1
|
Fernando PUAI, Glasscott MW, Pokrzywinski K, Fernando BM, Kosgei GK, Moores LC. Analytical Methods Incorporating Molecularly Imprinted Polymers (MIPs) for the Quantification of Microcystins: A Mini-Review. Crit Rev Anal Chem 2021; 52:1244-1258. [DOI: 10.1080/10408347.2020.1868284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Matthew W. Glasscott
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kaytee Pokrzywinski
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Beaufort, North Carolina, USA
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA
| | | | - Gilbert K. Kosgei
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA
| | - Lee C. Moores
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA
| |
Collapse
|
2
|
Pidenko PS, Pidenko SA, Skibina YS, Zacharevich AM, Drozd DD, Goryacheva IY, Burmistrova NA. Molecularly imprinted polyaniline for detection of horseradish peroxidase. Anal Bioanal Chem 2020; 412:6509-6517. [PMID: 32388579 DOI: 10.1007/s00216-020-02689-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022]
Abstract
A new facile and fast approach to the synthesis of polyaniline (PANi) molecularly imprinted polymers (MIPs) based on aniline oxidative chemical polymerization was proposed for protein recognition. For the first time, a surface imprinting strategy was implemented for the synthesis of PANi MIPs on the inner surface of soft glass polycapillaries (PC) with a large (2237) number of individual microcapillaries. Two different PANi layers-(i) PANi film and (ii) protein imprinted PANi nanowires-were synthesized sequentially. Uniform and highly stable PANi film was synthesized by oxidative polymerization at pH< 1. The synthesis of PANi MIPs on the PANi film pre-coated surface improved the reproducibility of PANi MIP formation. PANi MIP nanowires were synthesized at "mild" conditions (pH > 4.5) to preserve the protein template activity. The binding of horseradish peroxidase (HRP) molecules on the PANi MIP selective sites was confirmed by photometry (TMB chromogenic reaction), SEM images, and FTIR spectroscopy. The developed PANi MIPs enable HRP determination with a limit of detection (LOD) as low as 1.00 and 0.07 ng mL-1 on the glass slips and PC, respectively. The PANi MIPs are characterized by high stability; they are reversible and selective to HRP. The proposed approach allows PANi MIPs to be obtained for proteins on different supports and to create new materials for separation and sensing. Graphical abstract.
Collapse
Affiliation(s)
- Pavel S Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Sergei A Pidenko
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Yulia S Skibina
- SPE LLC Nanostructured Glass Technology, Saratov, 410033, Russia
| | - Andrey M Zacharevich
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Daniil D Drozd
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Irina Yu Goryacheva
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012
| | - Natalia A Burmistrova
- Institute of Chemistry, Saratov State University, Astrakhanskaya 83, Saratov, Russia, 410012.
| |
Collapse
|
3
|
Moczko E, Guerreiro A, Cáceres C, Piletska E, Sellergren B, Piletsky SA. Epitope approach in molecular imprinting of antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:1-6. [DOI: 10.1016/j.jchromb.2019.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
|
4
|
Liu SM, Wei MX, Fu X, Zhang XB. Direct Synthesis of Monodisperse Hollow Molecularly Imprinted Polymers Based on Unfunctionalized SiO2for the Recognition of Bisphenol A. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1708164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shao-min Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Meng-xing Wei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xin Fu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xue-bin Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Rossetti C, Ore OG, Sellergren B, Halvorsen TG, Reubsaet L. Exploring the peptide retention mechanism in molecularly imprinted polymers. Anal Bioanal Chem 2017; 409:5631-5643. [PMID: 28752338 DOI: 10.1007/s00216-017-0520-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022]
Abstract
Molecularly imprinted polymers (MIPs) have been used as useful sorbents in solid-phase extraction for a wide range of molecules and sample matrices. Their unique selectivity can be fine-tuned in the imprinting process and is crucial for the extraction of macromolecules from complex matrices such as serum. A relevant example of this is the application of MIPs to peptides in diagnostic assays. In this article the selectivity of MIPs, previously implemented in a quantitative mass-spectrometric assay for the biomarker pro-gastrin-releasing peptide, is investigated. Partial least squares regression was used to generate models for the evaluation and prediction of the retention mechanism of MIPs. A hypothesis on interactions of MIPs with the target peptide was verified by ad hoc experiments considering the relevant peptide physicochemical properties highlighted from the multivariate analysis. Novel insights into and knowledge of the driving forces responsible for the MIP selectivity have been obtained and can be directly used for further optimization of MIP imprinting strategies. Graphical Abstract Applied analytical strategy: the Solid Phase Extraction (SPE) of digested Bovin Serum Albumin (BSA), using Molecularly Imprinted Polymers (MIP), is followed by the liquid chromatography-mass spectrometry (LC-MS) analysis for the identification of the retained peptides. The further application of multivariate analysis allows setting up a Partial Least Square (PLS) model, which describes the peptide retention into the MIP and gives additional knowledge to be used in the optimization of the MIP and the whole SPE method.
Collapse
Affiliation(s)
- Cecilia Rossetti
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Odd Gøran Ore
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, University of Malmö, 20506, Malmö, Sweden
| | - Trine Grønhaug Halvorsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, 0316, Oslo, Norway.
| |
Collapse
|
6
|
Iwanowska A, Yusa SI, Nowakowska M, Szczubiałka K. Selective adsorption of modified nucleoside cancer biomarkers by hybrid molecularly imprinted adsorbents. J Sep Sci 2016; 39:3072-80. [DOI: 10.1002/jssc.201600132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022]
Affiliation(s)
| | - Shin-Ichi Yusa
- Graduate School of Engineering, Department of Materials Science and Chemistry; University of Hyogo; Himeji Hyogo Japan
| | | | | |
Collapse
|