1
|
Shi N, Liu Y, Li W, Yan S, Ma L, Xu X, Chen D. One-pot derivatization/magnetic solid-phase extraction coupled with liquid chromatography-fluorescence detection for the rapid determination of sulfonamide residues in honey. Food Chem X 2024; 21:101090. [PMID: 38226323 PMCID: PMC10788425 DOI: 10.1016/j.fochx.2023.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
Consuming foods with excess sulfonamide residues threatens human health, underscoring the importance of their detection in food. This study presents an innovative one-pot derivatization/magnetic solid-phase extraction (OPD/MSPE) method for sulfonamides analysis. This approach integrates the derivatization and extraction steps into a single process. The sample solution, along with the derivatization reagent fluorescamine and the sorbent magnetic hydroxyl multi-walled carbon nanotubes, is mixed and vortexed for 3 min. This procedure simultaneously conducts derivatization and extraction, with easy phase separation using an external magnet. This streamlined sample preparation method is completed in only 5 min and, when combined with liquid chromatography-fluorescence detection (LC-FLD), demonstrates excellent linearity (R2 > 0.99) and satisfactory detection limits (0.004-0.04 ng/g) for the quantification of nine sulfonamides in honey samples. The proposed OPD/MSPE-LC-FLD method is distinguished by its simplicity, rapidity, high sensitivity, and specificity, making it an outstanding advancement in the field of food safety analysis.
Collapse
Affiliation(s)
- Nian Shi
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuwei Liu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenxuan Li
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shumei Yan
- Physics Diagnostic Division, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lei Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Xia Xu
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Di Chen
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
2
|
Liu Y, Zhang Y, Wang J, Wang K, Gao S, Cui R, Liu F, Gao G. Preparation of COPs Mixed Matrix Membrane for Sensitive Determination of Six Sulfonamides in Human Urine. Molecules 2023; 28:7336. [PMID: 37959757 PMCID: PMC10649119 DOI: 10.3390/molecules28217336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, TpDMB-COPs, a specific class of covalent organic polymers (COPs), was synthesized using Schiff-base chemistry and incorporated into a polyvinylidene fluoride (PVDF) polymer for the first time to prepare COPs mixed matrix membranes (TpDMB-COPs-MMM). A membrane solid-phase extraction (ME) method based on the TpDMB-COPs-MMM was developed to extract trace levels of six sulfonamides from human urine identified by high-performance liquid chromatography (HPLC). The key factors affecting the extraction efficiency were investigated. Under the optimum conditions, the proposed method demonstrated an excellent linear relationship in the range of 3.5-25 ng/mL (r2 ≥ 0.9991), with the low limits of detection (LOD) between 1.25 ng/mL and 2.50 ng/mL and the limit of quantification (LOQ) between 3.50 ng/mL and 7.00 ng/mL. Intra-day and inter-day accuracies were below 5.0%. The method's accuracy was assessed by recovery experiments using human urine spiked at three levels (7-14 ng/mL, 10-15 ng/mL, and 16-20 ng/mL). The recoveries ranged from 87.4 to 112.2% with relative standard deviations (RSD) ≤ 8.7%, confirming the applicability of the proposed method. The developed ME method based on TpDMB-COPs-MMM offered advantages, including simple operation, superior extraction affinity, excellent recycling performance, and easy removal and separation from the solution. The prepared TpDMB-COPs-MMM was demonstrated to be a promising adsorbent for ME in the pre-concentration of trace organic compounds from complex matrices, expanding the application of COPs and providing references for other porous materials in sample pre-treatment.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (Y.L.); (Y.Z.); (K.W.); (S.G.); (R.C.); (F.L.)
| | - Yong Zhang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (Y.L.); (Y.Z.); (K.W.); (S.G.); (R.C.); (F.L.)
| | - Jing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Kexin Wang
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (Y.L.); (Y.Z.); (K.W.); (S.G.); (R.C.); (F.L.)
| | - Shuming Gao
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (Y.L.); (Y.Z.); (K.W.); (S.G.); (R.C.); (F.L.)
