1
|
Pohl C, Schuster L, Rau C, Gutbier U, Beil S, Börnick H, Ostermann K, Stolte S. LC-MS/MS quantification of bacterial and fungal signal peptides via direct injection: a case study of cross-kingdom communication. Anal Bioanal Chem 2025; 417:1677-1689. [PMID: 39903273 PMCID: PMC11876276 DOI: 10.1007/s00216-025-05767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Bacteria and yeast use secreted signal peptides, also known as pheromones, for cell-cell communication within their respective species. Recently, genetic modification has allowed for the extension and exploitation of this type of communication, to communication between organisms from different species and even from different kingdoms. This innovative approach is intended to allow for the large-scale production of specific compounds for applications in medicine and biotechnology while producing reduced amounts of by-products. Until now, the detection of signal peptides, which are often short-lived and only present in small amounts, is usually qualitative, non-selective, and time-consuming and/or requires the presence of additional cell types. Here, an ESI-LC-MS/MS method for the specific quantification of signal peptides from yeast (α- and P-factor) and bacteria (CSF) using a TSKgel column operating under HILIC conditions has been demonstrated. The influence of different matrices, their adsorption behavior, and their stability were investigated. In matrix, LOQs of 0.05 µM, 0.03 µM, and 0.02 µM were obtained for CSF, α-factor, and P-factor, respectively. Subsequently, the developed method was applied to the detection of yeast- and bacteria-specific peptides secreted by genetically modified yeasts. It could be demonstrated that under overexpressing conditions, α-factor and P-factor concentrations of 1 µM were measured, while for CSF concentrations as high as 2.5 µM was reached. Finally, the established method permits the simultaneous, quantitative detection of signal peptides in different matrices and without pre-concentration in near-real time, thus advancing the possibility of tracking cross-kingdom communication.
Collapse
Affiliation(s)
- Carolin Pohl
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Linda Schuster
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Cindy Rau
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
- Faculty of Civil Engineering, Division of Water Science, HTW University of Applied Sciences, Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Uta Gutbier
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Stephan Beil
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Hilmar Börnick
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Kai Ostermann
- Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, 01062, Dresden, Germany
| | - Stefan Stolte
- Faculty of Environmental Science, Institute of Water Chemistry, TUD Dresden University of Technology, 01062, Dresden, Germany.
| |
Collapse
|
2
|
Martin P, He K, Blaney L, Hobbs SR. Advanced Liquid Chromatography with Tandem Mass Spectrometry Method for Quantifying Glyphosate, Glufosinate, and Aminomethylphosphonic Acid Using Pre-Column Derivatization. ACS ES&T WATER 2023; 3:2407-2414. [PMID: 37588809 PMCID: PMC10425981 DOI: 10.1021/acsestwater.3c00094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 08/18/2023]
Abstract
Analytical limitations make it challenging to develop effective methodologies for understanding glyphosate-based herbicide levels in drinking water and groundwater. Due to their lack of chromophores and zwitterionic nature, glyphosate-based herbicides are difficult to detect using traditional methods. This paper offers a straightforward method for quantifying glyphosate, glufosinate, and aminomethylphosphonic acid (AMPA) via 9-fluorenylmethylchloroformate (FMOC-Cl) pre-column derivatization and analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Method development was focused on optimizing the critical variables for optimal derivatization using a 24-factorial design. We found that complete derivatization significantly depends on the inclusion of borate buffer to create the alkaline conditions necessary for aminolysis. Ethylenediaminetetraacetic acid (EDTA) addition was critical to minimize metallic chelation and ensure reproducible retention times and peaks. However, EDTA concentrations ≥5% decreased peak intensity due to ion suppression. The FMOC-Cl concentration and derivatization time exhibited a direct proportional relationship, with the complete reaction achieved with 2.5 mM FMOC-Cl after 4 h. Concentrations of FMOC-Cl greater than 2.5 mM led to the formation of oxides, which interfere with the detection sensitivity and selectivity. Desirable results were achieved with 1% EDTA, 5% borate, and 2.5 mM FMOC-Cl, which led to complete derivatization after 4 h.
