by the growth environment and often cannot accurately reproduce the heterogeneity and complexity of tumor tissues in vivo. Therefore, in recent years, research on three-dimensional (3D) tumor models has gradually increased, especially 3D bioprinting models with high precision and repeatability. Compared with a 2D model, the 3D environment can better simulate the complex extracellular matrix components and structures in the tumor microenvironment. Three-dimensional models are often used as a bridge between 2D cellular level experiments and animal experiments. Acellular matrix, gelatin, sodium alginate, and other natural materials are widely used in the construction of tumor models because of their excellent biocompatibility and non-immune rejection. Here, we review various natural scaffold materials and construction methods involved in 3D tissue-engineered tumor models, as a reference for research in the field of breast cancer.
Collapse
Affiliation(s)
- Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bing Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaqi Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Xiangqin Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Chuwei Yang
- Emergency Center, the Second Hospital of Dalian Medical University, Dalian 116023, China. ,
| | - Xiao Ma
- Department of Anesthesia, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China. ,
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
5
|
Yuan C, Jiang J, Zhang X, Gu L, Wang X, Shao L. Direct 3D printing of freeform anisotropic bioactive structure based on shear-oriented ink system. Biofabrication 2024; 16:045011. [PMID: 39008993 DOI: 10.1088/1758-5090/ad6375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Various anisotropic tissue structures exist in organisms, including muscle tissue, skin tissue, and nerve tissue. Replicating anisotropic tissue structuresin vitrohas posed a significant challenge. Three-dimensional (3D) printing technology is often used to fabricate biomimetic structures due to its advantages in manufacturing principle. However, direct 3D printing of freeform anisotropic bioactive structures has not been reported. To tackle this challenge, we developed a ternary F/G/P ink system that integrates the printability of Pluronic F127 (F), the robust bioactivity and photocrosslinking properties of gelatin methacryloyl (G), and the shear-induced alignment functionality of high-molecular-weight polyethylene glycol (P). And through this strategic ternary system combination, freeform anisotropic tissue structures can be 3D printed directly. Moreover, these anisotropic structures exhibit excellent bioactivity, and promote orientational growth of different cells. This advancement holds promise for the repair and replacement of anisotropic tissues within the human body.
Collapse
Affiliation(s)
- Chenhui Yuan
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jinhong Jiang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Xinyu Zhang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Lin Gu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Xueping Wang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| |
Collapse
|
6
|
Wang Y, Zhang C, Cheng J, Yan T, He Q, Huang D, Liu J, Wang Z. Cutting-Edge Biomaterials in Intervertebral Disc Degeneration Tissue Engineering. Pharmaceutics 2024; 16:979. [PMID: 39204324 PMCID: PMC11359550 DOI: 10.3390/pharmaceutics16080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) stands as the foremost contributor to low back pain (LBP), imposing a substantial weight on the world economy. Traditional treatment modalities encompass both conservative approaches and surgical interventions; however, the former falls short in halting IVDD progression, while the latter carries inherent risks. Hence, the quest for an efficacious method to reverse IVDD onset is paramount. Biomaterial delivery systems, exemplified by hydrogels, microspheres, and microneedles, renowned for their exceptional biocompatibility, biodegradability, biological efficacy, and mechanical attributes, have found widespread application in bone, cartilage, and various tissue engineering endeavors. Consequently, IVD tissue engineering has emerged as a burgeoning field of interest. This paper succinctly introduces the intervertebral disc (IVD) structure and the pathophysiology of IVDD, meticulously classifies biomaterials for IVD repair, and reviews recent advances in the field. Particularly, the strengths and weaknesses of biomaterials in IVD tissue engineering are emphasized, and potential avenues for future research are suggested.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Qing He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| |
