1
|
Osooli P, Yamini Y, Tabibpour M, Moosavi NS. Functionalized carbon nanotube-polyaniline composite coating for on-line microextraction on a screw coupled with high performance liquid chromatography to determine opium alkaloids. Mikrochim Acta 2023; 190:464. [PMID: 37947885 DOI: 10.1007/s00604-023-06045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
A novel and efficient on-line microextraction on a screw coupled with high-performance liquid chromatography with an ultraviolet-visible detector was developed to extract and determine trace quantities of five opium alkaloids. All detections of the analytes were achieved at 210 nm. The surface of the screw grooves was electrochemically coated with the carbon nanotubes-COOH/polyaniline composite. The surface characterization was assessed by Fourier transform infrared spectroscopy and field emission scanning electron microscopy. The prepared screw was inserted into a cartridge of a guard column, and then the constructed microextraction on a screw device was placed in the loop of a six-port HPLC injection valve. The parameters affecting the extraction efficiency of the analytes were optimized using the one variable-at-a-time method. The effective parameters for the extraction efficiency of the analytes, including sample volume, extraction time, sampling flow rate, desorption solvent type, ionic strength, and pH were investigated and optimized. Under optimal conditions, the detection limits were 3-10 μg L-1, and the linear dynamic ranges were 10-2000 μg L-1 with a coefficient of determination greater than 0.9940. The inter-day and intra-day (n = 3) relative standard deviations were less than 7% and 5%, respectively. The proposed method was simple and reproducible, with an acceptable relative recovery (90-108%) for determining opium alkaloids in water and urine samples.
Collapse
Affiliation(s)
- Payam Osooli
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Mahmoud Tabibpour
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Negar Sabahi Moosavi
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
2
|
Farahani A, Azimi S, Azimi M. Developing an Integrated POC Spectrophotometric Device for Discrimination and Determination of Opioids Based on Gold Nanoparticles. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Eie LV, Pedersen-Bjergaard S, Hansen FA. Electromembrane extraction of polar substances - Status and perspectives. J Pharm Biomed Anal 2022; 207:114407. [PMID: 34634529 DOI: 10.1016/j.jpba.2021.114407] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
In this article, the scientific literature on electromembrane extraction (EME) of polar substances (log P < 2) is reviewed. EME is an extraction technique based on electrokinetic migration of analyte ions from an aqueous sample, across an organic supported liquid membrane (SLM), and into an aqueous acceptor solution. Because extraction is based on voltage-assisted partitioning, EME is fundamentally suitable for extraction of polar and ionizable substances that are challenging in many other extraction techniques. The article provides an exhaustive overview of papers on EME of polar substances. From this, different strategies to improve the mass transfer of polar substances are reviewed and critically discussed. These strategies include different SLM chemistries, modification of supporting membranes, sorbent additives, aqueous solution chemistry, and voltage/current related strategies. Finally, the future applicability of EME for polar substances is discussed. We expect EME in the coming years to be developed towards both very selective targeted analysis, as well as untargeted analysis of polar substances in biomedical applications such as metabolomics and peptidomics.
Collapse
Affiliation(s)
- Linda Vårdal Eie
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
4
|
Azimi S, Farahani A, Docoslis A, Vahdatifar S. Developing an integrated microfluidic and miniaturized electrochemical biosensor for point of care determination of glucose in human plasma samples. Anal Bioanal Chem 2021; 413:1441-1452. [PMID: 33388843 DOI: 10.1007/s00216-020-03108-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
A cost-effective, point of care (POC) device based on highly oriented CNT arrays was developed as an electrochemical assay for real-time and sensitive detection of glucose in complex samples. A low-cost, microcontroller-based potentiostat consisting of Arduino Due and LMP9100-EVM was developed to perform electrochemical measurements such as cyclic voltammetry (CV) and amperometry. A syringe pump based on open-source electronics was designed to direct the flow through a microfluidic chip. Vertically aligned carbon nanotube (VACNT) sensor arrays, in combination with the miniature potentiostat and the syringe pumps, were utilized as a POC device for the rapid and accurate detection of glucose. The structure and morphology of samples were characterized by field emission scanning electron microscopy (FESEM) and attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). CV as well as electrochemical impedance spectroscopy (EIS) was performed to investigate the electrochemical behavior of the electrode with respect to different diffusion regimes. The mediator-less biosensor had a limit of detection of 23 μM and sensitivity of 1462 μA mM-1 cm-2 and 1050 μA mM-1 cm-2 at the linear range of 1.2-7.8 mM and 7.8-11.2 mM, respectively. The presence of other biological compounds such as uric acid (UA) and ascorbic acid (AA) did not interfere with the detection of glucose. Finally, the designed POC device was successfully applied for the determination of glucose in human blood plasma samples.
