1
|
Singh R, Ha SE, Yu TY, Ro S. Dual Roles of miR-10a-5p and miR-10b-5p as Tumor Suppressors and Oncogenes in Diverse Cancers. Int J Mol Sci 2025; 26:415. [PMID: 39796267 PMCID: PMC11720153 DOI: 10.3390/ijms26010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer is a complex genetic disorder characterized by abnormalities in both coding and regulatory non-coding RNAs. microRNAs (miRNAs) are key regulatory non-coding RNAs that modulate cancer development, functioning as both tumor suppressors and oncogenes. miRNAs play critical roles in cancer progression, influencing key processes such as initiation, promotion, and metastasis. They exert their effects by targeting tumor suppressor genes, thereby facilitating cancer progression, while also inhibiting oncogenes to prevent further disease advancement. The miR-10 family, particularly miR-10a-5p and miR-10b-5p (miR-10a/b-5p), is notably involved in cancer progression. Intriguingly, their functions can differ across different cancers, sometimes promoting and at other times suppressing tumor growth depending on the cancer type and target genes. This review explores the dual roles of miR-10a/b-5p as tumor-suppressive miRNAs (TSmiRs) or oncogenic miRNAs (oncomiRs) in various cancers by examining their molecular and cellular mechanisms and their impact on the tumor microenvironment. Furthermore, we discuss the potential of miR-10a/b-5p as therapeutic targets, emphasizing miRNA-based strategies for cancer treatment. The insights discussed in this review aim to advance our understanding of miR-10a/b-5p's roles in tumor biology and their application in developing innovative cancer therapies.
Collapse
Affiliation(s)
- Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
| | - Tae Yang Yu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
- Division of Endocrinology and Metabolism, Department of Medicine, Wonkwang University School of Medicine, Iksan 54538, Republic of Korea
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (R.S.); (S.E.H.); (T.Y.Y.)
- RosVivo Therapeutics, Applied Research Facility, 1664 N. Virginia St., Reno, NV 89557, USA
| |
Collapse
|
2
|
Bao Z, Li J, Cai J, Yao S, Yang N, Yang J, Zhao B, Chen Y, Wu X. Plasma-derived exosome miR-10a-5p promotes premature ovarian failure by target BDNF via the TrkB/Akt/mTOR signaling pathway. Int J Biol Macromol 2024; 277:134195. [PMID: 39069050 DOI: 10.1016/j.ijbiomac.2024.134195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Premature ovarian failure (POF) is characterized by a significant decline in the ovarian follicle pool and oocyte reserve, alongside an increase in the number of low-quality oocytes and apoptosis of granulosa cells (GCs). Exosome-derived miRNA plays a regulatory role in crucial cellular activities and contributes to the onset and progression of POF. In this study, we successfully established a rabbit model of POF and conducted in vitro and in vivo experiments that confirmed DiI-labeled Pla-Exos (exosomes derived from plasma) could enter the follicle through blood circulation, with GCs capable of uptaking these exosomes. Our RNA-seq analysis revealed elevated expression of miR-10a-5p in Pla-Exos from POF rabbits. Moreover, our findings demonstrate that exosomal miR-10a-5p suppresses GCs proliferation and induces apoptosis via the mitochondrial pathway. Additionally, exosomal miR-10a-5p inhibits the TrkB/Akt/mTOR signaling pathway by downregulating BDNF expression, thereby modulating the expression levels of proteins and genes associated with the cell cycle, follicle development, and GCs senescence. In conclusion, our study highlights the role of Pla-Exos miR-10a-5p in promoting rabbit POF through the TrkB/Akt/mTOR signaling pathway by targeting BDNF. These findings provide new insights into potential therapeutic targets for POF, offering valuable references for addressing concerns related to female reproductive function.
