1
|
Wang Y, Dai X, Zhu X, Wang W, Wang C, Li S, Sun S, Gao X, Qin K. Integrating Serum Pharmacochemistry With Network Pharmacology to Elucidate the Mechanism of Wushen Decoction in the Prevention and Treatment of Lower Extremity Erysipelas. Biomed Chromatogr 2025; 39:e70076. [PMID: 40207497 DOI: 10.1002/bmc.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
Lower extremity erysipelas (LEE), a frequently seen skin and soft tissue infection caused predominantly by streptococci, usually presents with fever, erythema and pain. Wushen Decoction (WSD), a Compound traditional Chinese medicine, has been used historically to treat LEE, though its exact mechanism of action remains unclear. In this study, we explored the therapeutic mechanisms of WSD in treating LEE by employing a combination of serum pharmacochemistry, network pharmacology, and molecular docking techniques. Initially, using UPLC-Q-Exactive Orbitrap-MS/MS, 39 candidate active compounds in the serum of rats treated with WSD were identified. Subsequently, network pharmacology analysis identified 35 overlapping targets between LEE and the active components, and 23 related signaling pathways. Further analysis and molecular docking studies have confirmed that the key active components (rutin, hyperoside and luteoloside) possess potential for effective therapeutic effects with the core targets (PTGS 2 and TNF). Furthermore, in vitro experiments demonstrated that WSD significantly downregulated the expression of PTGS 2 and TNF, thereby validating the network pharmacology findings and providing insights into the potential mechanisms. Results suggested that WSD may exert its therapeutic effects on LEE by modulating the TNF and NF-kappa B signaling pathway, offering a promising approach for the prevention and treatment of LEE.
Collapse
Affiliation(s)
- Ying Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| | - Xiao Dai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| | - Xianhong Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| | - Weiping Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| | - Chen Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| | - Shiyu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| | - Shuai Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| | - Xun Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| | - Kunming Qin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Key Laboratory on Innovation for Marine Medicine and Modern Chinese Medicine, Lianyungang, China
| |
Collapse
|
2
|
Zhang G, Liu X, Liang H, Wang X, Wang Q, Wang Q. Comprehensive Quality Evaluation of Traditional Chinese Medicine Guanxinjing Capsule Based on Fingerprint and Multicomponent Simultaneous Quantitative Method. J Sep Sci 2025; 48:e70059. [PMID: 39778053 DOI: 10.1002/jssc.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
A novel dual-wavelength ultrahigh performance liquid chromatography (UHPLC) fingerprint was established, 56 common peaks were confirmed and attributed to the source of the medicinal materials, and 13 chromatographic peaks of them were identified by UHPLC quadrupole time-of-flight (Q-TOF)-MS/MS and UHPLC-UV method. Furthermore, a simple and sensitive HPLC-quadrupole trap (Q-TRAP)-MS/MS was developed for the simultaneous determination of 16 active components with electrospray ionization (ESI) source switching between positive and negative modes in a single run. The above two methods were successfully applied for the quality evaluation of Guanxinjing capsule (GXJC). Finally, statistical analysis including principal component analysis (PCA), hierarchical cluster analysis (HCA), and orthogonal partial least squares discriminate analysis (OPLS-DA) were applied, and 13 variables with great contribution to different groups of samples were screened. This study not only provides a rapid, accurate, and comprehensive qualitative and quantitative method for quality evaluation of GXJC but it also provides a reference workflow for the other traditional Chinese medicines.