| | - Ruiqi Cui
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (Y.L.); (Y.Z.); (K.W.); (S.G.); (R.C.); (F.L.)
| | - Fubin Liu
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (Y.L.); (Y.Z.); (K.W.); (S.G.); (R.C.); (F.L.)
| | - Guihua Gao
- School of Pharmacy, Jining Medical University, Rizhao 276826, China; (Y.L.); (Y.Z.); (K.W.); (S.G.); (R.C.); (F.L.)
| |
Collapse
|
3
|
Qi M, He P, Hu H, Zhang T, Li T, Zhang X, Qin Y, Zhu Y, Guo Y. An Automated Solid-Phase Extraction-UPLC-MS/MS Method for Simultaneous Determination of Sulfonamide Antimicrobials in Environmental Water. Molecules 2023; 28:4694. [PMID: 37375249 DOI: 10.3390/molecules28124694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The large-scale use of sulfonamide antimicrobials in human and veterinary medicine has seriously endangered the ecological environment and human health. The objective of this study was to develop and validate a simple and robust method for the simultaneous determination of seventeen sulfonamides in water using ultra-high performance liquid chromatography-tandem mass spectrometry coupled with fully automated solid-phase extraction. Seventeen isotope-labeled internal standards for sulfonamides were used to correct matrix effects. Several parameters affecting extraction efficiency were systematically optimized, and the enrichment factors were up to 982-1033 and only requiring about 60 min per six samples. Under the optimized conditions, this method manifested good linearity (0.05-100 μg/L), high sensitivity (detection limits: 0.01-0.05 ng/L), and satisfactory recoveries (79-118%) with acceptable relative standard deviations (0.3-14.5%, n = 5). The developed method can be successfully utilized for the determination of 17 sulfonamides in pure water, tap water, river water, and seawater. In total, six and seven sulfonamides were detected in river water and seawater, respectively, with a total concentration of 8.157-29.676 ng/L and 1.683-36.955 ng/L, respectively, and sulfamethoxazole was the predominant congener.
Collapse
Affiliation(s)
- Mengyu Qi
- Institute of Marine and Fisheries, Zhejiang Ocean University, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Pengfei He
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
- Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Tongtong Zhang
- Institute of Marine and Fisheries, Zhejiang Ocean University, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiaoning Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Yilin Qin
- Institute of Marine and Fisheries, Zhejiang Ocean University, Zhoushan 316021, China
| | - Yingjie Zhu
- Institute of Marine and Fisheries, Zhejiang Ocean University, Zhoushan 316021, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Yuanming Guo
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| |
Collapse
|
4
|
Jiang GY, Liu L, Wan YQ, Li JK, Pi FW. Surface-enhanced Raman scattering based determination on sulfamethazine using molecularly imprinted polymers decorated with silver nanoparticles. Mikrochim Acta 2023; 190:169. [PMID: 37016038 DOI: 10.1007/s00604-023-05744-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/12/2023] [Indexed: 04/06/2023]
Abstract
Molecularly imprinted polymers (MIPs) were combined with surface-enhanced Raman scattering (SERS) and AgNPs were prepared by in situ reduction within the MIP for selective and sensitive detection of sulfamethazine (SMZ). The MIP@AgNPs composites were characterized in detail by several analytical techniques, showing the generation of polymers and the formation of AgNPs hot spots. The specific affinity and rapid adsorption equilibrium rates of MIP@AgNPs composites were verified by static and kinetic adsorption studies. The MIP@AgNPs with high selectivity and excellent sensitivity were used as SERS substrates to detect SMZ. A good linear correlation (R2 = 0.996) in rang of 10-10-10-6 mol L-1 was observed between the Raman signal (1596 cm-1) and the concentration of SMZ. The limit of detection (LOD) was as low as 8.10 × 10-11 mol L-1 with relative standard deviations (RSD) of 6.32%. The good stability and reproducibility are also fully reflected in the SERS detection based on MIP@AgNPs. The method was successfully applied to the analysis of lake water samples, with recoveries in the range 85.1% to 102.5%. In summary, SERS detection based on MIP@AgNPs can be developed for a wider and broader range of practical applications. Schematic illustration of MIP@AgNPs sensor for the SERS detection of sulfamethazine.