Collapse
|
7
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
8
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
9
|
Li S, Du J, Huang Y, Gao S, Zhao Z, Chang Z, Zhang X, He B. From hyperglycemia to intervertebral disc damage: exploring diabetic-induced disc degeneration. Front Immunol 2024; 15:1355503. [PMID: 38444852 PMCID: PMC10912372 DOI: 10.3389/fimmu.2024.1355503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of lumbar disc herniation has gradually increased in recent years, and most patients have symptoms of low back pain and nerve compression, which brings a heavy burden to patients and society alike. Although the causes of disc herniation are complex, intervertebral disc degeneration (IDD) is considered to be the most common factor. The intervertebral disc (IVD) is composed of the upper and lower cartilage endplates, nucleus pulposus, and annulus fibrosus. Aging, abnormal mechanical stress load, and metabolic disorders can exacerbate the progression of IDD. Among them, high glucose and high-fat diets (HFD) can lead to fat accumulation, abnormal glucose metabolism, and inflammation, which are considered important factors affecting the homeostasis of IDD. Diabetes and advanced glycation end products (AGEs) accumulation- can lead to various adverse effects on the IVD, including cell senescence, apoptosis, pyroptosis, proliferation, and Extracellular matrix (ECM) degradation. While current research provides a fundamental basis for the treatment of high glucose-induced IDD patients. further exploration into the mechanisms of abnormal glucose metabolism affecting IDD and in the development of targeted drugs will provide the foundation for the effective treatment of these patients. We aimed to systematically review studies regarding the effects of hyperglycemia on the progress of IDD.
Collapse
Affiliation(s)
- Shuai Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Jinpeng Du
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Yunfei Huang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Shenglong Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Medical College, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhigang Zhao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| | - BaoRong He
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Youyidong Road, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Crump KB, Alminnawi A, Bermudez‐Lekerika P, Compte R, Gualdi F, McSweeney T, Muñoz‐Moya E, Nüesch A, Geris L, Dudli S, Karppinen J, Noailly J, Le Maitre C, Gantenbein B. Cartilaginous endplates: A comprehensive review on a neglected structure in intervertebral disc research. JOR Spine 2023; 6:e1294. [PMID: 38156054 PMCID: PMC10751983 DOI: 10.1002/jsp2.1294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 12/30/2023] Open
Abstract
The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.
Collapse
Affiliation(s)
- Katherine B. Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Ahmad Alminnawi
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Paola Bermudez‐Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Roger Compte
- Twin Research & Genetic EpidemiologySt. Thomas' Hospital, King's College LondonLondonUK
| | - Francesco Gualdi
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)BarcelonaSpain
| | - Terence McSweeney
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
| | - Estefano Muñoz‐Moya
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Andrea Nüesch
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Liesbet Geris
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Stefan Dudli
- Center of Experimental RheumatologyDepartment of Rheumatology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
| | - Jaro Karppinen
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
- Finnish Institute of Occupational HealthOuluFinland
- Rehabilitation Services of South Karelia Social and Health Care DistrictLappeenrantaFinland
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Christine Le Maitre
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
11
|