Collapse
Affiliation(s)
- Guanhua Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
- Department of Health Services, Logistics University of the Chinese People's Armed Police Force, Tianjin, China
| | - Xin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Chengde Central Hospital, Chengde, Hebei, China
| | - Hao Liang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Xu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Qi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Zhang J, Zhang Z, Yang M, Zhang W, Wang W, Wang J, Huang L, Wang C. The Study of Chemical Constituents and Metabolite Profiles of Chitong Xiaoyanling Granules in Normal and Periodontitis Model Rats Based on Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight-Tandem Mass Spectrometry Analysis. J Sep Sci 2024; 47:e70044. [PMID: 39632491 DOI: 10.1002/jssc.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Periodontitis is a chronic inflammation of the periodontal support tissues. The typical symptoms of periodontitis are inflammation and alveolar bone resorption. Chitong Xiaoyanling Granules (CXG) is composed of 10 Chinese herbs, which have the efficacy of dispersing wind, clearing heat, cooling blood, and relieving pain. CXG is clinically used for the treatment of periodontitis and other diseases, with remarkable efficacy and broad application prospects. However, due to the lack of systematic research on its chemical constituents and metabolites, it is of great significance to characterize the various chemical components and metabolites of CXG. In this study, ultra-high-performance liquid chromatography-quadrupole time-of-flight-tandem mass spectrometry analysis was used to identify the chemical constituents and metabolites of CXG, and the differences in metabolite profiles between normal and model rats were compared. A total of 147 compounds were identified in CXG, including 53 flavonoids, 28 terpenoids, seven chromones, eight coumarins, eight organic acids, 12 phenols, 10 alcohols, nine sugars, and 12 others. In normal and model rats, 191 and 179 CXG-related xenobiotics were detected respectively. In conclusion, a rapid and accurate identification method was used to identify the chemical components and metabolites of CXG, which laid a foundation for the study of the quality control and pharmacological mechanisms of CXG.
Collapse
Affiliation(s)
- Jieru Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Zijian Zhang
- Department of Stomatology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, P. R. China
| | - Menghua Yang
- Department of Stomatology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, P. R. China
| | - Wanwan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Weiran Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Jiajie Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Lingling Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Chunying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
- Department of Medical College, Xinjiang University of Science & Technology, Kuerle, P. R. China
| |
Collapse
|
4
|
Zhang J, Liu H, Xu W, Wan X, Zhu K. Comparative analysis of chloroplast genome of Lonicera japonica cv. Damaohua. Open Life Sci 2024; 19:20220984. [PMID: 39533983 PMCID: PMC11554557 DOI: 10.1515/biol-2022-0984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Lonicera japonica is a well-known medicinal plant, and the Damaohua cultivar is one of the oldest known honeysuckle cultivars in China. The 155,151 bp chloroplast genome of this cultivar was obtained through Illumina sequencing. The genome includes a pair of inverted repeats (IRa and IRb; 23,789 bp each), a large single-copy region (88,924 bp), and a small single-copy (SSC) region (18,649 bp). In total, 127 unique genes were identified: 80 protein-coding, 39 tRNA, and 8 rRNA genes. Only ycf3 contained two introns. Eighty-nine large repetitive sequences and 54 simple sequence repeats were detected. Fifty potential RNA editing sites were predicted. Adaptive evolution analysis revealed that infA, matK, petB, petD, rbcL, rpl16, rpl2, rps3, ycf1, and ycf2 were positively selected, possibly reflecting the specific environmental adaptations of this cultivar. Sequence alignment and analysis revealed several candidate fragments for Lonicera species identification, such as the intergenic regions rpoB-petN, rbcL-accD, and psaA-ycf3. The IR region boundary and phylogenetic analysis revealed that the L. japonica cv. Damaohua chloroplast genome was most closely related to the L. japonica genome, but there were five distinct differences between the two. There are four sites with high variability between L. japonica and L. japonica cv. Damaohua with nucleotide variability (Pi) greater than 0.002, including rps2-rpoC2, atpB-rbcL, ycf1, and ycf1-trnN GUU. The differences between L. japonica and L. japonica cv. Damaohua were further confirmed by the single nucleotide polymorphism sites between these two species. Therefore, this study revealed that the chloroplast genome can serve as a universal super barcode for plant identification, which can identify differences and help distinguish Lonicera japonica from related species. An understanding of Lonicera japonica cv. Damaohua chloroplast genomics and a comparative analysis of Lonicera species will provide a scientific basis for breeding, species identification, systematic evolution analysis, and chloroplast genetic engineering research on medicinal honeysuckle plants.
