1
|
Malekjafarian SM, Mohtasham N, Mirhashemi M, Sadeghi M, Arab F, Mohajertehran F. Metastasis and cell proliferation inhibition by microRNAs and its potential therapeutic applications in OSCC: A systematic review. Pathol Res Pract 2024; 262:155532. [PMID: 39142242 DOI: 10.1016/j.prp.2024.155532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND AIMS Oral squamous cell carcinoma (OSCC) is among the most malignant cancers in the world and has a high mortality rate. MicroRNAs (miRNAs) have progressively gained attention due to their roles in the pathogenesis and maintenance of various kinds of cancers, including OSCC. In this research, we carried out a scoping review to analyze the role of miRNA and therapeutic response in OSCC and focus on target axes associated with miRNA that inhibit metastasis and cell proliferation in OSCC. METHODS This review adhered to a six-stage methodology framework and PRISMA guidelines. Three databases were systematically searched to find eligible articles until July 2024. Two reviewers conducted publication screening and data extraction independently. 54 articles meeting the predefined inclusion criteria were successfully identified. Quality assessment was done using the QUIN checklist specified for dental in vitro studies. RESULTS Studies with different designs reported 53 miRNAs that were experimentally validated to act as therapeutic targets in OSCC in vivo and in vitro studies. The study found that 25 miRNAs were up-regulated in OSCC patients and cell lines, while another 25 were down-regulated. Mir-186 was also found to be up- and down-regulated in two different investigations. The study highlights the potential of six microRNAs (miR-32-5p, miR-195-5p, miR-3529-3p, miR-191, miR-146b-5p, and miR-377-3p) as anti-proliferation, migration, and invasion therapeutics for OSCC treatment. Two miRNAs (miR-302b and miR-18a) are identified as anti-metastatic therapeutics, while four miRNAs (miR-617, miR-23a-3p, miR-105, miR-101) are anti-proliferation therapeutics. CONCLUSION The study recommends that restoring the expression of tumor suppressor miRNAs may be a suitable cancer therapy. Utilizing this technology does present certain difficulties, and resolving them will improve the methods for miRNA transfer to target cells. With more research and the resolution of associated issues, miRNA can be employed as an efficient therapeutic method for OSCC.
Collapse
Affiliation(s)
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mirhashemi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Sadeghi
- Department of Epidemiology, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Arab
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
2
|
Qin SY, Li B, Liu JM, Lv QL, Zeng XL. LncRNA NR2F2-AS1 inhibits the progression of oral squamous cell carcinoma by mediating the miR-32-5p/SEMA3A axis. Kaohsiung J Med Sci 2024; 40:877-889. [PMID: 39177014 DOI: 10.1002/kjm2.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Previous studies have supported a tumor-suppressive role of semaphorin 3A (SEMA3A) in several tumors including oral squamous cell carcinoma (OSCC). However, in-depth characterization of the role of SEMA3A in OSCC and the underlying molecular mechanisms is lacking. Gene and protein expressions were detected using quantitative real-time PCR, western blot assay, and immunohistochemistry. OSCC cell metastasis was evaluated using Transwell and angiogenesis of human umbilical vein endothelial cells (HUVECs) was determined using tube formation assay. The interactions among molecules were predicted using bioinformatics analysis and validated using luciferase activity experiment and RNA immunoprecipitation assay. Pulmonary metastasis was evaluated using hematoxylin and eosin staining after constructing a lung metastasis tumor model in mice. SEMA3A expression was decreased in OSCC cells and its overexpression led to suppression of epithelial-mesenchymal transition (EMT), migration, and invasion of OSCC cells and angiogenesis of HUVECs. miR-32-5p was identified as an upstream molecule of SEMA3A and long non-coding RNA NR2F2 antisense RNA 1 (NR2F2-AS1) was validated as an upstream gene of miR-32-5p. Further experiments revealed that the inhibitory effects of NR2F2-AS1 overexpression on EMT, migration, invasion of OSCC cells, and angiogenesis of HUVECs as well as tumor growth and metastasis in mice were mediated via the miR-32-5p/SEMA3A axis. To conclude, NR2F2-AS1 may attenuate OSCC cell metastasis and angiogenesis of HUVECs and suppress tumor growth and metastasis in mice via the miR-32-5p/SEMA3A axis.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mouth Neoplasms/pathology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Semaphorin-3A/metabolism
- Semaphorin-3A/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Mice
- Gene Expression Regulation, Neoplastic
- Human Umbilical Vein Endothelial Cells/metabolism
- Disease Progression
- Epithelial-Mesenchymal Transition/genetics
- Cell Movement
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Mice, Nude
Collapse
Affiliation(s)
- Shi-Yu Qin
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| | - Bo Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ji-Mu Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| | - Qiu-Li Lv