Collapse
Affiliation(s)
- Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jiawei Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Shuyu Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Jie Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, 225009 Yangzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Hu D, Ma A, Lu H, Gao Z, Yu Y, Fan J, Liu S, Wang Y, Zhang M. LINC00963 Promotes Cisplatin Resistance in Esophageal Squamous Cell Carcinoma by Interacting with miR-10a to Upregulate SKA1 Expression. Appl Biochem Biotechnol 2024; 196:7219-7232. [PMID: 38507172 DOI: 10.1007/s12010-024-04897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Long non-coding RNA (lncRNA) is associated with a large number of tumor cellular functions together with chemotherapy resistance in a variety of tumors. LINC00963 was identified to regulate the malignant progression of various cancers. However, whether LINC00963 affects drug resistence in esophageal squamous cell carcinoma (ESCC) and the relevant molecular mechanisms have never been reported. This study aims to investigate the effect of LINC00963 on cisplatin resistance in ESCC. After detecting the level of LINC00963 in human esophageal squamous epithelial cells (HET-1 A), ESCC cells (TE-1) and cisplatin resistant cells of ESCC (TE-1/DDP), TE-1/DDP cell line and nude mouse model that interfered with LINC00963 expression were established. Then, the interaction among LINC00963, miR-10a, and SKA1 was clarified by double luciferase and RNA immunoprecipitation (RIP) assays. Meanwhile, the biological behavior changes of TE-1/DDP cells with miR-10a overexpression or SKA1 silencing were observed by CCK-8, flow cytometry, scratch, Transwell, and colony formation tests. Finally, the biological function of the LINC00963/SKA1 axis was elucidated by rescue experiments. LINC00963 was upregulated in TE-1 and TE-1/DDP cell lines. LINC00963 knockdown inhibited SKA1 expression of both cells and impaired tumorigenicity. Moreover, LINC00963 has a target relationship with miR-10a, and SKA1 is a target gene of miR-10a. MiR-10a overexpression or SKA1 silencing decreased the biological activity of TE-1/DDP cells and the expression of SKA1. Furthermore, SKA1 overexpression reverses the promoting effect of LINC00963 on cisplatin resistance of ESCC. LINC00963 regulates TE-1/DDP cells bioactivity and mediates cisplatin resistance through interacting with miR-10a and upregulating SKA1 expression.
Collapse
Affiliation(s)
- Dongxin Hu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Anqun Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Hongda Lu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhen Gao
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yue Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiaming Fan
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Shang Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yancheng Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mingyan Zhang
- Department of Gastroenterology and Hepatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Road, Huaiyin District, Jinan, Shandong, 250021, China.
| |
Collapse
|
4
|
Guo X, An H, Guo R, Dai Z, Ying S, Wu W. The role of miR-10a-5p in LPS-induced inhibition of progesterone synthesis in goose granulosa cells by down-regulating CYP11A1. Front Vet Sci 2024; 11:1398728. [PMID: 38872803 PMCID: PMC11171131 DOI: 10.3389/fvets.2024.1398728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
The poultry ovary is a preferred target for E. coli and Salmonella infection of tissues, and lipopolysaccharide (LPS) is a critical molecule in infecting the organism and interfering with cell function, invading the ovaries through the cloaca and interfering with progesterone (P4) secretion by follicular granulosa cells (GCs), seriously affecting the health of breeding geese. miRNAs are small, non-coding RNAs with a variety of important regulatory roles. To investigate the mechanism of miR-10a-5p mediated LPS inhibition of progesterone synthesis in goose granulosa cells, Yangzhou geese at peak laying period were selected as experimental animals to verify the expression levels of genes and transcription factors related to progesterone synthesis. In this study, bioinformatic predictions identified miR-10a-5p target gene CYP11A1, and genes and transcription factors related to the sex steroid hormone secretion pathway were screened. We detected that LPS inhibited CYP11A1 expression while increasing miR-10a-5p expression in vivo. Progesterone decreased significantly in goose granulosa cells treatment with 1 μg/mL LPS for 24 h, while progesterone-related genes and regulatory factors were also suppressed. We also determined that the downregulation of miR-10a-5p led to CYP11A1 expression. Overexpression of miR-10a-5p suppressed LPS-induced CYP11A1 expression, resulting in decreased progesterone secretion. Our findings indicated that miR-10a-5p was up-regulated by LPS and inhibited progesterone synthesis by down-regulating CYP11A1. This study provides insight into the molecular mechanisms regulating geese reproduction and ovulation.