Collapse
Affiliation(s)
- Guo-Yong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Lin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu-Qi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Jing-Kun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Fu-Wei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
5
|
Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Fast and highly efficient liquid chromatographic methods for qualification and quantification of antibiotic residues from environmental waste. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Atapattu SN, Rosenfeld JM. Analytical derivatizations in environmental analysis. J Chromatogr A 2022; 1678:463348. [PMID: 35901668 DOI: 10.1016/j.chroma.2022.463348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Analytical derivatization is a technique that alters the structure of an analyte and produces a product more suitable for analysis. While this process can be time-consuming and add reagents to the procedure, it can also facilitate the isolation of the analyte(s), enhance analytes' stability, improve separation and sensitivity, and reduce matrix interferences. Since derivatization is a functional group analysis, it improves selectivity by separating reactive from neutral compounds during sample preparation. This technique introduces detector-orientated tags into analytes that lack suitable physicochemical properties for detection at low concentrations. Notably, many regulatory bodies, especially those in the environmental field, require these characteristics in analytical methods. This review focuses on note-worthy analytical derivatization methods employed in environmental analyses with functional groups, phenol, carboxylic acid, aldehyde, ketone, and thiol in aqueous, soil, and atmospheric sample matrices. Both advantages and disadvantages of analytical derivatization techniques are discussed. In addition, we discuss the future directions of analytical derivatization methods in environmental analysis and the potential challenges.
Collapse
Affiliation(s)
| | - Jack M Rosenfeld
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
8
|
Altunay N. Chemometric design-based optimization of a green, selective and inexpensive switchable hydrophilicity solvent-based liquid phase microextraction procedure for pre-concentration and extraction of sulfadiazine in milk, honey and water samples. Food Chem 2022; 394:133540. [PMID: 35763903 DOI: 10.1016/j.foodchem.2022.133540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/29/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
In this research, a green, selective and inexpensive switchable hydrophilicity solvent-based liquid phase microextraction (SHS-LPME) procedure has been optimized for the extraction and preconcentration of sulfadiazine (SDZ) in milk, honey and water samples prior to spectrophotometric analysis. Five variables affecting the SHS-LPME procedure were optimized using chemometric-based central composite design. For the SHS-LPME procedure, analytical parameters such as linearity, limit of detection, extraction recovery and enrichment factor were 15-300 μg L-1, 4.5 μg L-1, 96 ± 3% and 113, respectively. The precision of the method was investigated by repeatability and reproducibility studies. The relative standard deviation from these studies was found in the range of 2.4-4.5%. The recovery of the SDZ in the samples was in the range of 94 ± 4-99 ± 2%. Collected samples were analyzed by both the SHS-LPME procedure and the reference method using flow injection-flame atomic absorption technique, and the results were compared. There was no statistically significant difference between the two methods. This showed that the SHS-LPME procedure can be safely applied to the analysis of real samples.
Collapse
Affiliation(s)
- Nail Altunay
- Sivas Cumhuriyet University, Faculty of Science, Department of Chemistry, Sivas, Turkey.
| |
Collapse
|
9
|
Zeng Y, Chang F, Liu Q, Duan L, Li D, Zhang H. Recent Advances and Perspectives on the Sources and Detection of Antibiotics in Aquatic Environments. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5091181. [PMID: 35663459 PMCID: PMC9159860 DOI: 10.1155/2022/5091181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 05/31/2023]
Abstract
Water quality and safety are vital to the ecological environment, social development, and ecological susceptibility. The extensive use and continuous discharge of antibiotics have caused serious water pollution; antibiotics are widely found in freshwater, drinking water, and reservoirs; and this pollution has become a common phenomenon and challenge in global water ecosystems, as water polluted by antibiotics poses serious risks to human health and the ecological environment. Therefore, the antibiotic content in water should be identified, monitored, and eliminated. Nevertheless, there is no single method that can detect all different types of antibiotics, so various techniques are often combined to produce reliable results. This review summarizes the sources of antibiotic pollution in water, covering three main aspects: (1) wastewater discharges from domestic sewage, (2) medical wastewater, and (3) animal physiology and aquaculture. The existing analytical techniques, including extraction techniques, conventional detection methods, and biosensors, are reviewed. The electrochemical biosensors have become a research hotspot in recent years because of their rapid detection, high efficiency, and portability, and the use of nanoparticles contributes to these outstanding qualities. Additionally, the comprehensive quality evaluation of various detection methods, including the linear detection range, detection limit (LOD), and recovery rate, is discussed, and the future of this research field is also prospected.