Xia Y, Wang H, Yang R, Hou Y, Li Y, Zhu J, Fu C. Biomaterials delivery strategies to repair degenerated intervertebral discs by regulating the inflammatory microenvironment. Front Immunol 2023; 14:1051606. [PMID: 36756124 PMCID: PMC9900107 DOI: 10.3389/fimmu.2023.1051606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is one of the leading causes of lower back pain. Although IVDD cannot directly cause death, it can cause pain, psychological burdens, and economic burdens to patients. Current conservative treatments for IVDD can relieve pain but cannot reverse the disease. Patients who cannot tolerate pain usually resort to a strategy of surgical resection of the degenerated disc. However, the surgical removal of IVDD can affect the stability of adjacent discs. Furthermore, the probability of the reherniation of the intervertebral disc (IVD) after surgery is as high as 21.2%. Strategies based on tissue engineering to deliver stem cells for the regeneration of nucleus purposes (NP) and annulus fibrosus (AF) have been extensively studied. The developed biomaterials not only locally withstand the pressure of the IVD but also lay the foundation for the survival of stem cells. However, the structure of IVDs does not provide sufficient nutrients for delivered stem cells. The role of immune mechanisms in IVDD has recently become clear. In IVDD, the IVD that was originally in immune privilege prevents the attack of immune cells (mainly effector T cells and macrophages) and aggravates the disease. Immune regulatory and inflammatory factors released by effector T cells, macrophages, and the IVD further aggravate IVDD. Reversing IVDD by regulating the inflammatory microenvironment is a potential approach for the treatment of the disease. However, the biological factors modulating the inflammatory microenvironment easily degrade in vivo. It makes it possible for different biomaterials to modulate the inflammatory microenvironment to repair IVDD. In this review, we have discussed the structures of IVDs and the immune mechanisms underlying IVDD. We have described the immune mechanisms elicited by different biological factors, including tumor necrosis factors, interleukins, transforming growth factors, hypoxia-inducible factors, and reactive oxygen species in IVDs. Finally, we have discussed the biomaterials used to modulate the inflammatory microenvironment to repair IVDD and their development.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yulin Hou
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Changfeng Fu,
| |
Collapse
|
12
|
Zhang X, Hu Y, Hao D, Li T, Jia Y, Hu W, Xu Z. New strategies for the treatment of intervertebral disc degeneration: cell, exosome, gene, and tissue engineering. Am J Transl Res 2022; 14:8031-8048. [PMID: 36505274 PMCID: PMC9730054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/19/2022] [Indexed: 12/15/2022]
Abstract
Low back pain (LBP) caused by intervertebral disc (IVD) generation (IVDD) has always been an important problem that cannot be ignored. Traditional therapies have many deep-rooted and intractable complications that promote their treatment mode transfer to new therapies. This article mainly summarizes the shortcomings of traditional treatment methods and analyzes the research status and future development direction of IVDD treatment. We outlined the most promising IVDD therapies, including cell, exosome, gene, and tissue engineering therapy, especially tissue engineering therapy, which runs through the whole process of other therapies. In addition, the article focuses on the cellular, animal, and preclinical challenges faced by each therapeutic approach, as well as their respective advantages and disadvantages, to provide better ideas for relieving the IVDD patients' pain through new treatment methods.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second HospitalLanzhou 730000, Gansu, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Tao Li
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Yuhan Jia
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Wei Hu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| | - Zhengwei Xu
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiao Tong UniversityXi’an 710054, Shaanxi, China
| |
Collapse
|
13
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
14
|