Collapse
Affiliation(s)
- Xinyi Guo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hao An
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rihong Guo
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zichun Dai
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Shijia Ying
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wenda Wu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
5
|
Flores-Colón M, Rivera-Serrano M, Reyes-Burgos VG, Rolón JG, Pérez-Santiago J, Marcos-Martínez MJ, Valiyeva F, Vivas-Mejía PE. MicroRNA Expression Profiles in Human Samples and Cell Lines Revealed Nine miRNAs Associated with Cisplatin Resistance in High-Grade Serous Ovarian Cancer. Int J Mol Sci 2024; 25:3793. [PMID: 38612604 PMCID: PMC11011404 DOI: 10.3390/ijms25073793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Metastasis and drug resistance are major contributors to cancer-related fatalities worldwide. In ovarian cancer (OC), a staggering 70% develop resistance to the front-line therapy, cisplatin. Despite proposed mechanisms, the molecular events driving cisplatin resistance remain unclear. Dysregulated microRNAs (miRNAs) play a role in OC initiation, progression, and chemoresistance, yet few studies have compared miRNA expression in OC samples and cell lines. This study aimed to identify key miRNAs involved in the cisplatin resistance of high-grade-serous-ovarian-cancer (HGSOC), the most common gynecological malignancy. MiRNA expression profiles were conducted on RNA isolated from formalin-fixed-paraffin-embedded human ovarian tumor samples and HGSOC cell lines. Nine miRNAs were identified in both sample types. Targeting these with oligonucleotide miRNA inhibitors (OMIs) reduced proliferation by more than 50% for miR-203a, miR-96-5p, miR-10a-5p, miR-141-3p, miR-200c-3p, miR-182-5p, miR-183-5p, and miR-1206. OMIs significantly reduced migration for miR-183-5p, miR-203a, miR-296-5p, and miR-1206. Molecular pathway analysis revealed that the nine miRNAs regulate pathways associated with proliferation, invasion, and chemoresistance through PTEN, ZEB1, FOXO1, and SNAI2. High expression of miR-1206, miR-10a-5p, miR-141-3p, and miR-96-5p correlated with poor prognosis in OC patients according to the KM plotter database. These nine miRNAs could be used as targets for therapy and as markers of cisplatin response.
Collapse
Affiliation(s)
- Marienid Flores-Colón
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (M.F.-C.); (V.G.R.-B.)
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| | - Mariela Rivera-Serrano
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00936, USA
| | - Víctor G. Reyes-Burgos
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (M.F.-C.); (V.G.R.-B.)
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| | - José G. Rolón
- School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Josué Pérez-Santiago
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| | - María J. Marcos-Martínez
- Department of Pathology and Laboratory Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA;
| | - Fatima Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| | - Pablo E. Vivas-Mejía
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; (M.F.-C.); (V.G.R.-B.)
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR 00936, USA; (M.R.-S.); (J.P.-S.); (F.V.)
| |
Collapse
|
6
|
Wang L, Sun H, Cao L, Wang J. Role of HOXA1-4 in the development of genetic and malignant diseases. Biomark Res 2024; 12:18. [PMID: 38311789 PMCID: PMC10840290 DOI: 10.1186/s40364-024-00569-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
The HOXA genes, belonging to the HOX family, encompass 11 members (HOXA1-11) and exert critical functions in early embryonic development, as well as various adult processes. Furthermore, dysregulation of HOXA genes is implicated in genetic diseases, heart disease, and various cancers. In this comprehensive overview, we primarily focused on the HOXA1-4 genes and their associated functions and diseases. Emphasis was placed on elucidating the impact of abnormal expression of these genes and highlighting their significance in maintaining optimal health and their involvement in the development of genetic and malignant diseases. Furthermore, we delved into their regulatory mechanisms, functional roles, and underlying biology and explored the therapeutic potential of targeting HOXA1-4 genes for the treatment of malignancies. Additionally, we explored the utility of HOXA1-4 genes as biomarkers for monitoring cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Haifeng Sun
