1
|
Pan X, Guan J, Cui Y, Li L, Lin X, Feng B, Zhu H. Characterization of the Chemical Constituents in Radix gentianae by Ultra-High Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry. J Chromatogr Sci 2024; 62:864-871. [PMID: 38117977 DOI: 10.1093/chromsci/bmad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Radix gentianae (RG) is a traditional Chinese medicine used for the treatment of acute and chronic hepatitis in clinic. However, the chemical profile of RG is still unconfirmed, which hindered the progress of pharmacological study and clinical application. In this study, ultra-high performance liquid chromatography together with quadrupole time-of-flight mass spectrometry techniques were employed to separate and characterize the chemical constituents in RG. Under the optimized conditions, a total of 60 compounds were rapidly identified or tentatively characterized. Results indicated that iridoid glucosides, flavonoids, organic acids, amino acids, saccharides and nucleosides were major constituents in RG. It is concluded the established method can help to clarify the substance basis and provide useful information for ascertaining the bioactive constituents and action mechanism of RG.
Collapse
Affiliation(s)
- Xu Pan
- Department of Pharmaceutical Analysis, School of Pharmacy, Jilin Medical University, 5 Jilin Street, Fengman District, Jilin 132013, Jilin, China
| | - Jiao Guan
- Department of Pharmaceutical Analysis, School of Pharmacy, Jilin Medical University, 5 Jilin Street, Fengman District, Jilin 132013, Jilin, China
| | - Yue Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Jilin Medical University, 5 Jilin Street, Fengman District, Jilin 132013, Jilin, China
| | - Lele Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Jilin Medical University, 5 Jilin Street, Fengman District, Jilin 132013, Jilin, China
| | - Xiaoying Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Jilin Medical University, 5 Jilin Street, Fengman District, Jilin 132013, Jilin, China
| | - Bo Feng
- Department of Pharmaceutical Analysis, School of Pharmacy, Jilin Medical University, 5 Jilin Street, Fengman District, Jilin 132013, Jilin, China
| | - Heyun Zhu
- Department of Pharmaceutical Analysis, School of Pharmacy, Jilin Medical University, 5 Jilin Street, Fengman District, Jilin 132013, Jilin, China
| |
Collapse
|
2
|
Yang Y, Chen Z, Yan G, Kong L, Yang L, Sun H, Han Y, Zhang J, Wang X. Mass spectrum oriented metabolomics for evaluating the efficacy and discovering the metabolic mechanism of Naoling Pian for insomnia. J Pharm Biomed Anal 2023; 236:115756. [PMID: 37776625 DOI: 10.1016/j.jpba.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Insomnia is an accompanying symptom of many diseases and is closely associated with neurodegenerative diseases. Naoling Pian (NLP) is a patented Chinese medicine mainly used to treat insomnia. To evaluate the sedative and hypnotic effects of NLP and its modulatory effects on biological metabolites and metabolic pathways, rats with p-chlorophenylalanine (PCPA)-induced insomnia were given different doses of NLP by oral gavage for seven days. Diazepam (DZP) served as a positive control. Behavior was measured using the open field test, and neurotransmitter levels in the brain tissue related to sleep were measured using ELISA. The metabolic profiles and biomarkers of PCPA-induced insomnia in rats before and after NLP administration were analyzed using UPLC-Q/TOF-MS combined with multivariate data analysis. The results showed that the levels of 5-hydroxytryptamine, gamma-aminobutyric acid, norepinephrine, and dopamine in the brain tissue were significantly recovered in the NLP treatment groups, demonstrating similar or even superior therapeutic effects compared to the DZP group. The behavior of the PCPA-model rats partially recovered to normal levels after seven days of treatment. Metabolomics identified 30 metabolites in the urine as potential biomarkers of insomnia, and NLP significantly altered 25 of these, involving 21 metabolic pathways. NLP has a remarkable effect on insomnia, the therapeutic effects of which may be largely due to the rectification of metabolic disturbances. This is the first study of the sedative and hypnotic effects of NLP from a metabolomic perspective.
Collapse
Affiliation(s)
- Yu Yang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Zhe Chen
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Ling Kong
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China.