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xiang-Lin Zeng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
3
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung G, Najarzadegan F, Wong DT, Ton‐That H, Wang C, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2024; 96:250-280. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Pachiyappan Kamarajan
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Alex Cho
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Sandy Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Guo‐Chin Hung
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | | | - David T. Wong
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Hung Ton‐That
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Cun‐Yu Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Yvonne L. Kapila
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| |
Collapse
|
4
|
Koh YW, Han JH, Haam S, Lee HW. Machine learning-driven prediction of brain metastasis in lung adenocarcinoma using miRNA profile and target gene pathway analysis of an mRNA dataset. Clin Transl Oncol 2024; 26:2296-2308. [PMID: 38568412 DOI: 10.1007/s12094-024-03474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/21/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Brain metastasis (BM) is common in lung adenocarcinoma (LUAD) and has a poor prognosis, necessitating predictive biomarkers. MicroRNAs (MiRNAs) promote cancer cell growth, infiltration, and metastasis. However, the relationship between the miRNA expression profiles and BM occurrence in patients with LUAD remains unclear. METHODS We conducted an analysis to identify miRNAs in tissue samples that exhibited different expression levels between patients with and without BM. Using a machine learning approach, we confirmed whether the miRNA profile could be a predictive tool for BM. We performed pathway analysis of miRNA target genes using a matched mRNA dataset. RESULTS We selected 25 miRNAs that consistently exhibited differential expression between the two groups of 32 samples. The 25-miRNA profile demonstrated a strong predictive potential for BM in both Group 1 and Group 2 and the entire dataset (area under the curve [AUC] = 0.918, accuracy = 0.875 in Group 1; AUC = 0.867, accuracy = 0.781 in Group 2; and AUC = 0.908, accuracy = 0.875 in the entire group). Patients predicted to have BM, based on the 25-miRNA profile, had lower survival rates. Target gene analysis of miRNAs suggested that BM could be induced through the ErbB signaling pathway, proteoglycans in cancer, and the focal adhesion pathway. Furthermore, patients predicted to have BM based on the 25-miRNA profile exhibited higher expression of the epithelial-mesenchymal transition signature, TWIST, and vimentin than those not predicted to have BM. Specifically, there was a correlation between EGFR mRNA levels and BM. CONCLUSIONS This 25-miRNA profile may serve as a biomarker for predicting BM in patients with LUAD.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Seokjin Haam
- Department of Thoracic and Cardiovascular Surgery, Ajou University School of Medicine, Suwon-si, Republic of Korea
| | - Hyun Woo Lee
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon-si, Republic of Korea
| |
Collapse
|
5
|
Lu X, Yang Y, Chen J, Zhao T, Zhao X. RUNX1/miR-429 feedback loop promotes growth, metastasis, and epithelial-mesenchymal transition in oral squamous cell carcinoma by targeting ITGB1. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5289-5302. [PMID: 38277041 DOI: 10.1007/s00210-024-02960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
This study aimed to explore the role of miR-429 on the progression of oral squamous cell carcinoma (OSCC). OSCC cell lines were transfected with miR-429 mimic, pcDNA3.1-RUNX1, or pcDNA3.1-ITGB1, and their cell viability, apoptosis, migration, and invasion abilities were analyzed by cell counting, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, wound healing, and transwell assays, respectively. Furthermore, luciferase reporter assay, RNA pull-down, and ChIP were used to assess the regulation of miR-429, RUNX1, and ITGB1 expression in OSCC. Lastly, the biological role of the RUNX1/miR-429 feedback loop was explored in nude mice. The results revealed that miR-429 level was down-regulated, while RUNX1 and ITGB1 levels were up-regulated in OSCC tissues and that miR-429 was negatively correlated with RUNX1 and ITGB1 in OSCC tissues. Transfection of miR-429 mimic suppressed OSCC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, we found that miR-429 participated in OSCC progression by directly targeting ITGB1. Additionally, we found that RUNX1 negatively regulated miR-429 expression by binding to its promoter. Our results also revealed that the RUNX1/miR-429 feedback loop regulated ITGB1 expression and that RUNX1 overexpression rescued the inhibitory effects of miR-429 mimic on OSCC cells. In addition, miR-429 mimic significantly suppressed tumor growth, inflammatory cell infiltration, EMT, and ITGB1 expression in vivo, which were inhibited by RUNX1 overexpression. Altogether, these results indicate that the RUNX1/miR-429 feedback loop promoted growth, metastasis, and EMT in OSCC by targeting ITGB1.
