1
|
Calero-Cañuelo C, Lucena R, Cárdenas S. Adhesive tapes as sampling probes and thermal desorption substrates, in search of direct analysis of particulate solid samples using Soft Ionization by Chemical Reaction In Transfer mass spectrometry. Talanta 2025; 293:128042. [PMID: 40220371 DOI: 10.1016/j.talanta.2025.128042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Direct analysis by mass spectrometry (MS) has emerged as a promising strategy for analyzing a broad range of samples. Among the different ionization techniques, plasma-based sources are simple alternatives that can be used to ionize a wide range of analytes, thus providing high analytical versatility. This article describes the design of a simple and cost-effective interface that uses adhesive tapes as both sampling probes and thermal desorption substrates. The particulate solid sample is adhered to the tape in a single and quick step, avoiding particle losses and protecting the interface from clogging. The probe is thermally desorbed in a dedicated chamber, built using commercial elements, in front of the MS inlet. The desorbed analytes are driven by the vacuum system (any supplementary carrier gas is not required), passing through the plasma-based source (Soft Ionization by Chemical Reaction In Transfer, SICRIT®), where they are ionized before being introduced in the spectrometer. The determination of caffeine in coffee has been evaluated as a proof of concept since the complexity of the matrix and the semivolatile character of the analyte can challenge the performance, allowing to check the potential of the new approach. The type of adhesive tape, the parameters related to the desorption and sample dilution have been studied in depth. Working under optimum conditions, LOD was settled down at 0.18 mg g-1. The intra-day and inter-day precision, expressed as relative standard deviation and calculated at three different concentration levels, were better than 12.5 and 13.7 %, respectively. Finally, the accuracy of this method was calculated by analyzing five different coffee samples and comparing the results with those provided by a reference method. The accuracy was in the range of 82.3-105.5 %. This interface is presented as a promising, simple, solvent-free approach for the direct analysis of solid samples. The interface has been finally applied to the analysis of drug mixtures to demonstrate its versatility.
Collapse
Affiliation(s)
- Carlos Calero-Cañuelo
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
2
|
Krumplewski W, Rykowska I. New Materials for Thin-Film Solid-Phase Microextraction (TF-SPME) and Their Use for Isolation and Preconcentration of Selected Compounds from Aqueous, Biological and Food Matrices. Molecules 2024; 29:5025. [PMID: 39519666 PMCID: PMC11547565 DOI: 10.3390/molecules29215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Determination of a broad spectrum of analytes, carried out with analytical instruments in samples with complex matrices, including environmental, biological, and food samples, involves the development of new and selective sorption phases used in microextraction techniques that allow their isolation from the matrix. SPME solid-phase microextraction is compatible with green analytical chemistry among the sample preparation techniques, as it reduces the use of toxic organic solvents to the minimum necessary. Over the past two decades, it has undergone impressive progress, resulting in the development of the thin-film solid-phase microextraction technique, TF-SPME (the thin-film solid-phase microextraction), which is characterized by a much larger surface area of the sorption phase compared to that of the SPME fiber. TF-SPME devices, in the form of a mostly rectangular metal or polymer substrate onto which a thin film of sorption phase is applied, are characterized, among others, by a higher sorption capacity. In comparison with microextraction carried out on SPME fiber, they enable faster microextraction of analytes. The active phase on which analyte sorption occurs can be applied to the substrate through techniques such as dip coating, spin coating, electrospinning, rod coating, and spray coating. The dynamic development of materials chemistry makes it possible to use increasingly advanced materials as selective sorption phases in the TF-SPME technique: polymers, conducting polymers, molecularly imprinted polymers, organometallic frameworks, carbon nanomaterials, aptamers, polymeric ionic liquids, and deep eutectic solvents. Therefore, TF-SPME has been successfully used to prepare analytical samples to determine a broad spectrum of analytes in sample matrices: environmental, biological, and food. The work will be a review of the above-mentioned issues.