Collapse
Affiliation(s)
- Yanbo Zeng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China
| |
Collapse
|
10
|
Synthesis of the Magnetically Nanoporous Organic Polymer Fe3O4@SiO2-NH2-COP and Its Application in the Determination of Sulfonamide Residues in Surface Water Surrounding a Cattle Farm. Bioinorg Chem Appl 2022; 2022:6453609. [PMID: 35502220 PMCID: PMC9056257 DOI: 10.1155/2022/6453609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Efficient extractions of trace antibiotic residues in the environment are a key factor for accurate quantification of the residues. A new nanoporous material, namely, magnetically covalent organic polymer (MCOP, Fe3O4@SiO2-NH2-COP) was synthesized in this work and was used for magnetic solid-phase extraction (MSPE). The combination of MSPE with high-performance liquid chromatography separation together with ultraviolet detection (HPLC-UV) was established as an effective method for the determination of four sulfonamide (SA) residues in surface water surrounding a cattle farm. The synthesized magnetic material was characterized by SEM, TEM, FT-IR, magnetic properties measurement system (MPMS), and nitrogen gas porosimetry. The material possessed many attractive features, such as a unique microporous structure, a larger specific surface area (137.93 m2·g−1) than bare Fe3O4 (24.84 m2·g−1), high saturation magnetization (50.5 emu·g−1), open adsorption sites, and high stability. The influencing parameters, including pH, the used amount of MCOPs, the type of eluent, adsorption solution, and desorption time, were optimized. Under the optimized conditions, the method conferred good linearity ranges (R2 ≥ 0.9990), low detection limits (S/N = 3, LOD, 0.10–0.25 μg·L−1), and satisfactory recoveries (79.7% to 92.2%). The enrichment factor (EF) for the four SAs was 34.13–38.86. The relative standard deviations of intraday (n = 5) and of interday (n = 3) were less than 4.8% and 8.9%, respectively. The equilibria between extraction and desorption for SAs could be reached within 150 s. The proposed method was sensitive and convenient for detecting SA residues in complex environmental matrices, and the successful application of the new MCOPs as an adsorbent was demonstrated.
Collapse
|
11
|
Skok A, Bazel Y, Vishnikin A. New analytical methods for the determination of sulfur species with microextraction techniques: a review. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2045294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Pavol Jozef Šafárik University in Košice, Košice, Slovak Republic
| | - Andriy Vishnikin
- Department of Analytical Chemistry, Oles Honchar National University, Dnipro, Ukraine
| |
Collapse
|
12
|
Jin Y, He Y, Zhao D, Chen Y, Xue Q, Zou M, Yin H, Xing S. Development of an amplified luminescent proximity homogeneous assay for the detection of sulfonamides in animal-derived products. Food Sci Nutr 2021; 9:4938-4945. [PMID: 34532005 PMCID: PMC8441374 DOI: 10.1002/fsn3.2443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we carried out an amplified luminescent proximity homogeneous assay (AlphaLISA) to detect sulfonamides (SAs) antibiotic residues in plasma, milk, pork, chicken, and fish. The SAs AlphaLISA method can detect 13 SAs with half-inhibitory concentration (IC50) 2.11-29.77 ng/ml. The detection level of those SAs was 0.3-41.12 ng/ml in matrices, which satisfied the maximum residue limit (MRL) of the European Union, United States, and China. Our recoveries are in the range of 88% to 116.8% with a coefficient of variation less than 9.3% for different spiked food samples. We observed a good correlation between the AlphaLISA and liquid chromatography-tandem mass spectrometry (LC-MS/MS) with blood samples from injected rabbits. The established AlphaLISA method provided a no-washing, rapid, high-throughput screening tool for SAs in food quality control, which is suitable for small-volume samples.