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Jie Zhang
- Wusuli River Pharmaceutical Co., Ltd., Heilongjiang, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
3
|
Yang C, Li D, Ko CN, Wang K, Wang H. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy. Front Immunol 2023; 14:1133050. [PMID: 36969211 PMCID: PMC10036358 DOI: 10.3389/fimmu.2023.1133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Immunotherapy is a type of treatment that uses our own immune system to fight cancer. Studies have shown that traditional Chinese medicine (TCM) has antitumor activity and can enhance host immunity. This article briefly describes the immunomodulatory and escape mechanisms in tumors, as well as highlights and summarizes the antitumor immunomodulatory activities of some representative active ingredients of TCM. Finally, this article puts forward some opinions on the future research and clinical application of TCM, aiming to promote the clinical applications of TCM in tumor immunotherapy and to provide new ideas for the research of tumor immunotherapy using TCM.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| |
Collapse
|
4
|
Zhu J, Yang Y, Xin LY, Wan SY, He N, Wang HT, Chen XY, Mei QX, Feng GJ, Chen QH, Yang GY. Identification and quantification of nine compounds in Fangwen Jiuwei decoction by liquid chromatography-mass spectrometry. J Sep Sci 2023; 46:e2200824. [PMID: 36871198 DOI: 10.1002/jssc.202200824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Fangwen Jiuwei Decoction is a traditional Chinese medicine preparation for the treatment of pneumonia developed by Shenzhen Bao'an Chinese Medicine Hospital, which shows remarkable clinical responses. Qualitative and quantitative analyses of the main active compounds are crucial for the quality control of traditional Chinese medicine prescription in clinical application. In this study, we identified nine active compounds essential for the pharmacological effects of Fangwen Jiuwei Decoction based on the analysis of the Network Pharmacology and relevant literature. Moreover, these compounds can interact with several crucial drug targets in pneumonia based on molecular docking. We applied high-performance liquid chromatography-tandem mass spectrometry method was established these nine active ingredients' qualitative and quantitative detections. The possible cleavage pathways of nine active components were determined based on secondary ions mass spectrometry. The results of high-performance liquid chromatography-tandem mass spectrometry were further validated, which show a satisfactory correlation coefficient (r > 0.99), recovery rate (≥93.31%), repeatability rate (≤5.62%), stability (≤7.95%), intra-day precision (≤6.68%), and inter-day precision (≤9.78%). The limit of detection was as low as 0.01 ng/ml. In this study, we established a high-performance liquid chromatography-tandem mass spectrometry method to qualitatively and quantitatively analyze the chemical components in the Fangwen Jiuwei Decoction extract.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Yang Yang
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Ling-Yi Xin
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Shi-Yu Wan
- Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China.,Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Na He
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Hang-Tian Wang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| | - Xi-Yu Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Quan-Xi Mei
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Guang-Jun Feng
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Qin-Hua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, P. R. China
| | - Guang-Yi Yang
- Department of Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, P. R. China.,Department of Pharmacy, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, P. R. China
| |
Collapse
|
5
|
Liu Q, Pei Y, Wan H, Wang M, Liu L, Li W, Jin J, Liu X. Chemical profiling and identification of Radix Cudramiae and their metabolites in rats using an ultra-high-performance liquid chromatography method coupled with time-of-flight tandem mass spectrometry. J Sep Sci 2023; 46:e2200767. [PMID: 36538732 DOI: 10.1002/jssc.202200767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Radix Cudramiae, known as "Chuan-Po-Shi" in China, is a herbal medicine widely used in the southwest of the country, especially applied by the Miao and Zhuang nationalities for the treatment of liver diseases, such as acute liver injury and liver fibrosis. As a kind of ethnomedicine, the report on its chemical analysis was still blank, which restricted its clinical application. Therefore, this paper aimed to illustrate the chemical characteristics of Radix Cudramiae. A rapid analytical strategy based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was developed to profile the natural small-molecular compounds in Radix Cudramiae, as well as the related prototypes and their metabolites in rats after drug administration. As a result, a total of 74 compounds were detected in the aqueous exact of Radix Cudramiae. In vivo, 45 chemicals including 16 prototypes and 29 metabolites in rat serum, along with 35 chemicals including 17 prototypes and 18 metabolites in rat liver, were screened out and identified. For the first time, the chemical constituents of Radix Cudramiae and their metabolic characteristics were discovered. It was hoped that this work would be beneficial for the safe and effective application of Radix Cudramiae in a clinic.
Collapse
Affiliation(s)
- Qing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Haoting Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Mengqing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Luyao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Junjie Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Department of TCM Quality, Nanjing Haichang Chinese Medicine Group Corporation, Nanjing, P. R. China
| | - Xiao Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.,Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
6
|
Tan Z, Chen S, Zhang M, Qu X, Li T, Zhang A, He Y, Ou M, Long L, Chen L, Wu F. An ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry identification and characterization of the active constituents from Abrus mollis Hance. J Sep Sci 2023; 46:e2200311. [PMID: 36349515 DOI: 10.1002/jssc.202200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Abrus mollis Hance is a traditional Chinese medicine that is widely used to treat acute and chronic hepatitis, steatosis, and fibrosis. Its therapeutic qualities of it have long been acknowledged, although the active ingredients responsible for its efficacy and the mechanisms of its action are unknown. In this study, the chemical constituents absorbed into the blood from Abrus mollis Hance were assessed by using liquid chromatography-quadrupole-time-of-flight mass spectrometry and the data was analyzed with the UNIFI screening platform. The results obtained were compared to existing chromatographic-mass spectrometry information, including retention times and molecular weights as well as known reference compounds. 41 chemical constituents were found in Abrus mollis Hance, and these included 16 flavonoids, 13 triterpenoids, five organic acids, and two alkaloids. Experimentally it was found that Abrus mollis Hance had a therapeutic benefit when treating α-naphthalene isothiocyanate-induced acute liver injury in rats. In addition, 11 blood prototypical constituents, including six flavonoids, three triterpenoids, and two alkaloids, were found in serum samples following intragastric administration of Abrus mollis Hance extracts to rats. This novel study can be used for the quality control and pharmacodynamic assessment of Abrus mollis Hance in order to assess its efficacy in the therapeutic treatment of patients.
Collapse
Affiliation(s)
- Zhien Tan
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Shimin Chen
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Mengli Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Xiaosheng Qu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Taiping Li
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Aihua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Yanmei He
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Min Ou
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Lihuo Long
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Lu Chen
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| | - Fangfang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, P. R. China
| |
Collapse
|