Collapse
Affiliation(s)
- Jiaqiang Zhang
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Huichun Liu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Wenting Xu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Xiao Wan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Kaiyuan Zhu
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| |
Collapse
|
5
|
Hu K, Liu X, Ma H, Zhao D, Song J, Zeng H, Zhang Z. Selective extraction and analysis of phenolic acids in herbal plants using Fe 3O 4@MXene@PEI aerogel. Talanta 2024; 277:126344. [PMID: 38838562 DOI: 10.1016/j.talanta.2024.126344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
A magnetic MXene aerogel (Fe3O4@MXene@PEI) was prepared by crosslinking amino modified MXene with polyethyleneimine using epichlorohydrin as a cross-linker. Adsorption properties of Fe3O4@MXene@PEI aerogel for phenolic acids were evaluated by adsorption kinetics and isotherms experiments, showing that the high adsorption affinity was governed by multilayer chemisorption process. An efficient MSPE/HPLC method was developed for the determination of phenolic acids with excellent selectivity, good linearity (0.025-5.0 μg mL-1), low LODs (0.007-0.017 μg mL-1), and satisfactory recoveries (80.0-120.0 %). Moreover, the antioxidant activity of the Fe3O4@MXene@PEI purified compounds was superior to that of the conventional method as demonstrated by the results of scavenging experiments on 2,2 -diphenyl-1-picrylhydrazyl radical scavenging assay. Finally, 65 organic acids were identified in the Fe3O4@MXene@PEI treated honeysuckle extracts by UHPLC-Q-Exactive Orbitrap MS/MS analysis. The proposed sorbent exhibits remarkable promise for the selective separation and purification of organic acids from herbal products.
Collapse
Affiliation(s)
- Kai Hu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, China.
| | - Xiaobing Liu
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huifen Ma
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Di Zhao
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junying Song
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huahui Zeng
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Science, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Zhang J, Yu X, Yang R, Zheng B, Zhang Y, Zhang F. Quality evaluation of Lonicerae Japonicae Flos from different origins based on high-performance liquid chromatography (HPLC) fingerprinting and multicomponent quantitative analysis combined with chemical pattern recognition. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:647-663. [PMID: 38185766 DOI: 10.1002/pca.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Lonicerae Japonicae Flos (LJF) is widely used in food and traditional Chinese medicine. To meet demand, Lonicera japonica Thunb. is widely cultivated in many provinces of China. However, reported studies on the quality evaluation of LJF only used a single or a few active components as indicators, which could not fully reflect the quality of LJF. OBJECTIVES In the present study, we aimed to develop a methodology for comprehensively evaluating the quality of LJF from different origins based on high-performance liquid chromatography (HPLC) fingerprinting and multicomponent quantitative analysis combined with chemical pattern recognition. MATERIALS AND METHODS The HPLC method was developed for fingerprint analysis and was used to determine the contents of 19 components of LJF. To distinguish between samples and identify differential components, similarity analysis, hierarchical cluster analysis, principal component analysis, and orthogonal partial least squares discriminant analysis were performed. RESULTS The HPLC fingerprint was established. Using the developed method, the contents of 19 components recognized in the fingerprint analysis were determined. Samples from different origins could be effectively distinguished. CONCLUSIONS HPLC fingerprinting and multicomponent quantitative analysis combined with chemical pattern recognition is an efficient method for evaluating LJF.
Collapse
Affiliation(s)
- Jie Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Yu
- Shandong Medicine Technician College, Tai'an, China
| | - Ran Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqing Zheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongqing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Huang X, Fei Q, Yu S, Qiu R, Geng T, Chen X, Cao L, Wang Z, Shan M. Liquid chromatography-mass spectrometry-based strategy for systematic profiling of chemical components and associated quantitative analysis of quality markers in Qi-Wei-Tong-Bi oral liquid. J Sep Sci 2024; 47:e2300922. [PMID: 38471974 DOI: 10.1002/jssc.202300922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Qi-Wei-Tong-Bi oral liquid (QWTB), a famous Chinese medicine preparation composed of seven crude drugs has a good therapeutic effect on rheumatoid arthritis and is widely used in China. However, its chemical composition and quality control have not been comprehensively and systematically investigated. In this study, high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was employed for its chemical profiling. As a result, 100 components were chemically characterized. Additionally, high-performance liquid chromatography coupled with a quadrupole linear ion trap mass spectrometry method was developed to simultaneously quantify nine bioactive components (hyperoside, ononin, quercetin, sinomenine, magnoflorine, gallic acid, protocatechuic acid, monotropein, and cyclo-(Pro-Tyr)) in multiple-reaction monitoring mode. After successful validation in terms of linearity, precision, repeatability, and recovery, the assay method was applied for the determination of 10 batches of QWTB. The results showed that QWTB was enriched in sinomenine and magnoflorine with the highest amount up to hundreds or even thousands of µg/mL, while quercetin, ononin, cyclo-(Pro-Tyr), and hyperoside were much lower with the lowest content below 10 µg/mL. This study work would help to reveal the chemical profiling and provide a valuable and reliable approach for quality evaluation and even pharmacodynamic material basis studies of QWTB.