Collapse
Affiliation(s)
- Yong Jin
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Yanping He
- Chinese Academy of Inspection and QuarantineBeijingChina
- Anhui Normal UniversityWuhuChina
| | - Dali Zhao
- Jilin International Travel Health Care Center (Changchun Customs Port Clinic)ChangchunChina
| | - Yan Chen
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Qiang Xue
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Mingqiang Zou
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Hong Yin
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Shige Xing
- Chinese Academy of Inspection and QuarantineBeijingChina
| |
Collapse
|
13
|
Dowlatshah S, Santigosa E, Saraji M, Payán MR. A selective and efficient microfluidic method-based liquid phase microextraction for the determination of sulfonamides in urine samples. J Chromatogr A 2021; 1652:462344. [PMID: 34186325 DOI: 10.1016/j.chroma.2021.462344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Liquid phase microextraction (LPME) into a microfluidic has undergone great advances focused on downscaled and miniaturized devices. In this work, a microfluidic device was developed for the extraction of sulfonamides in order to accelerate the mass transfer and passive diffusion of the analytes from the donor phase to the acceptor phase. The subsequent analysis was carried out by high performance liquid chromatography with UV-DAD (HPLC-DAD). Several parameters affecting the extraction efficiency of the method such as the supported liquid membrane, composition of donor and acceptor phase and flow rate were investigated and optimized. Tributyl phosphate was found to be a good supported liquid membrane which confers not only great affinity for analytes but also long-term stability, allowing more than 20 consecutive extractions without carry over effect. Under optimum conditions, extraction efficiencies were over 96 % for all sulfonamides after 10 minutes extraction and only 10 µL of sample was required. Relative standard deviation was between 3-5 % for all compounds. Method detection limits were 45, 57, 54 and 33 ng mL-1 for sulfadiazine (SDI), sulfamerazine (SMR), sulfamethazine (SMT) and sulfamethoxazole (SMX), respectively. Quantitation limits were 0.15, 0.19, 0.18 and 0.11 µg mL-1 for SDI, SMR, SMT SMX, respectively. The proposed microfluidic device was successfully applied for the determination of sulfonamides in urine samples with extraction efficiencies within the range of 86-106 %. The proposed method improves the procedures proposed to date for the determination of sulfonamides in terms of efficiency, reduction of the sample volume and extraction time.
Collapse
Affiliation(s)
- Samira Dowlatshah
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012, Seville, Spain; Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elia Santigosa
- Department of Analytical Chemistry, Universitat Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Mohammad Saraji
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - María Ramos Payán
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012, Seville, Spain.
| |
Collapse
|
14
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
15
|
Application of Hollow Fibre-Liquid Phase Microextraction Technique for Isolation and Pre-Concentration of Pharmaceuticals in Water. MEMBRANES 2020; 10:membranes10110311. [PMID: 33137884 PMCID: PMC7693864 DOI: 10.3390/membranes10110311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
In this article, a comprehensive review of applications of the hollow fibre-liquid phase microextraction (HF-LPME) for the isolation and pre-concentration of pharmaceuticals in water samples is presented. HF-LPME is simple, affordable, selective, and sensitive with high enrichment factors of up to 27,000-fold reported for pharmaceutical analysis. Both configurations (two- and three-phase extraction systems) of HF-LPME have been applied in the extraction of pharmaceuticals from water, with the three-phase system being more prominent. When compared to most common sample preparation techniques such as solid phase extraction, HF-LPME is a greener analytical chemistry process due to reduced solvent consumption, miniaturization, and the ability to automate. However, the automation comes at an added cost related to instrumental set-up, but a reduced cost is associated with lower reagent consumption as well as shortened overall workload and time. Currently, many researchers are investigating ionic liquids and deep eutectic solvents as environmentally friendly chemicals that could lead to full classification of HF-LPME as a green analytical procedure.