Collapse
Affiliation(s)
- Pedro
J. Martin
- Department
of Civil & Environmental Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Ke He
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250-0001, United
States
| | - Lee Blaney
- Department
of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250-0001, United
States
| | - Shakira R. Hobbs
- Department
of Civil & Environmental Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
Komori Y, Niinae T, Imami K, Yanagibayashi J, Yasunaga K, Imamura S, Tomita M, Ishihama Y. Bioinertization of nanoLC/MS/MS systems by depleting metal ions from the mobile phases for phosphoproteomics. Mol Cell Proteomics 2023; 22:100535. [PMID: 36958626 PMCID: PMC10172917 DOI: 10.1016/j.mcpro.2023.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/16/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023] Open
Abstract
We have successfully developed a bioinertized nanoflow liquid chromatography/tandem mass spectrometry (nanoLC/MS/MS) system for the highly sensitive analysis of phosphopeptides by depleting metal ions from the mobile phase. We found that not only direct contact of phosphopeptides with metal components, but also indirect contact with nanoLC pumps through the mobile phase causes significant losses during the recovery of phosphopeptides. Moreover, electrospray ionization was adversely affected by the mobile phase containing multiple metal ions as well as by the sample solvents contaminated with metal ions used in immobilized metal ion affinity chromatography for phosphopeptide enrichment. To solve these problems, metal ions were depleted by inserting an on-line metal ion removal device containing metal-chelating membranes between the gradient mixer and the autosampler. As a result, the peak areas of the identified phosphopeptides increased an average of 9.9-fold overall and 77-fold for multiply phosphorylated peptides with the insertion of the on-line metal ion removal system. This strategy would be applicable to highly sensitive analysis of other phosphorylated biomolecules by microscale-LC/MS/MS.
Collapse
Affiliation(s)
- Yumi Komori
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tomoya Niinae
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan; RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan; Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
4
|
Giacomello G, Böttcher C, Parr MK. Isotopic tracing of glucose metabolites in human monocytes to assess changes in inflammatory conditions. STAR Protoc 2022; 3:101715. [PMID: 36152304 PMCID: PMC9519621 DOI: 10.1016/j.xpro.2022.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 01/26/2023] Open
Abstract
Differences in metabolic profiles can link to functional changes of immune cells in disease conditions. Here, we detail a protocol for the detection and quantitation of 19 metabolites in one analytical run. We provide the parameters for chromatographic separation and mass spectrometric analysis of isotopically labeled and unlabeled metabolites. We include steps for incubation and sample preparation of PBMCs and monocytes. This protocol overcomes the chromatographic challenges caused by the chelating properties of some metabolites.
Collapse
Affiliation(s)
- Ginevra Giacomello
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany,Corresponding author
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maria Kristina Parr
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany,Corresponding author
| |
Collapse
|
5
|
Hyung SW, Lee J, Baek SY, Lee S, Han J, Kim B, Choi K, Ahn S, Lim DK, Lee H. Method Improvement for Analysis of Enrofloxacin and Ciprofloxacin in Chicken Meat: Application of In-Sample Addition of Trace Ethylenediaminetetraacetic Acid to Isotope Dilution Ultra-Performance Liquid Chromatography–Mass Spectrometry. Chromatographia 2021. [DOI: 10.1007/s10337-021-04106-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Nguyen JM, Gilar M, Koshel B, Donegan M, MacLean J, Li Z, Lauber MA. Assessing the impact of nonspecific binding on oligonucleotide bioanalysis. Bioanalysis 2021; 13:1233-1244. [PMID: 34472373 DOI: 10.4155/bio-2021-0115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/18/2021] [Indexed: 01/18/2023] Open
Abstract
Aim: Accurate and reliable quantification of oligonucleotides can be difficult, which has led to an increased focus on bioanalytical methods for more robust analyses. Recent advances toward mitigating sample losses on liquid chromatography (LC) systems have produced recovery advantages for oligonucleotide separations. Results & methodology: LC instruments and columns constructed from MP35N metal alloy and stainless steel columns were compared against LC hardware modified with hybrid inorganic-organic silica surfaces. Designed to minimize metal-analyte adsorption, these surfaces demonstrated a 73% increase in 25-mer phosphorothioate oligonucleotide recovery using ion-pairing reversed-phase LC versus standard LC surfaces, most particularly upon initial use. Conclusion: Hybrid silica chromatographic surfaces improve the performance, detection limits and reproducibility of oligonucleotide bioanalytical assays.