Collapse
Affiliation(s)
- Xiaojun Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Qingqing Fei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Sheng Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Rongli Qiu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Ting Geng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Xialin Chen
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, P. R. China
| | - Liang Cao
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, P. R. China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, P. R. China
| | - Mingqiu Shan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
8
|
He S, Long W, Hai C, Chen H, Tang C, Rong X, Yang J, Fu H. Rapid identification of traditional Chinese medicines (Lonicerae japonicae flos and Lonicerae flos) and their origins using excitation-emission matrix fluorescence spectroscopy coupled with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123639. [PMID: 37979539 DOI: 10.1016/j.saa.2023.123639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) are important traditional Chinese medicine with various effects and prescription compatibility. The accurate identification of LJF and LF and their geographical origin are of great significance to the quality control and correct medication. In this work, a simple, rapid and efficient strategy for identification of Lonicerae japonicae flos and Lonicerae flos and their geographical origin was proposed by combining excitation-emission matrix fluorescence (EEMF) with chemometrics. Excitation-emission matrix fluorescence (EEMF) spectra of LJF and LF samples were characterized by parallel factor analysis (PARAFAC) to acquire chemically meaningful information. Classification models were built using three chemometric methods, including partial least squares-discrimination analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF). These models were utilized to identify LJF and LF and their geographical origin. Results revealed that PCA-LDA model gained the optimal performance with 100% classification accuracy for distinguishing between LJF and LJF from different geographical origin. Therefore, the proposed strategy could be a competitive alternative for fast and accurate differentiation of LJF and LF and their geographical origin.
Collapse
Affiliation(s)
- Song He
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Chengying Hai
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Chuanjie Tang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ximeng Rong
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
9
|
Yang L, Sun Y, Wei S, Wen H, Liu R, Wang X. Chemical profiling of Simiao pill and quantification of main effective constituents in it by ultra-high-performance liquid chromatography coupled with Q Exactive Orbitrap and triple quadrupole mass spectrometry. J Sep Sci 2024; 47:e2300615. [PMID: 38234033 DOI: 10.1002/jssc.202300615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024]
Abstract
Simiao pill is one of the most commonly used prescriptions in traditional Chinese medicine for the treatment of hyperuricemia and gout. However, methods based on more accurate and comprehensive qualitative and quantitative analyses of the active ingredients are not yet perfect due to limited methodology. This not only hinders the elucidation of the pharmacological mechanism of Simiao pill, but also its comprehensive clinical development and utilization. In this study, we employed ultra-high-performance liquid chromatography-Q Exactive Orbitrap-mass spectrometry technology to perform rapid analysis and identification of the chemical constituents in Simiao pill. A total of 101 chemical components were identified, including 26 alkaloids, 15 terpenoids, 11 flavonoids, eight steroids, six fatty acids, five limonoids, four saponins, five phenylpropanoids, and 21 other compounds. In addition, we established a new method by high-throughput ultra-high-performance liquid chromatography-Q Exactive Orbitrap-mass spectrometry combined with ultra-high-performance liquid chromatography-triple quadrupole-tandem mass spectrometry technology for quantification of 14 main active ingredients, such as adenosine (1), phellodendrine (2), mangnoflorine (3), β-ecdysterone (4), 25R-inokosterone (5), 25S-inokosterone (6), jatrorrhizine (7), palmatine (8), chikusetsu saponin IVa (9), limonin (10), atractylenolide III (11), atractylenolide I (12), obacunone (13), and atractylenolide II (14) in Simiao pill. This work laid a foundation for further analysis and quality control of effective components in Simiao pill.
