1
|
Reinke O, Machill S, Brunner E. Polyamines of unique structure are integrated in Synura echinulata biosilica. Anal Bioanal Chem 2025:10.1007/s00216-025-05891-3. [PMID: 40332524 DOI: 10.1007/s00216-025-05891-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Unicellar, biomineralizing algae like diatoms or Synurales are ubiquitous in various habitats all over the world and have an outstanding role in different biogeochemical cycles. They are well known for their elaborate nanopatterned cell structures consisting of amorphous biosilica, which is intracellularly synthesized. Special biomolecules assist in the silica formation. In particular, species-specific long-chain polyamines (LCPAs) are commonly found in diatom biosilica and seem to play a special role due to their ability to self-assemble and induce silica precipitation. In contrast to diatoms, no species from the order Synurales have been tested yet for the presence of LCPAs. Therefore, the present work deals with the analysis of Synura echinulata biosilica using a novel HPLC-HR-MS/MS method. The presence of unique LCPAs is shown, and their structure is elucidated via MS/MS experiments. LCPAs from S. echinulata are based on amino butyl repeat units-in contrast to all previously described LCPAs from other organisms, which are based on aminopropyl repeat units. The ubiquitous presence of LCPAs in biomineralizing species strongly indicates a general role of LCPAs in silica biomineralization.
Collapse
Affiliation(s)
- Oliver Reinke
- Chair for Bioanalytical Chemistry, TU Dresden, Dresden, 01062, Germany
| | - Susanne Machill
- Chair for Bioanalytical Chemistry, TU Dresden, Dresden, 01062, Germany
| | - Eike Brunner
- Chair for Bioanalytical Chemistry, TU Dresden, Dresden, 01062, Germany.
| |
Collapse
|
2
|
de Jesus RA, Costa IM, Eguiluz KIB, Salazar-Banda GR. The role of biosilica and its potential for sensing technologies: A review. J Biotechnol 2025; 398:158-174. [PMID: 39730022 DOI: 10.1016/j.jbiotec.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21st century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications. Additionally, the biomineralization process-biosilicification-in living organisms like diatoms offers an eco-friendly pathway for silica production. Despite the potential applications of biosilica, research on its use in sensor technology remains limited. This review aims to address this gap by covering the primary methodologies for extracting silica from biomass, discussing key techniques for its characterization, and highlighting its potential for functionalization in diverse applications. Special emphasis is given to the utility of diatom-derived biosilicas in developing sensors for detecting gaseous molecules and biomolecules.
Collapse
Affiliation(s)
- Roberta Anjos de Jesus
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil.
| | - Ivani Meneses Costa
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil
| | - Giancarlo Richard Salazar-Banda
- Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil
| |
Collapse
|
3
|
Szumski M, AlSaoud H, Wojtczak I, Sprynskyy M, Gadzała-Kopciuch R, Bocian S, Dembek M, Potrzebowski M, Buszewski B. Diatom biosilica for liquid chromatography. J Chromatogr A 2025; 1741:465603. [PMID: 39705878 DOI: 10.1016/j.chroma.2024.465603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
This work presents, for the first time, the preparation method and subsequent use of biosilica in column liquid chromatography in reverse-phase mode. Diatom biosilica consists of the siliceous exoskeletons (frustules) of unicellular algae. Controlled cultivation of Pseudostaurosira trainorii diatoms resulted in frustules with an average diameter of approximately 4 µm, sidewall thickness of 1 µm, and a bottom thickness of 110-150 nm. These frustules contained pores (holes) with diameters ranging from 150 to 300 nm. XRD measurements revealed an opal A silica structure, with some lamellar features, and the material was characterized by a surface area of 21.1 m²/g. The raw material required careful preparation to remove residual organics by heating it. Following this, the surface was modified with octadecyldimethylchlorosilane to create a reverse-phase chromatographic adsorbent. The resulting columns demonstrated good chromatographic performance, with a theoretical plate number (N) of 22,000 plates for alkylbenzenes on a 160 mm long column, and permeability (KF) of 5.33 × 10⁻¹⁵ m². The prepared material exhibited lower hydrophobicity compared to the commercially available HALO C18 stationary phase, which can be attributed to its lower surface area and high number of silanol groups. As a result, only partial separation of six polyaromatic hydrocarbons was achieved due to excessive tailing. However, five anti-inflammatory drugs and two veterinary antibiotics were successfully separated.
Collapse
Affiliation(s)
- Michał Szumski
- Nicolaus Copernicus University in Toruń, Interdisciplinary Centre of Modern Technologies, Wileńska 4, 87-100, Toruń, Poland.