- The Third Department of Medical Oncology, Shaanxi Provincial Cancer Hospital Affiliated to Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Jinhai Wang
- Gastroenterology Department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
7
|
Chen Q, Chen Q, Song Y, Xiang Y, Li Q, Sang Y, Zhang L, Bai L, Zhu Y. Downregulation of homeobox A1 in human granulosa cells is involved in diminished ovarian reserve through promoting cell apoptosis and mitochondrial dysfunction. Mol Cell Endocrinol 2024; 580:112084. [PMID: 37923054 DOI: 10.1016/j.mce.2023.112084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Granulosa cell apoptosis contributes to the occurrence of diminished ovarian reserve (DOR). HOXA1, belonging to the HOX gene family, is involved in regulating cancer cell apoptosis. However, whether HOXA1 participates in the granulosa cell apoptosis in DOR patients remains to be elucidated. In the current study, we demonstrated the differential transcriptomic landscape of granulosa cells in DOR patients compared to that in the controls and identified decreased expression of the HOXA1 gene. Meanwhile, we found that HOXA1 was a gonadotropin-response gene, in which FSH could promote its expression, whereas LH inhibited HOXA1 expression in human granulosa cells. CCK-8 assay, flow cytometry and TUNEL staining results showed that inhibition of endogenous HOXA1 expression promoted human granulosa cell apoptosis. Moreover, knockdown of HOXA1 increased Bax while reducing Bcl2 protein expression. Furthermore, we found a total of 947 differentially expressed genes (DEGs), including 426 upregulated genes and 521 downregulated genes using transcriptome sequencing technology. Enrichment analysis results showed that the DEGs were involved in apoptosis and mitochondrial function-related signaling pathways. Knockdown of HOXA1 impaired mitochondrial functions, exhibiting increased reactive oxygen species (ROS) and cytoplasmic Ca2+ levels, decreased mitochondrial membrane potential, ATP production and mitochondrial DNA (mtDNA) copy number, and abnormal mitochondrial cristae. Our findings demonstrated that aberrantly reduced HOXA1 expression induced granulosa cell apoptosis in DOR patients and impaired mitochondrial function, which highlighted the potential role of HOXA1 in the occurrence of DOR and provided new insight for the treatment of DOR.
Collapse
Affiliation(s)
- Qingqing Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Qichao Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yang Song
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yu Xiang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Qingfang Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yimiao Sang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Liang Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China
| | - Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
8
|
Gao F, Wu Q, Lu D. MicroRNA-10a-5p-mediated downregulation of GATA6 inhibits tumor progression in ovarian cancer. Hum Cell 2024; 37:271-284. [PMID: 37768544 DOI: 10.1007/s13577-023-00987-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer is the common cause of cancer-related death in women and is considered the most deadly gynecological cancer. It has been established that GATA-binding protein 6 (GATA6) is abnormally expressed in several types of malignant tumors and acts as an oncogenic protein or a tumor suppressor. However, the underlying mechanism of GATA6 in ovarian cancer progression has not been elucidated. Data in the present study revealed that GATA6 expression was negatively correlated to microRNA-10a-5p (miR-10a-5p) in ovarian cancer tissue and cells and that GATA6 is directly targeted by miR-10a-5p. Notably, upregulated miR-10a-5p dramatically inhibited ovarian cancer cell proliferation, tumorigenic ability, migration, and invasion by targeting GATA6. In vitro and in vivo experiments confirmed that miR-10a-5p-mediated downregulation of GATA6 suppressed Akt pathway activation. Overall, our findings suggest that miR-10a-5p could be a novel therapeutic target for ovarian cancer, and targeting the miR-10a-5p/GATA6/Akt axis could improve outcomes in this patient population.