Collapse
Affiliation(s)
- Jennifer M Nguyen
- School of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Brooke Koshel
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | - Jason MacLean
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Zhimin Li
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | |
Collapse
|
7
|
Iturrospe E, Da Silva KM, Talavera Andújar B, Cuykx M, Boeckmans J, Vanhaecke T, Covaci A, van Nuijs ALN. An exploratory approach for an oriented development of an untargeted hydrophilic interaction liquid chromatography-mass spectrometry platform for polar metabolites in biological matrices. J Chromatogr A 2020; 1637:461807. [PMID: 33360078 DOI: 10.1016/j.chroma.2020.461807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The analysis of polar metabolites based on liquid chromatography-mass spectrometry (LC-MS) methods should take into consideration the complexity of interactions in LC columns to be able to cover a broad range of metabolites of key biological pathways. Therefore, in this study, different chromatographic columns were tested for polar metabolites including reversed-phase and hydrophilic interaction liquid chromatography (HILIC) columns. Based on a column screening, two new generations of zwitterionic HILIC columns were selected for further evaluation. A tree-based method optimization was applied to investigate the chromatographic factors affecting the retention mechanisms of polar metabolites with zwitterionic stationary phases. The results were evaluated based on a scoring system which was applied for more than 80 polar metabolites with a high coverage of key human metabolic pathways. The final optimized methods showed high complementarity to analyze a wide range of metabolic classes including amino acids, small peptides, sugars, amino sugars, phosphorylated sugars, organic acids, nucleobases, nucleosides, nucleotides and acylcarnitines. Optimized methods were applied to analyze different biological matrices, including human urine, plasma and liver cell extracts using an untargeted approach. The number of high-quality features (< 30% median relative standard deviation) ranged from 3,755 for urine to 5,402 for the intracellular metabolome of liver cells, showing the potential of the methods for untargeted purposes.
Collapse
Affiliation(s)
- Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium.
| | | | - Begoña Talavera Andújar
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Cellular Neurobiology and Molecular Chemistry of the Central Nervous System Group, University of Castilla-La Mancha, Calle Almansa 14, 02008 Albacete, Spain
| | - Matthias Cuykx
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Laboratory of Clinical Medicine, Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Joost Boeckmans
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium; Clinical Laboratory, Jessa Hospital, Stadsomvaart 11, 3500 Hasselt, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | |
Collapse
|
8
|
Oligonucleotide quantification and metabolite profiling by high-resolution and accurate mass spectrometry. Bioanalysis 2020; 11:1967-1980. [PMID: 31829056 DOI: 10.4155/bio-2019-0137] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Advancements in RNA interference therapeutics have triggered development of improved bioanalytical methods for oligonucleotide metabolite profiling and high-throughput quantification in biological matrices. Results & methodology: HPLC coupled with high-resolution mass spectrometry (LC-HRMS) methods were developed to investigate the metabolism of a REVERSIR™ molecule in vivo. Plasma and tissue samples were extracted using solid-phase extraction followed by LC-HRMS analysis for metabolite profiling and quantification. The method was qualified from 10 to 5000 ng/ml (plasma) and 100 to 50000 ng/g (liver and kidney). In rat liver, intra and interday accuracy ranged from 80.9 to 118.5% and 88.4 to 111.9%, respectively, with acceptable precision (<20% CV). Conclusion: The LC-HRMS method can be applied for metabolite profiling and quantification of oligonucleotides in biological matrices.