Collapse
Affiliation(s)
| | - Iwona Rykowska
- Department of Chemistry, Adam Mickiewicz University, Ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
3
|
Benedetti B, Ceccardi E, MacKeown H, Di Carro M, Magi E. Exploring the potentialities of a biodegradable polymeric film in sample preparation: An optimized "white" protocol to extract and quantify emerging contaminants in water. Anal Chim Acta 2024; 1311:342725. [PMID: 38816162 DOI: 10.1016/j.aca.2024.342725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The introduction of white analytical chemistry encourages the development of methods characterized by a balance among greenness, productivity/feasibility and analytical performances. In the environmental analysis of emerging contaminants (ECs), for which high sensitivity and specificity are mandatory, the use of green and sustainable sample preparation needs to be coupled to a reliable analytical determination. Herein, an extraction method based on the use of a biodegradable polymeric film (Mater-Bi) and coupled to LC-MS/MS analysis was developed for the sensitive determination of ECs in wastewater. RESULTS The interaction among a range of ECs and the Mater-Bi film (a commercially available patented blend of polybutylene-terephthalate, starch and fatty acids) was investigated by two sequential experimental designs, to simultaneously study several factors and optimize extraction efficiency. The final method, resembling a fabric phase sorptive extraction, involved pH and ionic strength modification of the sample, 1h extraction and desorption in ethanol. Satisfactory recoveries from real wastewater were obtained for sixteen analytes (56-116 %), as well as excellent precision (inter-day relative standard deviations below 10 % for most compounds). Matrix effect was in the range 88-116 % at the lower pre-concentration factor, but also acceptable in most cases at the higher pre-concentration factor. LODs in matrix, from 0.004 to 0.159 μg L-1, were lower than or comparable to those from recent studies employing green extraction procedures. The method demonstrated its applicability to samples from wastewater treatment plants, allowing quantification of pharmaceuticals and UV filters at the μg L-1 and ng L-1 levels, respectively. SIGNIFICANCE For the first time, the synthetic biopolymer Mater-Bi, so far unexplored for the use in analytical chemistry, was exploited for a green, simple and extremely cheap extraction protocol. The optimized method is suitable for several ECs, guaranteeing very good accuracy, precision and specificity, also thanks to the LC-MS/MS analysis. The evaluation by green and white analytical chemistry metrics highlighted its superiority to conventional extraction methods.
Collapse
Affiliation(s)
- Barbara Benedetti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy.
| | - Erica Ceccardi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy
| | - Henry MacKeown
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy
| | - Marina Di Carro
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genova, Italy
| |
Collapse
|
4
|
Calero-Cañuelo C, Casado-Carmona FA, Lucena R, Cárdenas S. Sorptive tape-spray tandem mass spectrometry using aluminum foil coated with mixed-mode microparticles. Talanta 2024; 272:125774. [PMID: 38359721 DOI: 10.1016/j.talanta.2024.125774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Direct mass spectrometry (MS) is an exciting strategy in bioanalysis, enabling rapid decision-making in different scenarios. Its application is usually hindered by matrix effects and the typically low concentration of the target compounds in the biofluids. In this sense, combining a previous sample preparation step minimizes or removes these shortcomings. This article describes sorptive tape-spray tandem mass spectrometry (STS-MS/MS) based on mixed-mode particles as a strategy to combine sample preparation and MS analysis in a single device. The technique uses a sorptive tape (ST) consisting of mixed-mode polymeric microparticles (combining ionic exchange and hydrophobic interactions) coated over aluminum foil in a spatial controlled way. The tapes act as the sorptive phases to isolate the analytes from the sample matrix and substrates for STS-MS/MS. The performance of the technique has been evaluated by developing a method to determine codeine in saliva as proof of concept. The affordability of the STs elements allows the preparation of many individual phases at low cost so that several samples can be extracted simultaneously, thus increasing the sample throughput. The extraction variables were optimized following a multivariate approach. Working under the optimum conditions, the limit of detection was 0.3 μg L-1, while the intraday precision, calculated as relative standard deviation (RSD) at three concentration levels, was better than 9.4 %. The accuracy, expressed as relative recovery, was in the range of 78-98 %. The method was also applied to the analysis of real samples. Despite being a powerful strategy, the direct combination of microextraction to MS is not always affordable in all laboratories. For this reason, the STs were also combined with commercial liquid chromatography-MS working under the direct infusion mode to demonstrate the usefulness of the ST in classical extraction workflows.