Collapse
Affiliation(s)
- Feiying Gao
- Medical College of Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou, 225009, China
- Yangzhou Jiangdu Binjiang City People's Hospital, Yangzhou, 225211, China
| | - Qiang Wu
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou, 225009, China
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dan Lu
- Medical College of Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Chen L, Fu Q, Du Y, Jiang ZY, Cheng Y. Transcriptome Analysis and Epigenetics Regulation in the Hippocampus and the Prefrontal Cortex of VPA-Induced Rat Model. Mol Neurobiol 2024; 61:167-174. [PMID: 37592184 DOI: 10.1007/s12035-023-03560-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Autism spectrum disorders (ASD) are a highly heterogeneous group of neurodevelopmental disorders caused by complex interaction between various genes and environmental factors. As the hippocampus and prefrontal cortex are involved in social recognition, they are the regions of the brain implicated in autism. The effects of prenatal exposure to valproic acid (VPA) can induce an ASD phenotype in both humans and rats; this tool is commonly used to model the complexity of ASD symptoms in the laboratory. However, researchers rarely undertake epigenetic regulation of the brain regions using this model. The present study has addressed this gap by examining gene expression abnormalities in the hippocampus and prefrontal cortex in the VPA rat model of ASD. mRNA and miRNA sequencing was performed on samples from the hippocampus and prefrontal cortex of the VPA model of autism. According to the analysis, 3000 mRNAs in the hippocampus and 2187 mRNAs in the prefrontal cortex showed a significant difference in expression between the VPA and saline groups. In addition, there were 115 DE miRNAs in the hippocampus and 14 DE miRNAs in the prefrontal cortex. Further, the predicted and validated target mRNA of DE miRNA enriched pathways involved neurotransmitter uptake, long-term synaptic depression, and AMPA receptor complex (anti-GluA2-b) in the hippocampus; as well as the neuroactive ligand-receptor interaction and regulation of postsynaptic membrane potential in the prefrontal cortex. This revealed the negative regulation network of miRNAs-mRNAs in the hippocampus and prefrontal cortex, while filtering out key genes (miR-10a-5p and Grm3). Finally, the significant variable miR-10a-5p and its negative regulated genes (Grm3) were verified in both brain regions by QPCR. Importantly, the fact that miR-10a-5p downregulated Grm3 in both the hippocampus and the prefrontal cortex may play a potentially significant role in the occurrence and development of autism. This study suggests that the VPA model has the potential to reproduce ASD-related hippocampus and prefrontal cortex abnormalities, at the epigenetic and transcriptional levels. Furthermore, the network of miRNAs-mRNAs was confirmed; this negative regulatory relationship may play a key role in determining the occurrence and development of autism. The study of this topic help better understand the pathogenesis of ASD.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Qiang Fu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zhong-Yong Jiang
- Department of Medical Laboratory, Affiliated Cancer Hospital of Chengdu Medical College, Chengdu Seventh People's Hospital, Chengdu, Sichuan, China.
| | - Yong Cheng
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
10
|
Dżaman K, Czerwaty K, Reichert TE, Szczepański MJ, Ludwig N. Expression and Regulatory Mechanisms of MicroRNA in Cholesteatoma: A Systematic Review. Int J Mol Sci 2023; 24:12277. [PMID: 37569652 PMCID: PMC10418341 DOI: 10.3390/ijms241512277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Cholesteatoma is a temporal bone disease characterized by dysfunctions of keratinocytes. MicroRNAs (miRNAs) are evolutionary conserved noncoding RNAs that regulate mRNA expression. They can be packaged into exosomes and transported to target cells that can be used in the future therapy of cholesteatoma. This study aimed to collect knowledge on the role of miRNAs and exosomal miRNAs in cholesteatoma and was conducted according to the PRISMA guidelines for systematic reviews. Four databases were screened: Pubmed/MEDLINE, Web of Science, Scopus, and the Cochrane Library. The last search was run on the 6th of June 2023. We included full-text original studies written in English, which examined miRNAs in cholesteatoma. The risk of bias was assessed using the Office of Health Assessment and Translation (OHAT) Risk of Bias Rating Tool, modified for the needs of this review. We identified 118 records and included 18 articles. Analyses revealed the downregulation of exosomal miR-17 as well as miR-10a-5p, miR-125b, miR-142-5p, miR34a, miR-203a, and miR-152-5p and the overexpression of exosomal miR-106b-5p as well as miR-1297, miR-26a-5p, miR-199a, miR-508-3p, miR-21-3p, miR-584-5p, and miR-16-1-3p in cholesteatoma. The role of differentially expressed miRNAs in cholesteatoma, including cell proliferation, apoptosis, the cell cycle, differentiation, bone resorption, and the remodeling process, was confirmed, making them a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Karolina Dżaman
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| | - Mirosław J. Szczepański
- Department of Otolaryngology, The Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland; (K.D.); (K.C.)