Collapse
|
16
|
Li L, Zhu Y, Zhang F, Li H, Iqbal J, Wu T, Du Y. Rapid detection of sulfamethoxazole in plasma and food samples with in-syringe membrane SPE coupled with solid-phase fluorescence spectrometry. Food Chem 2020; 320:126612. [PMID: 32197124 DOI: 10.1016/j.foodchem.2020.126612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/20/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023]
Abstract
In this work, in-syringe membrane solid-phase extraction (MSPE) device was fabricated for the on-site sampling of sulfamethoxazole (SMX) in food samples followed by solid-phase fluorescence spectra analysis. The samples and fluorescamine (FA) were added to a syringe for derivation. Then, the derivative of SMX was extracted by a membrane in the syringe SPE device. Subsequently, the derivative on the membrane was measured immediately without additional elution procedure. The method was successfully applied in plasma, milk, and egg samples for the trace SMX detection, with the recovery of 98%-102%, RSDs from 1% to 6%. Compared with liquid chromatography, direct detection of the concentrated analyte significantly improved the sensitivity. Moreover, fluorescamine made it unnecessary to separate SMX from the interference. Consequently, it was a time-saving, low-cost, and easy-operation method, which demonstrated the potential of in-syringe SPE as a promising candidate for on-site analysis.
Collapse
Affiliation(s)
- Long Li
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ying Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feiyu Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Li
- Department of Science and Engineering, Dehong Teachers'College, Xianchi Road 14, Mangshi 678400, China
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Ting Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiping Du
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
17
|
Khan WA, Arain MB, Yamini Y, Shah N, Kazi TG, Pedersen-Bjergaard S, Tajik M. Hollow fiber-based liquid phase microextraction followed by analytical instrumental techniques for quantitative analysis of heavy metal ions and pharmaceuticals. J Pharm Anal 2020; 10:109-122. [PMID: 32373384 PMCID: PMC7192972 DOI: 10.1016/j.jpha.2019.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Hollow-fiber liquid-phase microextraction (HF-LPME) and electromembrane extraction (EME) are miniaturized extraction techniques, and have been coupled with various analytical instruments for trace analysis of heavy metals, drugs and other organic compounds, in recent years. HF-LPME and EME provide high selectivity, efficient sample cleanup and enrichment, and reduce the consumption of organic solvents to a few micro-liters per sample. HF-LPME and EME are compatible with different analytical instruments for chromatography, electrophoresis, atomic spectroscopy, mass spectrometry, and electrochemical detection. HF-LPME and EME have gained significant popularity during the recent years. This review focuses on hollow fiber based techniques (especially HF-LPME and EME) of heavy metals and pharmaceuticals (published 2017 to May 2019), and their combinations with atomic spectroscopy, UV-VIS spectrophotometry, high performance liquid chromatography, gas chromatography, capillary electrophoresis, and voltammetry.
Collapse
Affiliation(s)
- Wajid Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
| | - Muhammad Balal Arain
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
- Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, KPK, Pakistan
| | - Tasneem Gul Kazi
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan
| | | | - Mohammad Tajik
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran
| |
Collapse
|
18
|
Duan R, Sun L, Yang HY, Ma YR, Deng XY, Peng C, Zheng C, Dong LY, Wang XH. Preparation of phenyl–boronic acid polymeric monolith by initiator-free ring-opening polymerization for microextraction of sulfonamides prior to their determination by ultra-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2020; 1609:460510. [DOI: 10.1016/j.chroma.2019.460510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023]
|
19
|
Li Juan Y, Ci Dan ZX, Liao QG, Da Wen Z, Lin Guang L. Pipette-tip solid-phase extraction using cetyltrimethylammonium bromide enhanced molybdenum disulfide nanosheets as an efficient adsorbent for the extraction of sulfonamides in environmental water samples. J Sep Sci 2019; 43:905-911. [PMID: 31778034 DOI: 10.1002/jssc.201900871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023]
Abstract
Surfactant cetyltrimethylammonium bromide enhanced molybdenum disulfide was used as an adsorbent in pipette-tip solid-phase extraction for the pretreatment of sulfonamides in environmental water samples. The factors affecting the extraction recoveries of the analytes, including the sample pH value, amount of sorbent, type and volume of eluent solution, and salt concentration were optimized. This pipette-tip solid-phase extraction method demonstrated good linearity (0.05-10.0 µg/L) with a coefficient of determination of 0.9984-0.9996, limit of detection (0.2-0.4 ng/L) and limit of quantitation (0.5-1.0 ng/L), good analyte recoveries (76-91), and acceptable limit of quantitation (<10%) under the optimized conditions. These results indicated that the proposed method was a good tool for monitoring sulfonamides in environmental water samples.