Collapse
|
9
|
Quantitative Profiling of Endogenous Metabolites Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry (HILIC-MS/MS). Methods Mol Biol 2019; 1859:185-207. [PMID: 30421230 DOI: 10.1007/978-1-4939-8757-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dynamic modeling of metabolic reaction networks requires absolute quantification of intracellular and extracellular metabolite concentrations with high precision and accuracy. This chapter presents a robust HILIC-ESI-MS/MS procedure for targeted quantitative profiling of more than 50 polar key metabolites in multicomponent endogenous extracts. Without using ion-pairing-agents or prior derivatization protocols, organic acids, amino acids, sugar phosphates, coenzymes, and nucleotides are measured on a triple quadrupole platform in positive and negative electrospray ionization modes with preoptimized MRM transitions. Robust polymer-based zwitterionic stationary phases (ZIC®-pHILIC) support alkaline mobile phase conditions (pH 9.2) for enhancing retention and chromatographic performance of polar analytes in bicratic elution mode without unfavourable column bleed. The quality of the method was extensively validated and demonstrated by absolute metabolite quantification in endogenous Escherichia coli extracts by comparative use of standard-based external calibration, isotope dilution, and standard addition as quantification strategies. In sum, alkaline ZIC®-pHILIC chromatography emerged as an efficient approach providing high selectivity and sensitivity for comprehensive metabolic studies.
Collapse
|
10
|
Kartsova LA, Bessonova EA, Somova VD. Hydrophilic Interaction Chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819050058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Hsiao JJ, Potter OG, Chu TW, Yin H. Improved LC/MS Methods for the Analysis of Metal-Sensitive Analytes Using Medronic Acid as a Mobile Phase Additive. Anal Chem 2018; 90:9457-9464. [PMID: 29976062 DOI: 10.1021/acs.analchem.8b02100] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphorylated compounds and organic acids with multiple carboxylate groups are commonly observed to have poor peak shapes and signal in LC/MS experiments. The poor peak shape is caused by the presence of trace metals, particularly iron, contributed from a variety of sources within the chromatographic system. To ameliorate this problem, different solvent additives were investigated to reduce the amount of metal in the flow path to achieve better analytical performance for these metal-sensitive compounds. Here, we introduce the use of a solvent additive that can significantly improve the peak shapes and signal of metal-sensitive metabolites for LC/MS analysis. Moreover, the additive is shown to be amenable for other metal-sensitive applications, such as the analysis of phosphopeptides and polar phosphorylated pesticides, where the instruments could be used in either positive or negative analysis mode.
Collapse
Affiliation(s)
- Jordy J Hsiao
- Agilent Technologies, Santa Clara , California 95051 , United States
| | - Oscar G Potter
- Agilent Technologies, Santa Clara , California 95051 , United States
| | - Te-Wei Chu
- Agilent Technologies, Santa Clara , California 95051 , United States
| | - Hongfeng Yin
- Agilent Technologies, Santa Clara , California 95051 , United States
| |
Collapse
|
12
|
Hydrophilic interaction chromatography and evaporative light scattering detection for the determination of polar analytes in Belgian endive. Food Chem 2017; 229:296-303. [DOI: 10.1016/j.foodchem.2017.02.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/09/2016] [Accepted: 02/17/2017] [Indexed: 01/26/2023]
|
13
|
Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography. J Chromatogr A 2017; 1483:71-79. [DOI: 10.1016/j.chroma.2016.12.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022]
|
14
|
Sestak V, Stariat J, Cermanova J, Potuckova E, Chladek J, Roh J, Bures J, Jansova H, Prusa P, Sterba M, Micuda S, Simunek T, Kalinowski DS, Richardson DR, Kovarikova P. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget 2016; 6:42411-28. [PMID: 26623727 PMCID: PMC4767442 DOI: 10.18632/oncotarget.6389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023] Open
Abstract
Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment.