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| |
Collapse
|
11
|
Recent Updates on the Role of the MicroRNA-10 Family in Gynecological Malignancies. JOURNAL OF ONCOLOGY 2022; 2022:1544648. [PMID: 36578791 PMCID: PMC9792234 DOI: 10.1155/2022/1544648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The ever-increasing morbidity associated with gynecological malignancies constantly endangers the physical and psychological health of women. Since a long time, there has been an urgent need for a deeper understanding of the tumorigenesis and the development of gynecological cancer to identify new molecular markers for early diagnosis and metastatic disease prognosis and for the development of therapeutic targets. MicroRNAs are crucial cellular regulators. The microRNA-10 (miR-10) family has been found to play an integral role in the evolution of numerous cancer types. A comprehensive understanding of current studies on miR-10 could provide better insights into future research and clinical applications in related fields. This article reviews the latest research on the role of the miR-10 family in gynecological malignancies and the relevant molecular mechanism, mainly focusing on endometrial, cervical, and ovarian cancers.
Collapse
|
12
|
Zhang G, Zhang X, Zhou K, Ling X, Zhang J, Wu P, Zhang T, Xie K, Dai G. miRNA-10a-5p Targeting the BCL6 Gene Regulates Proliferation, Differentiation and Apoptosis of Chicken Myoblasts. Int J Mol Sci 2022; 23:ijms23179545. [PMID: 36076940 PMCID: PMC9455618 DOI: 10.3390/ijms23179545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022] Open
Abstract
Proliferation, differentiation, and apoptosis are three essential stages in cell development, and miRNAs can achieve extensive regulation of cellular developmental processes by repressing the expression of target genes. According to our previous RNA-seq results, miRNA-10a-5p was differentially expressed at different periods in chicken myoblasts, revealing a possible association with muscle development. In this study, we concluded that miRNA-10a-5p inhibited chicken myoblasts’ proliferation and differentiation and promoted chicken myoblasts’ apoptosis by directly targeting BCL6, a critical transcription factor involved in muscle development and regeneration. Overexpression of BCL6 significantly facilitated myoblasts’ proliferation and differentiation and suppressed myoblasts’ apoptosis. On the contrary, knockdown of BCL6 significantly repressed myoblasts’ proliferation and differentiation and induced myoblasts’ apoptosis. The results above suggest that miRNA-10a-5p plays a potential role in skeletal muscle growth, development and autophagy by targeting the BCL6 gene. We first revealed the functions of miRNA-10a-5p and BCL6 in the proliferation, differentiation, and apoptosis of chicken myoblasts.
Collapse
|
13
|
The Profile of MicroRNA Expression and Potential Role in the Regulation of Drug-Resistant Genes in Cisplatin- and Paclitaxel-Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23010526. [PMID: 35008952 PMCID: PMC8745655 DOI: 10.3390/ijms23010526] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy. The high mortality results from late diagnosis and the development of drug resistance. Drug resistance results from changes in the expression of different drug-resistance genes that may be regulated miRNA. The main aim of our study was to detect changes in miRNA expression levels in two cisplatin (CIS) and two paclitaxel (PAC)—resistant variants of the A2780 drug-sensitive ovarian cancer cell line—by miRNA microarray. The next goal was to identify miRNAs responsible for the regulation of drug-resistance genes. We observed changes in the expression of 46 miRNA that may be related to drug resistance. The overexpression of miR-125b-5p, miR-99a-5p, miR-296-3p, and miR-887-3p and downregulation of miR-218-5p, miR-221-3p, and miR-222-3p was observed in both CIS-resistant cell lines. In both PAC-resistant cell lines, we observed the upregulation of miR-221-3p, miR-222-3p, and miR-4485, and decreased expression of miR-551b-3p, miR-551b-5p, and miR-218-5p. Analysis of targets suggest that expression of important drug-resistant genes like protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Semaphorin 3A (SEMA3A), or the ATP-binding cassette subfamily B member 1 gene (ABCB1) can be regulated by miRNA.
Collapse
|