Yu Q, Han F, Yuan Z, Zhu Z, Liu C, Tu Z, Guo Q, Zhao R, Zhang W, Wang H, Mao H, Li B, Zhu C. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater 2022; 148:73-89. [PMID: 35671874 DOI: 10.1016/j.actbio.2022.05.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD). However, implantation of tissue engineered constructs may cause foreign body reaction and aggravate the inflammatory and oxidative microenvironment of the degenerative intervertebral disc (IVD). In order to ameliorate the adverse microenvironment of IDD, in this study, we prepared a biocompatible poly (ether carbonate urethane) urea (PECUU) nanofibrous scaffold loaded with fucoidan, a natural marine bioactive polysaccharide which has great anti-inflammatory and antioxidative functions. Compared with pure PECUU scaffold, the fucoidan-loaded PECUU nanofibrous scaffold (F-PECUU) decreased the gene and protein expression related to inflammation and the oxidative stress in the lipopolysaccharide (LPS) induced annulus fibrosus cells (AFCs) significantly (p<0.05). Especially, gene expression of Ill 6 and Ptgs2 was decreased by more than 50% in F-PECUU with 3.0 wt% fucoidan (HF-PECUU). Moreover, the gene and protein expression related to the degradation of extracellular matrix (ECM) were reduced in a fucoidan concentration-dependent manner significantly, with increased almost 3 times gene expression of Col1a2 and Acan in HF-PECUU. Further, in a 'box' defect model, HF-PECUU decreased the expression of COX-2 and deposited more ECM between scaffold layers when compared with pure PECUU. The disc height and nucleus pulposus hydration of repaired IVD reached up to 75% and 85% of those in the sham group. In addition, F-PECUU helped to maintain an integrate tissue structure with a similar compression modulus to that in sham group. Taken together, the F-PECUU nanofibrous scaffolds showed promising potential to promote AF repair in IDD treatment by ameliorating the harsh degenerative microenvironment. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD), but is restricted by the inflammatory and oxidative microenvironment of degenerative disc. This study developed a biocompatible polyurethane scaffold (F-PECUU) loaded with fucoidan, a marine bioactive polysaccharide, for ameliorating IDD microenvironment and promoting disc regeneration. F-PECUU alleviated the inflammation and oxidative stress caused by lipopolysaccharide and prevented extracellular matrix (ECM) degradation in AF cells. In vivo, it promoted ECM deposition to maintain the height, water content and mechanical property of disc. This work has shown the potential of marine polysaccharides-containing functional scaffolds in IDD treatment by ameliorating the harsh microenvironment accompanied with disc degeneration.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Runze Zhao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
15
|
Zahel P, Beekmann U, Eberlein T, Schmitz M, Werz O, Kralisch D. Bacterial Cellulose-Adaptation of a Nature-Identical Material to the Needs of Advanced Chronic Wound Care. Pharmaceuticals (Basel) 2022; 15:683. [PMID: 35745602 PMCID: PMC9228795 DOI: 10.3390/ph15060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Modern wound treatment calls for hydroactive dressings. Among the variety of materials that have entered the field of wound care in recent years, the carbohydrate polymer bacterial cellulose (BC) represents one of the most promising candidates as the biomaterial features a high moisture-loading and donation capacity, mechanical stability, moldability, and breathability. Although BC has already gained increasing relevance in the treatment of burn wounds, its potential and clinical performance for "chronic wound" indications have not yet been sufficiently investigated. This article focuses on experimental and clinical data regarding the application of BC within the indications of chronic, non-healing wounds, especially venous and diabetic ulcers. A recent clinical observation study in a chronic wound setting clearly demonstrated its wound-cleansing properties and ability to induce healing in stalling wounds. Furthermore, the material parameters of BC dressings obtained through the static cultivation of Komagataeibacter xylinus were investigated for the first time in standardized tests and compared to various advanced wound-care products. Surprisingly, a free swell absorptive capacity of a BC dressing variant containing 97% moisture was found, which was higher than that of alginate or even hydrofiber dressings. We hypothesize that the fine-structured, open porous network and the resulting capillary forces are among the main reasons for this unexpected result.
Collapse
Affiliation(s)
- Paul Zahel
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (U.B.)
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Uwe Beekmann
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (U.B.)
| | | | | | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Dana Kralisch
- JeNaCell GmbH—An Evonik Company, 07745 Jena, Germany; (P.Z.); (U.B.)