Collapse
Affiliation(s)
- Vit Sestak
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jan Stariat
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Eliska Potuckova
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jaroslav Chladek
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Jaroslav Roh
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Jan Bures
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Hana Jansova
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Petr Prusa
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Martin Sterba
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova, Hradec Kralove, Czech Republic
| | - Tomas Simunek
- Department of Biochemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Petra Kovarikova
- Department of Pharmaceutical Chemistry and Drug Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho, Hradec Kralove, Czech Republic
| |
Collapse
|
15
|
Romand S, Rudaz S, Guillarme D. Separation of substrates and closely related glucuronide metabolites using various chromatographic modes. J Chromatogr A 2016; 1435:54-65. [DOI: 10.1016/j.chroma.2016.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
|
16
|
Qi W, Guan Q, Sun T, Cao Y, Zhang L, Guo Y. Improving detection sensitivity of amino acids in thyroid tissues by using phthalic acid as a mobile phase additive in hydrophilic interaction chromatography-electrospray ionization-tandem mass spectrometry. Anal Chim Acta 2015; 870:75-82. [PMID: 25819789 DOI: 10.1016/j.aca.2015.02.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 11/25/2022]
Abstract
In this work, 0.08 mmol L(-1) of phthalic acid was introduced as a mobile phase additive to quantify free amino acids (AAs) by hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS). The addition of phthalic acid significantly increased the signal intensity of protonated AA ions, resulting from the decrease of the relative abundance of AA sodium adducts. Meanwhile, the chromatographic peak shapes of AAs were optimized. As a consequence, there was a noticeable increase in the sensitivity of detection for AAs. The limits of detection (LOD) and quantification (LOQ) of the AAs ranged from 0.0500 to 20.0 ng mL(-1) and from 0.100 to 50.0 ng mL(-1), respectively, which were 4-50 times lower compared to the values measured without the addition of phthalic acid. The enhanced detection and separation of AAs were obtained by merely adding phthalic acid to the mobile phase without changing other conditions. Eventually, this simple method was validated and successfully applied to the analysis of twenty-four kinds of free AAs in human thyroid carcinoma and para-carcinoma tissues, demonstrating a significant increase of most AAs in thyroid carcinoma tissues (p<0.05).
Collapse
Affiliation(s)
- Wanshu Qi
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tuanqi Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center (FUSCC), Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yanjing Cao
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li Zhang
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yinlong Guo
- National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
17
|
Borges EM. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography. J Chromatogr Sci 2014; 53:580-97. [PMID: 25234386 DOI: 10.1093/chromsci/bmu090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed.
Collapse
Affiliation(s)
- Endler M Borges
- Núcleo Biotecnológico, Universidade do Oeste de Santa Catarina, Rua Paese, 198, Bairro Universitário-Bloco K. Videira, SC CEP 89560-000, Brazil
| |
Collapse
|
18
|
Cuthbertson DJ, Johnson SR, Piljac-Žegarac J, Kappel J, Schäfer S, Wüst M, Ketchum REB, Croteau RB, Marques JV, Davin LB, Lewis NG, Rolf M, Kutchan TM, Soejarto DD, Lange BM. Accurate mass-time tag library for LC/MS-based metabolite profiling of medicinal plants. PHYTOCHEMISTRY 2013; 91:187-97. [PMID: 23597491 PMCID: PMC3697863 DOI: 10.1016/j.phytochem.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 05/20/2023]
Abstract
We report the development and testing of an accurate mass-time (AMT) tag approach for the LC/MS-based identification of plant natural products (PNPs) in complex extracts. An AMT tag library was developed for approximately 500 PNPs with diverse chemical structures, detected in electrospray and atmospheric pressure chemical ionization modes (both positive and negative polarities). In addition, to enable peak annotations with high confidence, MS/MS spectra were acquired with three different fragmentation energies. The LC/MS and MS/MS data sets were integrated into online spectral search tools and repositories (Spektraris and MassBank), thus allowing users to interrogate their own data sets for the potential presence of PNPs. The utility of the AMT tag library approach is demonstrated by the detection and annotation of active principles in 27 different medicinal plant species with diverse chemical constituents.