Collapse
Affiliation(s)
- Le Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Shuyun Wei
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Hao Wen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Ruicheng Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Xijun Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| |
Collapse
|
10
|
Xiong L, Huang W, Liu Y, Zhao H, Wang Y, Jin Y, Zhang L, Zhang Y. Study on Antipyretic Properties of Phenolics in Lonicerae Japonicae Flos Based on Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry Combined with Network Pharmacology. J Food Biochem 2023; 2023:1-17. [DOI: 10.1155/2023/8883860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Objective. To identify and quantify the active phenolic components in Lonicerae japonicae flos (LJF) for fever treatment and their mechanism of action using network pharmacology and molecular docking. Methods. Based on qualitative analysis of LJF, 194 phenolics were obtained, including 81 phenolic acids and 113 flavonoids. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to identify potential targets for these components to interact with fever. Molecular docking with microsomal PGE2 synthase-1, EP1, EP2, EP3, and EP4 targets was used to determine antipyretic components. The antipyretic efficacy of the main components was verified by in vivo experiments. Finally, high-performance liquid chromatography-tandem mass spectrometry was used to quantify the main antipyretic components of LJF. Results. Phenolics in LJF may prevent and treat fever by participating in calcium signaling, regulating TRP channels, and cAMP signaling. Luteolin-7-O-glucoside, apigenin-7-O-glucoside, 3,5-O-dicaffeoylquinic acid, luteolin, and other components have a good docking effect with PGE2 synthase-1 and its four subtypes. 3,5-O-dicaffeoylquinic acid, luteolin-7-O-glucoside, and apigenin-7-O-glucoside have good antipyretic effects in a yeast-induced pyrexia model. The content of these antipyretic components varies with the developmental period of LJF. Phenolic acids are the main components that distinguish the different developmental periods of LJF. Conclusion. The potential antipyretic components and molecular mechanisms of phenolics provide a basis for the traditional medicinal effects and future development and utilization of LJF.
Collapse
Affiliation(s)
- Lewen Xiong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenjing Huang
- Weifang Traditional Chinese Medicine Hospital, Weifang, China
| | - Yan Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Jin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Longfei Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
11
|
Lv Z, Yao G, Ge M, Bai Y, Wu M, Ouyang H, Feng J, He J. Qualitative identification and quantitative comparison of Physochlainae Radix from different regions based on chemometric methods. J Sep Sci 2023; 46:e2300475. [PMID: 37735985 DOI: 10.1002/jssc.202300475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Physochlainae Radix (PR) is an essential herbal medicine that has been generally applied for treating cough and asthma. In this study, a comprehensive strategy for quality evaluation of PR from different origins was established by integrating qualitative identification, quantitative analysis, and chemometric methods. A total of 58 chemical components were identified by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS), and a sensitive and rapid UHPLC-QqQ-MS/MS method was established for the simultaneous determination of 12 compounds. In addition, multivariate statistical analysis was applied for discriminant analysis to compare the differences among 30 batches of PR samples. The results showed that the 30 batches of PR collected from four provinces could be clustered into three categories, in which scoparone, protocatechuic acid, tropic acid, and scopolin were important components to distinguish the primary and non-primary producing areas, as well as superior and inferior products of PR. Chemometric results were consistent and validated each other, and systematically explained the intrinsic quality characteristics of PR. This study first demonstrated that LC-MS combined with multivariate statistical analysis, provided a comprehensive and effective means for quality evaluation of PR.