| | - Hussam AlSaoud
- Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Production, Wiejska 45C, 15-351, Bialystok, Poland; Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland; Jadara University, Faculty of Pharmacy, Irbid 21110, Jordan
| | - Izabela Wojtczak
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland
| | - Myroslav Sprynskyy
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland
| | - Szymon Bocian
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland
| | - Mikołaj Dembek
- Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland
| | - Marek Potrzebowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Science, Sienkiewicza 112, 90-363 Łódź Poland
| | - Bogusław Buszewski
- Nicolaus Copernicus University in Toruń, Interdisciplinary Centre of Modern Technologies, Wileńska 4, 87-100, Toruń, Poland; Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Department of Environmental Chemistry and Bioanalytics, Gagarina 7, PL-87-100 Toruń, Poland; Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego Str. 4, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Kang S, Woo Y, Seo Y, Yoo D, Kwon D, Park H, Lee SD, Yoo HY, Lee T. A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System. Pharmaceutics 2024; 16:1171. [PMID: 39339207 PMCID: PMC11434644 DOI: 10.3390/pharmaceutics16091171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, biosilica derived from diatoms has attracted attention in various biomedical fields, including drug delivery systems (DDS), due to its uniform porous nano-pattern, hierarchical structure, and abundant silanol functional groups. Importantly, the structural characteristics of diatom biosilica improve the solubility of poorly soluble substances and enable sustained release of loaded drugs. Additionally, diatom biosilica predominantly comprises SiO2, has high biocompatibility, and can easily hybridize with other DDS platforms, including hydrogels and cationic DDS, owing to its strong negative charge and abundant silanol groups. This review explores the potential applications of various diatom biosilica-based DDS in various biomedical fields, with a particular focus on hybrid DDS utilizing them.
Collapse
Affiliation(s)
- Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Daeryul Kwon
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sang Deuk Lee
- Protist Research Division, Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Gyeongsangbuk-do, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-gil, Jongno-gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
5
|
Mohammadi M, Abbaszadeh S, Nosrati-Siahmazgi V, Akbari M, Rezaei S, Musaie K, Eskandari MR, Santos HA, Poursina N, Shahbazi MA. Diatom-guided bone healing via a hybrid natural scaffold. Heliyon 2024; 10:e25878. [PMID: 38384564 PMCID: PMC10878915 DOI: 10.1016/j.heliyon.2024.e25878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Bone tissue engineering (BTE) involves the design of three-dimensional (3D) scaffolds that aim to address current challenges of bone defect healing, such as limited donor availability, disease transmission risks, and the necessity for multiple invasive surgeries. Scaffolds can mimic natural bone structure to accelerate the mechanisms involved in the healing process. Herein, a crosslinked combination of biopolymers, including gelatin (GEL), chitosan (CS), and hyaluronic acid (HA), loaded with diatom (Di) and β-sitosterol (BS), is used to produce GCH-Di-S scaffold by freeze-drying method. The GCH scaffold possesses a uniform structure, is biodegradable and biocompatible, and exhibits high porosity and interconnected pores, all required for effective bone repair. The incorporation of Di within the scaffold contributes to the adjustment of porosity and degradation, as well as effectively enhancing the mechanical property and biomineralization. In vivo studies have confirmed the safety of the scaffold and its potential to stimulate the creation of new bone tissue. This is achieved by providing an osteoconductive platform for cell attachment, prompting calcification, and augmenting the proliferation of osteoblasts, which further contributes to angiogenesis and anti-inflammatory effects of BS.
Collapse
Affiliation(s)
- Mina Mohammadi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Science, 45139-56111 Zanjan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Saman Rezaei
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Kiyan Musaie
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184, Zanjan, Iran
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Narges Poursina
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
6
|
Lim H, Seo Y, Kwon D, Kang S, Yu J, Park H, Lee SD, Lee T. Recent Progress in Diatom Biosilica: A Natural Nanoporous Silica Material as Sustained Release Carrier. Pharmaceutics 2023; 15:2434. [PMID: 37896194 PMCID: PMC10609864 DOI: 10.3390/pharmaceutics15102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
A drug delivery system (DDS) is a useful technology that efficiently delivers a target drug to a patient's specific diseased tissue with minimal side effects. DDS is a convergence of several areas of study, comprising pharmacy, medicine, biotechnology, and chemistry fields. In the traditional pharmacological concept, developing drugs for disease treatment has been the primary research field of pharmacology. The significance of DDS in delivering drugs with optimal formulation to target areas to increase bioavailability and minimize side effects has been recently highlighted. In addition, since the burst release found in various DDS platforms can reduce drug delivery efficiency due to unpredictable drug loss, many recent DDS studies have focused on developing carriers with a sustained release. Among various drug carriers, mesoporous silica DDS (MS-DDS) is applied to various drug administration routes, based on its sustained releases, nanosized porous structures, and excellent solubility for poorly soluble drugs. However, the synthesized MS-DDS has caused complications such as toxicity in the body, long-term accumulation, and poor excretion ability owing to acid treatment-centered manufacturing methods. Therefore, biosilica obtained from diatoms, as a natural MS-DDS, has recently emerged as an alternative to synthesized MS-DDS. This natural silica carrier is an optimal DDS platform because culturing diatoms is easy, and the silica can be separated from diatoms using a simple treatment. In this review, we discuss the manufacturing methods and applications to various disease models based on the advantages of biosilica.
Collapse
Affiliation(s)
- Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Daeryul Kwon
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea;
| | - Sunggu Kang
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| | - Sang Deuk Lee
- Protist Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), 137, Donam 2-gil, Sangju-si 37242, Republic of Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (H.L.); (Y.S.); (S.K.); (J.Y.); (H.P.)
| |
Collapse
|