Collapse
Affiliation(s)
- Daniel J. Cuthbertson
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Sean R. Johnson
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Jasenka Piljac-Žegarac
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
- Ruđer Bošković Institute, Bijenićka cesta 54, HR-10000 Zagreb, Croatia
| | - Julia Kappel
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
- Institute of Nutrition and Food Sciences, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Sarah Schäfer
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
- Institute of Nutrition and Food Sciences, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Matthias Wüst
- Institute of Nutrition and Food Sciences, University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany
| | - Raymond E. B. Ketchum
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Rodney B. Croteau
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Joaquim V. Marques
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Laurence B. Davin
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Norman G. Lewis
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
| | - Megan Rolf
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Toni M. Kutchan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - D. Doel Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St. (M/C 781), Chicago, IL 60612, USA
- Botany Department, Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - B. Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA 99164-6340, USA
- Corresponding author: Tel.: 509-335-3794; fax: 509-335-7643. (B.M. Lange)
| |
Collapse
|
19
|
Lee S, Kim B, Kim J. Development of isotope dilution-liquid chromatography tandem mass spectrometry for the accurate determination of fluoroquinolones in animal meat products: Optimization of chromatographic separation for eliminating matrix effects on isotope ratio measurements. J Chromatogr A 2013; 1277:35-41. [DOI: 10.1016/j.chroma.2012.12.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/28/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
|
20
|
Pesek JJ, Matyska MT, Boysen RI, Yang Y, Hearn MT. Aqueous normal-phase chromatography using silica-hydride-based stationary phases. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.09.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
21
|
Silica hydride-based chromatography of LC–MS response-altering compounds native to human plasma. Bioanalysis 2012; 4:2877-86. [DOI: 10.4155/bio.12.272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: An investigation was carried out into the chromatographic behavior, on a silica hydride-based phase and a comparator silica-based phase, of an important group of lipids endogenous to human plasma, which are associated with matrix effect and in the context of quantitative peptide analysis. Results: The propensity for aqueous normal phase (ANP) retention on the silica hydride-based phase was strong and extensive in comparison with the silica-based comparator, and the lipophilic interferences in question were readily eluted using the ANP mode, a contrast to over-retention issues with accompanying implications for method ruggedness typically found with silica-based phases. Conclusion: The silica hydride-based phase, with ANP operation, offered selectivity conducive to rapid lipophilic interferent elimination and the bimodal retention involved in suitable gradient elution was appropriate for general peptide analytical application.
Collapse
|
22
|
A new approach to bioanalysis: aqueous normal-phase chromatography with silica hydride stationary phases. Bioanalysis 2012; 4:845-53. [DOI: 10.4155/bio.12.39] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Stationary phases based on silica hydride have demonstrated a number of unique properties that are especially advantageous for bioanalyses. They have excellent retention capabilities for hydrophilic compounds, which have been the most difficult to analyze by standard reversed-phase methods and, in many cases, can outperform newer approaches for the analysis of polar molecules, such as hydrophilic liquid interaction chromatography. In addition, all columns utilizing silica-hydride materials can be used in either the normal-phase or reversed-phase modes, sometimes retaining both polar and nonpolar compounds simultaneously. These stationary phases have a high degree of reproducibility and long-term stability.
Collapse
|