Collapse
Affiliation(s)
- Shamim Azimi
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ali Farahani
- Nanobioelectronics Lab, School of Chemistry, College of Science, University of Tehran, Tehran, 1748714176, Iran.
| | - Aristides Docoslis
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Sahar Vahdatifar
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, 1438615995, Iran
| |
Collapse
|
5
|
Asadi S, Nojavan S, Behpour M, Mahdavi P. Electromembrane extraction based on agarose gel for the extraction of phenolic acids from fruit juices. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122401. [PMID: 33126069 DOI: 10.1016/j.jchromb.2020.122401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Extraction of polar acidic compounds is a challenging task in electromembrane extraction. In this study, gel-electromembrane extraction was employed for the extraction of phenolic acids as the polar acidic compounds from fruit juices. For this aim, the extraction of phenolic acids from the juice samples (4 mL, pH = 6.0) was carried out across the agarose gel membrane (concentration of agarose; 3% (w/v), pH of gel; 10.0, and thickness of membrane: 3 mm) into the acceptor solution (100 μL, pH = 12.0). Also, this extraction process was conducted by applying the optimum potential (25 V) for 15 min to the extraction system. Under the optimized condition, acceptable linearity (R2 ≥ 0.993) over a concentration range of 10.0-2500 ng mL-1 was achieved. The limits of detection were between 3.0 and 15.2 ng mL-1, while the corresponding repeatabilities ranged from 5.3 to 11.4% (n = 4). The recoveries achieved for the extraction of target compounds were ranged from 26.8 to 74.4%. The proposed method was used for the extraction of phenolic acids from orange, apple and kiwi juices, and the obtained relative recoveries in the range of 78.0-104.2% and RSDs in the range of 6.3 to 11.3% indicated successful extraction of phenolic acids.
Collapse
Affiliation(s)
- Sakine Asadi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., P.O. Box, 5 19396-4716, Evin, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., P.O. Box, 5 19396-4716, Evin, Tehran, Iran.
| | - Majid Behpour
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., P.O. Box, 5 19396-4716, Evin, Tehran, Iran
| | - Parisa Mahdavi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., P.O. Box, 5 19396-4716, Evin, Tehran, Iran
| |
Collapse
|
6
|
Screen-printed anion-exchange solid-phase extraction: A new strategy for point-of-care determination of angiotensin receptor blockers. Talanta 2020; 222:121518. [PMID: 33167228 DOI: 10.1016/j.talanta.2020.121518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
Abstract
A miniaturized system of anion exchange solid phase extraction (SPE) based on a screen-printed electrode was developed as a point of care (POC) device for extraction and quantitative determination of anionic analytes. Nylon 6/polyaniline nanofibers were fabricated by electrospinning and in-situ oxidative polymerization techniques coated on a screen-printed working electrode and characterized by Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) methods. The effects of essential parameters such as desorption conditions, pH of the sample solution, adsorption voltage, adsorption time, and salt concentration on the performance of the method were investigated. To evaluate the performance of the system, angiotensin ΙΙ receptor antagonists, including valsartan, losartan, and irbesartan, were selected as model compounds and analyzed by HPLC/UV after extraction. The limits of detection and quantification were ranging between 0.4 and 0.9 μg L-1 and 1.3-3.0 μg L-1, respectively. The linear dynamic range for Losartan, Irbesartan, and Valsartan was 2-400, 4-1000, and 2-400 μg L-1, respectively, with R2 > 0.991. Finally, the method was applied for the determination of ARA-IIs in human blood plasma samples, and relative recoveries in the range of 89.0-107.8% with relative standard deviation (RSDs (≤8.9% were obtained.
Collapse
|
7
|
Determination of morphine and its metabolites in the biological samples: an updated review. Bioanalysis 2020; 12:1161-1194. [PMID: 32757855 DOI: 10.4155/bio-2020-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Morphine (MO) as an opioid analgesic is used for the treatment of moderate-to-severe pains, particularly cancer-related pains. Pharmacologic studies on MO are complicated due to drugs binding to the protein or metabolization to active metabolites, and even inter-individual variability. This necessitates the selection of a reliable analytical method for monitoring MO and the concentrations of its metabolites in the biological samples for the pharmacokinetic or pharmacodynamic investigations. Therefore, this study was conducted to review all the analytical research carried out on MO and its metabolites in the biological samples during 2007-2019 as an update to the study by Bosch et al. (2007).
Collapse
|