Collapse
Affiliation(s)
- Yuan Li Juan
- Agricultural product quality safety and standards institute, Jiangxi academy of agricultural sciences, Nanchang, P. R. China
| | - Zha Xi Ci Dan
- Institute of Agricultural Quality Standards and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, P. R. China
| | - Qie Gen Liao
- Agricultural product quality safety and standards institute, Jiangxi academy of agricultural sciences, Nanchang, P. R. China
| | - Zhang Da Wen
- Agricultural product quality safety and standards institute, Jiangxi academy of agricultural sciences, Nanchang, P. R. China
| | - Luo Lin Guang
- Agricultural product quality safety and standards institute, Jiangxi academy of agricultural sciences, Nanchang, P. R. China
| |
Collapse
|
20
|
Wu Y, Zhou J, Wang X, Zhang Z, Gao S. Ionic Liquid-based Hollow Fiber Liquid–Liquid–Liquid Microextraction Combined with Capillary Electrophoresis for the Determination of Sulfonamides in Aquaculture Waters. J Chromatogr Sci 2019; 57:950-960. [DOI: 10.1093/chromsci/bmz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/03/2019] [Accepted: 06/07/2019] [Indexed: 11/14/2022]
Abstract
Abstract
Ionic liquid-based hollow-fiber liquid–liquid–liquid microextraction (IL-HF-LLLME) coupled to capillary electrophoresis (CE) has been developed for the determination of six sulfonamides (SAs) in aquaculture waters. A series of extraction parameters was optimized to enhance the extraction efficiency, which included type and pore size of hollow fiber, type and composition of extraction solvent, pH value of donor phase, the concentration of acceptor phase and the mass ratio of donor phase to acceptor phase along with extraction temperature and time. Under optimal conditions, the IL-HF-LLLME-CE method provided a wide liner range for six SAs from 2 to 1,000 μg L−1 (r2 ≥ 0.9995), the limits of the detection from 0.25 to 0.48 and the enrichment factors from 122 to 230, respectively. Relative standard deviations for intra- and interday precision were 1.4–5.3% and 1.8–7.5% (n = 5), respectively. The proposed method was successfully applied for the determination of trace-level SAs in seven real-world aquaculture water samples with good recoveries (80.4–100.7%). Also, sulfamerazine and sulfamethoxazole were detected at the level of 0.52–1.60 μg L−1 in two water samples. Due to its good sensitivity, simple operation, short analysis time and eco-friendliness, the developed method has a great application potential in analysis of trace SA residues in aquaculture waters.
Collapse
Affiliation(s)
- Youyi Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingwen Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhanen Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shiqian Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
21
|
Basheer C, Kamran M, Ashraf M, Lee HK. Enhancing liquid-phase microextraction efficiency through chemical reactions. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Torbati M, Farajzadeh MA, Mogaddam MRA, Torbati M. Deep eutectic solvent based homogeneous liquid–liquid extraction coupled with in‐syringe dispersive liquid–liquid microextraction performed in narrow tube; application in extraction and preconcentration of some herbicides from tea. J Sep Sci 2019; 42:1768-1776. [DOI: 10.1002/jssc.201801016] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Mohammadali Torbati
- Department of Food Science and TechnologyFaculty of NutritionTabriz University of Medical Sciences Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Tabriz Tabriz Iran
- Engineering FacultyNear East UniversityNicosiaNorth Cyprus Mersin Turkey
| | | | - Mostafa Torbati
- Faculty of DentistryTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|