- Evonik Operations GmbH, 45128 Essen, Germany
| |
Collapse
|
16
|
Perera K, Ivone R, Natekin E, Wilga CA, Shen J, Menon JU. 3D Bioprinted Implants for Cartilage Repair in Intervertebral Discs and Knee Menisci. Front Bioeng Biotechnol 2021; 9:754113. [PMID: 34746106 PMCID: PMC8570130 DOI: 10.3389/fbioe.2021.754113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
Cartilage defects pose a significant clinical challenge as they can lead to joint pain, swelling and stiffness, which reduces mobility and function thereby significantly affecting the quality of life of patients. More than 250,000 cartilage repair surgeries are performed in the United States every year. The current gold standard is the treatment of focal cartilage defects and bone damage with nonflexible metal or plastic prosthetics. However, these prosthetics are often made from hard and stiff materials that limits mobility and flexibility, and results in leaching of metal particles into the body, degeneration of adjacent soft bone tissues and possible failure of the implant with time. As a result, the patients may require revision surgeries to replace the worn implants or adjacent vertebrae. More recently, autograft - and allograft-based repair strategies have been studied, however these too are limited by donor site morbidity and the limited availability of tissues for surgery. There has been increasing interest in the past two decades in the area of cartilage tissue engineering where methods like 3D bioprinting may be implemented to generate functional constructs using a combination of cells, growth factors (GF) and biocompatible materials. 3D bioprinting allows for the modulation of mechanical properties of the developed constructs to maintain the required flexibility following implantation while also providing the stiffness needed to support body weight. In this review, we will provide a comprehensive overview of current advances in 3D bioprinting for cartilage tissue engineering for knee menisci and intervertebral disc repair. We will also discuss promising medical-grade materials and techniques that can be used for printing, and the future outlook of this emerging field.
Collapse
Affiliation(s)
- Kalindu Perera
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Ryan Ivone
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Evelina Natekin
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, United States
| | - Cheryl. A. Wilga
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
- Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Jie Shen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, United States
| | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
17
|
Gkantsinikoudis N, Kapetanakis S, Magras I, Tsiridis E, Kritis A. Tissue-Engineering of Human Intervertebral Disc: A Concise Review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:848-860. [PMID: 34409867 DOI: 10.1089/ten.teb.2021.0090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intervertebral disc (IVD) represents a structure of crucial structural and functional importance for human spine. Pathology of IVD institutes a frequently encountered condition in current clinical practice. Degenerative Disc Disease (DDD), the principal clinical representative of IVD pathology, constitutes an increasingly diagnosed spinal disorder associated with substantial morbidity and mortality in recent years. Despite the considerable incidence and socioeconomic burden of DDD, existing treatment modalities including conservative and surgical methods have been demonstrated to provide a limited therapeutic effect, being not capable of interrupting or reversing natural progress of underlying disease. These limitations underline the requirement for development of novel, innovative and more effective therapeutic strategies for DDD management. Within this literature framework, compromised IVD replacement with a viable IVD construct manufactured with Tissue-Engineering (TE) methods has been recommended as a promising therapeutic strategy for DDD. Existing preliminary preclinical data demonstrate that proper combination of cells from various sources, different scaffold materials and appropriate signaling molecules renders manufacturing of whole-IVD tissue-engineered constructs a technically feasible process. Aim of this narrative review is to critically summarize current published evidence regarding particular aspects of IVD-TE, primarily emphasizing in providing researchers in this field with practicable knowledge in order to enhance clinical translatability of their research and informing clinical practitioners about the features and capabilities of innovative TE science in the field of IVD-TE.
Collapse
Affiliation(s)
- Nikolaos Gkantsinikoudis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th.), Department of Physiology and Pharmacology , Thessaloniki, Greece.,School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Thessaloniki, Greece;
| | - Stylianos Kapetanakis
- Interbalkan European Medical Center, Spine Department and Deformities, Thessaloniki, Greece;
| | - Ioannis Magras
- AHEPA University General Hospital, Aristotle University of Thessaloniki, Department of Neurosurgery, Thessaloniki, Greece;
| | - Eleftherios Tsiridis