Collapse
Affiliation(s)
- Carlos Calero-Cañuelo
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Francisco Antonio Casado-Carmona
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain; FI-TRACE Group, Department of Chemistry, Faculty of Science, University of the Balearic Islands, Carretera de Valldemossa Km 7.5, E-07122, Palma de Mallorca, Illes Balears, Spain
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS(2)P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| |
Collapse
|
5
|
Ossanes DS, Birk L, Petry AUS, de Menezes FP, Gonzaga AP, Schlickmann PF, Eller S, de Oliveira TF. Cork sheet as an efficient biosorbent for forensic toxicology: Application to vitreous humor analysis. J Anal Toxicol 2023; 47:580-587. [PMID: 37506044 DOI: 10.1093/jat/bkad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/05/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
There is an increasing number of people affected worldwide by mental health disorders, such as depression and anxiety. One of the main courses of treatment, along with psychotherapy, is the use of psychoactive medications, like antidepressants and benzodiazepines. Also, the unprescribed use of these substances is a concerning public health issue. Hence, the analysis of psychotropic medications is mandatory in postmortem toxicology and various biological samples can be used for this detection, among them the vitreous humor (VH) stands out. Also, there is a demand for more sustainable and more efficient extraction methodologies according to green chemistry. An example is solid phase microextraction techniques (SPME), which use a solid sorbent and small solvent amounts. Biosorbents are substances of natural origin with sorptive properties, and they have been successfully used in SPME in environmental toxicology for water analysis, mainly. This study aimed to develop a sustainable, fast, cheap and simple SPME methodology using cork sheet strips as a biosorbent, to extract antidepressants, benzodiazepines and others from VH samples by liquid chromatography coupled to tandem mass spectrometry. The extraction was conducted in a 96-well plate using 200 µL of VH and optimization of relevant parameters for extraction was performed. For solvent optimization, two simplex-centroid experiments were planned for extraction and desorption and to evaluate time and pH, a Doehlert design experiment was performed. The analytical method for the determination and quantification of 17 substances was validated. The quantification limits were 5 ng/mL for all analytes and the calibration curves were linear between 5 and 30 ng/mL. This study was able to develop an efficient, cheap, simple and fast microextraction method for 17 analytes in VH, using strips of cork sheet for extraction and a 96-well plate as a container. Furthermore, this approach system could be automated for routine toxicology laboratories.
Collapse
Affiliation(s)
- Daniela Souza Ossanes
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Letícia Birk
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Adriana Ubirajara Silva Petry
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Francisco Paz de Menezes
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Alexsandro Pinto Gonzaga
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Paula Flores Schlickmann
- Division of Postmortem Inspection, Associação Hospitalar Vila Nova, Porto Alegre, RS 91750-040, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| | - Tiago Franco de Oliveira
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
6
|
Merib J. High-throughput platforms for microextraction techniques. Anal Bioanal Chem 2023:10.1007/s00216-022-04504-7. [PMID: 36598538 DOI: 10.1007/s00216-022-04504-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
The proposal of high-throughput platforms in microextraction-based approaches is important to offer sustainable and efficient tools in analytical chemistry. Particularly, automated configurations exhibit enormous potential because they provide accurate and precise results in addition to less analyst intervention. Recently, significant achievements have been obtained in proposing affordable platforms for microextraction techniques capable of being integrated with different analytical instrumentations. Considering the evolution of these approaches, this article describes innovative high-throughput platforms that have recently been proposed for the analysis of varied matrices, with special attention to laboratory-made devices. Additionally, some challenges, opportunities, and trends regarding these experimental workflows are pointed out.