Collapse
Affiliation(s)
- Zhenguo Lv
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangzhe Yao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minglei Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Bai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengxuan Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huizi Ouyang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jihong Feng
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Liang Y, Liu M, Wang Y, Liu L, Gao Y. Analyzing the Material Basis of Anti-RSV Efficacy of Lonicerae japonicae Flos Based on the PK-PD Model. Molecules 2023; 28:6437. [PMID: 37764214 PMCID: PMC10537356 DOI: 10.3390/molecules28186437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/16/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Lonicerae japonicae Flos (LJF) possesses a good anti-respiratory syncytial virus (RSV) effect. However, the material basis of LJF in treating RSV is still unclear. In this study, a sensitive and accurate quantitative method based on UHPLC-QQQ MS was established and validated for the simultaneous determination of the 15 ingredients from LJF in RSV-infected mice plasma. Multiple reaction monitoring was performed for quantification of the standards and of the internal standard in plasma. All the calibration curves show good linear regression within the linear range (r2 > 0.9918). The method validation results, including specificity, linearity, accuracy, precision, extraction recovery, matrix effect, and stability of 15 ingredients, are all within the current acceptance criteria. This established method was successfully applied to the pharmacokinetic study of 15 compounds from LJF. Furthermore, the repair rate of lung index and the improvement rate of IFN-γ and IL-6 improved after administration of the LJF, indicating that LJF possessed a positive effect on the treatment of RSV infection. Finally, by combining Spearman and Grey relation analysis, isochlorogenic acid B, isochlorogenic acid C, secoxyloganin, chlorogenic acid, and loganic acid are speculated to be the main effective ingredients of LJF in treating RSV. This study lays the foundation for attempts to reveal the mechanisms of the anti-RSV effect of LJF.
Collapse
Affiliation(s)
- Yuting Liang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Mingjun Liu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Yanghai Wang
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Lu Liu
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.L.); (M.L.); (Y.W.); (L.L.)
- High Level Traditional Chinese Medicine Key Disciplines of the State Administration of Traditional Chinese Medicine: Pharmaceutics of Traditional Chinese Medicine, Jinan 250355, China
- Collaborative Innovation Center for Ecological Protection and High Quality Development of Characteristic Traditional Chinese Medicine in the Yellow River Basin, Jinan 250355, China
| |
Collapse
|
13
|
Yin J, Li C, Zhang J, Ding H, Han L, Yang W, Li F, Song X, Bie S, Yu H, Li Z. Comprehensive multicomponent characterization and quality assessment of Shuang-Huang-Lian powder injection using ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry and ultra-high-performance liquid chromatography-quadrupole-Orbitrap-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9479. [PMID: 36690334 DOI: 10.1002/rcm.9479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Shuang-Huang-Lian powder injection (SHLPI) is a well-known modern traditional Chinese medicine formula preparation (TCMFP) widely used to treat acute upper respiratory infections. However, SHLPI is extracted from pure Chinese medicine and administered through an injection, and many adverse reactions have been reported clinically. Therefore, it is necessary to characterize in depth the chemical composition of SHLPI and quantitatively analyze its potential allergenic components. METHODS In this study, the samples were analyzed using ion mobility ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS) combined with a self-built database. Furthermore, the parallel reaction monitoring (PRM) model of ultra-high-performance liquid chromatography-quadrupole-Orbitrap-mass spectrometry (UHPLC-Q-Orbitrap-MS) was used to successfully quantify 10 representative bioactive components. RESULTS Using this strategy 90 compounds were identified, the fragmentation pathways of five representative compounds in the five main components of SHLPI were summarized, and 10 components (neochlorogenic acid, chlorogenic acid, sweroside, forsythiaside A, luteoloside, isochlorogenic acid B, isochlorogenic acid C, baicalin, phillyrin, and baicalein) were determine as the quality markers of SHLPI based on UPLC-Q-Orbitrap-MS. CONCLUSIONS This work comprehensively characterized the material basis of SHLPI, summarized the cracking laws of representative substances, and quantitatively analyzed 10 potential allergenic components. Therefore, this study could provide a basis for the quality control of SHLPI and the clinical rational use of drugs to reduce its adverse reactions.
Collapse
Affiliation(s)
- Jiaxin Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Chao Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jie Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Hui Ding
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenzhi Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Xinbo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Songtao Bie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Heshui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
14
|
Differential distribution of phytochemicals in Scutellariae Radix and Scutellariae Amoenae Radix using microscopic mass spectrometry imaging. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|