- Papageorgiou General Hospital, Aristotle University Medical School, Academic Orthopaedic Department, Thessaloniki Ring Road, Nea Efkarpia, Greece.,Aristotle University Thessaloniki, Balkan Center, Buildings A & B, Center of Orthopaedics and Regenerative Medicine (C.O.RE.), Center of Interdisciplinary Research and Innovation (C.I.R.I.), Thessaloniki, 10th km Thessaloniki-Thermi Rd, Greece;
| | - Aristeidis Kritis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th.), Department of Physiology and Pharmacology , Thessaloniki, Greece.,School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Thessaloniki, Greece;
| |
Collapse
|
18
|
Peng Y, Qing X, Shu H, Tian S, Yang W, Chen S, Lin H, Lv X, Zhao L, Chen X, Pu F, Huang D, Cao X, Shao Z, Yp, Zs, Xc, Yp, Yp, Xq, Hs, St, Wy, Yp, Xq, Hs, St, Hl, Xl, Lz, Xc, Fp, Sc, Yp, Xq, Hs, St, Yp, Xq, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Wy, Hl, Xl, Lz, Xc, Fp, Sc, Hdh, Zs, Xc. Proper animal experimental designs for preclinical research of biomaterials for intervertebral disc regeneration. BIOMATERIALS TRANSLATIONAL 2021; 2:91-142. [PMID: 35836965 PMCID: PMC9255780 DOI: 10.12336/biomatertransl.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 01/17/2023]
Abstract
Low back pain is a vital musculoskeletal disease that impairs life quality, leads to disability and imposes heavy economic burden on the society, while it is greatly attributed to intervertebral disc degeneration (IDD). However, the existing treatments, such as medicines, chiropractic adjustments and surgery, cannot achieve ideal disc regeneration. Therefore, advanced bioactive therapies are implemented, including stem cells delivery, bioreagents administration, and implantation of biomaterials etc. Among these researches, few reported unsatisfying regenerative outcomes. However, these advanced therapies have barely achieved successful clinical translation. The main reason for the inconsistency between satisfying preclinical results and poor clinical translation may largely rely on the animal models that cannot actually simulate the human disc degeneration. The inappropriate animal model also leads to difficulties in comparing the efficacies among biomaterials in different reaches. Therefore, animal models that better simulate the clinical charateristics of human IDD should be acknowledged. In addition, in vivo regenerative outcomes should be carefully evaluated to obtain robust results. Nevertheless, many researches neglect certain critical characteristics, such as adhesive properties for biomaterials blocking annulus fibrosus defects and hyperalgesia that is closely related to the clinical manifestations, e.g., low back pain. Herein, in this review, we summarized the animal models established for IDD, and highlighted the proper models and parameters that may result in acknowledged IDD models. Then, we discussed the existing biomaterials for disc regeneration and the characteristics that should be considered for regenerating different parts of discs. Finally, well-established assays and parameters for in vivo disc regeneration are explored.
Collapse
Affiliation(s)
- Yizhong Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wenbo Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Songfeng Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hui Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xi Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Feifei Pu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding authors: Zengwu Shao, ; Xu Cao,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
El Magri A, Vanaei S, Vaudreuil S. An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211009961] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fused Filament Fabrication (FFF) technology is increasingly applied in automotive, aerospace and medical applications. FFF is one of the most widely used additive manufacturing techniques to manufacture thermoplastics or their composites. FFF enables improvement in both cycle time and total cost of product development. Such improvements are achieved through the quick manufacture of functional prototypes enable real-world product development and testing. While the benefits of FFF are undeniable, its use in demanding applications is hindered by materials properties. The used commodity and standard polymers actually exhibit low to medium thermal and mechanical properties. To overcome this limitation, the aerospace industry looks for high-performance thermoplastics to obtain plastic parts strong enough to be used as a replacement for metal. Recent developments in FFF equipment now enable engineering polymers, such as Polyether ether ketone (PEEK) and Polyether imide (PEI), to be utilized for parts with increased mechanical and thermal properties. Thus, this article reviews and discusses the properties and the printing parameters of PEEK and PEI produced by FFF.
Collapse
Affiliation(s)
- Anouar El Magri
- Euromed Research Center, Euromed Engineering Faculty, Euromed University of Fes (UEMF), Fes, Morocco
| | | | - Sébastien Vaudreuil
- Euromed Research Center, Euromed Engineering Faculty, Euromed University of Fes (UEMF), Fes, Morocco
| |
Collapse
|
21
|
Vanaei S, Parizi M, Vanaei S, Salemizadehparizi F, Vanaei H. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|