Collapse
Affiliation(s)
- Josias Merib
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil. .,Programa de Pós-Graduação Em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
7
|
Determinations of new psychoactive substances in biological matrices with focus on microextraction techniques: a review of fundamentals and state-of-the-art extraction methods. Forensic Toxicol 2021. [DOI: 10.1007/s11419-021-00582-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Zhang X, Li Z, Wu H, Wang J, Zhao H, Ji X, Xu Y, Li R, Zhang H, Yang H, Qian M. High-throughput method based on a novel thin-film microextraction coating for determining macrolides and lincosamides in honey. Food Chem 2020; 346:128920. [PMID: 33387836 DOI: 10.1016/j.foodchem.2020.128920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
A high-throughput method using a new ZIF-8@GO thin-film microextraction coating was established for determining macrolides and lincosamides in honey. The coating preparation parameters (ZIF-8@GO synthesis conditions, coating material proportions, dipping time) and analysis parameters (sample diluent solvent, adsorption and desorption conditions using the ZIF-8@GO coating) were optimized. The optimized parameters were: diluent solvent sodium carbonate/sodium bicarbonate buffer solution (pH 9), adsorption time 45 min, desorption time 5 min, desorption solvent 45:40:15 v/v/v methanol/acetonitrile/water. The extracted targets were determined by ultra-high performance liquid chromatography tandem mass spectrometry. The recoveries of 10 analytes were 67.5-107.2% and the detection and quantification limits were 0.1-0.4 and 0.4-1.4 μg/kg, respectively. The method could analyze 96 samples per run. The minimal manual time and effort is required since the bulk of the sample processing is fully automated. It was a useful and efficient method for monitoring drug residues and was successfully used to analyze real samples.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Huizhen Wu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, PR China
| | - Jianmei Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Huiyu Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Xiaofeng Ji
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Yan Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China; College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China
| | - Rui Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Hu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Hua Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| | - Mingrong Qian
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest Control, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| |
Collapse
|
9
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
10
|
Rezayat MR, Jafari MT. Organic solvent supported silica aerogel thin film microextraction: An efficient sample preparation method for ion mobility spectrometry. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Huelsmann RD, Will C, Carasek E. Determination of bisphenol A: Old problem, recent creative solutions based on novel materials. J Sep Sci 2020; 44:1148-1173. [PMID: 33006433 DOI: 10.1002/jssc.202000923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
Bisphenol A is a synthetic compound widely used in industry, in the production of polycarbonate, epoxy resins, and thermal paper, among others. Its annual production is estimated at millions of tons per year, demonstrating its importance. Despite its wide application in various everyday products, once in the environment (due to its disposal or leaching), it has high toxicity to humans and animal life, and this problem has been well known for years. Given this problem, many researchers seek alternatives for its monitoring in matrices such as natural water, waste, food, and biological matrices. For this, new advanced materials have been developed, characterized, and applied in creative ways for the preparation of samples for the determination of bisphenol A. This article aims to present some of these important and recent applications, describing the use of molecularly imprinted polymers, metal and covalent organic frameworks, ionic liquids and magnetic ionic liquids, and deep eutectic solvents as creative solutions in sample preparation for the long-standing problem of bisphenol A determination.
Collapse
Affiliation(s)
| | - Camila Will
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Eduardo Carasek
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
12
|
Godage NH, Gionfriddo E. Use of natural sorbents as alternative and green extractive materials: A critical review. Anal Chim Acta 2020; 1125:187-200. [DOI: 10.1016/j.aca.2020.05.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
|
13
|
Abstract
Green analytical chemistry principles aim to minimize the negative impact of analytical procedures in the environment, which can be considered both at close (to ensure the safety of the analysts) and global (to conserve our natural resources) levels. These principles suggest, among other guidelines, the reduction/minimization of the sample treatment and the use of renewable sources when possible. The first aspect is largely fulfilled by microextraction, which is considered to be among the greenest sample treatment techniques. The second consideration is attainable if natural products are used as raw materials for the preparation of new extraction phases. This strategy is in line with the change in our production system, which is being gradually moved from a linear model (take–make–dispose) to a circular one (including reusing and recycling as key terms). This article reviews the potential of natural products as sorbents in extraction and microextraction techniques from the synergic perspectives of two research groups working on the topic. The article covers the use of unmodified natural materials and the modified ones (although the latter has a less green character) to draw a general picture of the usefulness of the materials.
Collapse
|
14
|
Azizi A, Shahhoseini F, Modir-Rousta A, Bottaro CS. High throughput direct analysis of water using solvothermal headspace desorption with porous thin films. Anal Chim Acta 2019; 1087:51-61. [DOI: 10.1016/j.aca.2019.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
|
15
|
Xia L, Yang J, Su R, Zhou W, Zhang Y, Zhong Y, Huang S, Chen Y, Li G. Recent Progress in Fast Sample Preparation Techniques. Anal Chem 2019; 92:34-48. [DOI: 10.1021/acs.analchem.9b04735] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiani Yang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Wanjun Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanshu Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanhui Zhong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
16
|
Yan X, Zhong D, Zhan Y, Li Y, Wu D. Porous polyimide particle-coated adsorptive microextraction bar combined with thermal desorption-gas chromatography for rapid determination of parabens in condiments. J Chromatogr A 2019; 1601:71-78. [DOI: 10.1016/j.chroma.2019.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023]
|
17
|
Histamine functionalized magnetic nanoparticles (HIS-MNP) as a sorbent for thin film microextraction of endocrine disrupting compounds in aqueous samples and determination by high performance liquid chromatography-fluorescence detection. J Chromatogr A 2019; 1602:41-47. [DOI: 10.1016/j.chroma.2019.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 01/04/2023]
|
18
|
A polyurethane-based thin film for solid phase microextraction of pyrethroid insecticides. Mikrochim Acta 2019; 186:596. [DOI: 10.1007/s00604-019-3708-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/21/2019] [Indexed: 01/07/2023]
|
19
|
Qian M, Zhang X, Zhao H, Ji X, Li X, Wang J, Wu H, Xu J, Li Z. A high‐throughput screening method for determination of multi‐antibiotics in animal feed. J Sep Sci 2019; 42:2968-2976. [DOI: 10.1002/jssc.201900144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/10/2019] [Accepted: 07/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Mingrong Qian
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Xiaoming Zhang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou P. R. China
| | - Huiyu Zhao
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Xiaofeng Ji
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Xiaodan Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Jianmei Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Huizhen Wu
- College of Biology and Environmental EngineeringZhejiang Shuren University Hangzhou P. R. China
| | - Jie Xu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Plant Pest ControlInstitute of Quality and Standard for Agro‐productsZhejiang Academy of Agricultural Sciences Hangzhou P. R. China
| | - Zuguang Li
- College of Chemical EngineeringZhejiang University of Technology Hangzhou P. R. China
| |
Collapse
|
20
|
Alternative Green Extraction Phases Applied to Microextraction Techniques for Organic Compound Determination. SEPARATIONS 2019. [DOI: 10.3390/separations6030035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The use of green extraction phases has gained much attention in different fields of study, including in sample preparation for the determination of organic compounds by chromatography techniques. Green extraction phases are considered as an alternative to conventional phases due to several advantages such as non-toxicity, biodegradability, low cost and ease of preparation. In addition, the use of greener extraction phases reinforces the environmentally-friendly features of microextraction techniques. Thus, this work presents a review about new materials that have been used in extraction phases applied to liquid and sorbent-based microextractions of organic compounds in different matrices.
Collapse
|
21
|
|
22
|
de Noronha BV, Fernando Bergamini M, Marcolino Junior LH, da Silva BJG. Cellulose membrane modified with polypyrrole as an extraction device for the determination of emerging contaminants in river water with gas chromatography-mass spectrometry. J Sep Sci 2018; 41:2790-2798. [PMID: 29785750 DOI: 10.1002/jssc.201800129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 11/05/2022]
Abstract
In this study, a simple, efficient, and reusable device based on cellulose membranes modified with polypyrrole was developed to extract 14 emerging contaminants from aqueous matrices. For chemical polymerization, a low-cost cellulose membrane was immersed in 0.1 mol/L pyrrole and 0.5 mol/L ammonium persulfate for 40 min in an ice/water bath. The cellulose membranes modified with polypyrrole were accommodated in a polycarbonate holder suitable for solid-phase extraction disks. Solid-phase extraction parameters that affect extraction efficiency, such as sample volume, pH, flow rate, and desorption were optimized. Subsequently, determination of target compounds was performed by gas chromatography with mass spectrometry. The linear range for analytes ranged from 0.05 to 500 μg/L, with coefficients of determination above 0.990. The limits of quantification varied between 0.05 and 10 μg/L, with relative standard deviations lower than 17%. The performance of the proposed cellulose membranes modified with polypyrrole device for real samples was evaluated after extraction of emerging contaminants from a river water sample from the city of Curitiba, Brazil. Bisphenol A (6.39 μg/L), caffeine (17.83 μg/L), and paracetamol (19.28 μg/L) were found in these samples.
Collapse
|