Collapse
Affiliation(s)
- Xun Lu
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Yiqiang Yang
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Jia Chen
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Tian Zhao
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China
| | - Xiaofan Zhao
- Hospital of Stomatology, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan City, Ningxia, 750004, China.
| |
Collapse
|
6
|
Pang S, Chen B, Li Y, Wu S, Chen L. miR-92a-3p promotes pulmonary fibrosis progression by regulating KLF2-mediated endothelial-to-mesenchymal transition. Cytotechnology 2024; 76:291-300. [PMID: 38736725 PMCID: PMC11082104 DOI: 10.1007/s10616-024-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/10/2024] [Indexed: 05/14/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disease that has a poor prognosis and a serious impact on the quality of life of patients. Here, we investigated the potential role of miR-92a-3p in PF. The mRNA level of miR-92a-3p was significantly increased in both the lung tissues of bleomycin (BLM)--treated mice and pulmonary microvascular endothelial cells (PMVECs). Overexpressing miR-92a-3p increased the mRNA and protein levels of α‑SMA, vimentin, and Col-1 but downregulated E-cadherin. Additionally, the protein and mRNA expression levels of KLF2 were significantly decreased in the lung tissues of BLM-treated mice, suggesting that KLF2 participated in the progression of BLM-induced PF. Downregulating miR-92a-3p upregulated the expression of KLF2 and inhibited the endothelial-to-mesenchymal transition (EndoMT) process, thus alleviating PF in vivo. Altogether, a miR-92a-3p deficiency could significantly reduce the development of myofibroblasts and ameliorate PF progression.
Collapse
Affiliation(s)
- Sisi Pang
- Division of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| | - Bo Chen
- Division of Geriatric Respiratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| | - Yan Li
- Division of Geriatric Respiratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| | - Shuangshuang Wu
- Division of Geriatric Respiratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| | - Lei Chen
- Division of Geriatric Respiratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| |
Collapse
|
7
|
Трухина ДА, Мамедова ЕО, Никитин АГ, Кошкин ФА, Белая ЖЕ, Мельниченко ГА. [Plasma miRNA expression in patients with genetically confirmed multiple endocrine neoplasia type 1 syndrome and its phenocopies]. PROBLEMY ENDOKRINOLOGII 2024; 69:70-85. [PMID: 38311997 PMCID: PMC10848189 DOI: 10.14341/probl13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND MEN-1 is a rare autosomal dominant disease caused by mutations in MEN1 gene encoding the menin protein. This syndrome is characterized by the occurrence of parathyroid tumors, gastroenteropancreatic neuroendocrine tumors, pituitary adenomas, as well as other endocrine and non-endocrine tumors. If a patient with the MEN-1 phenotype carry no mutations in the MEN1 gene, the condition considers a phenocopy of syndrome (phMEN1). The possible cause of this changes could be changes in epigenetic regulation, particularly in microRNA expression that might affect menin signaling pathways. AIM to identify differently expressed circulating miRNAs in plasma in patients with genetically confirmed MEN-1 syndrome, its phenocopies and healthy controls. MATERIALS AND METHODS single-center, case-control study was conducted. We assessed plasma microRNA expression in patients with genetically confirmed MEN-1 (gMEN1), phMEN1 and healthy controls. Morning plasma samples were collected from fasting patients and stored at -80°C. Total RNA isolation was performed using miRNeasy Mini Kit with QIAcube. The libraries were prepared by the QIAseq miRNA Library Kit following the manufacturer. Circulating miRNA sequencing was done on Illumina NextSeq 500 (Illumina). Subsequent data processing was performed using the DESeq2 bioinformatics algorithm. RESULTS we enrolled 21 consecutive patients with gMEN1 and 11 patients with phMEN1, along with 12 gender matched controls. Median age of gMEN1 was 38,0 [34,0; 41,0]; in phMEN1 - 59,0 [51,0; 60,0]; control - 59,5 [51,5; 62,5]. The gMEN1 group differed in age (p<0.01) but not gender (р=0.739) or BMI (р=0.116) compared to phMEN1 and controls group, the last two groups did not differ by these parameters (p>0.05). 25 microRNA were differently expressed in groups gMEN1 and phMEN1 (21 upregulated microRNAs, 4 - downregulated). Comparison of samples from the phMEN-1 group and relatively healthy controls revealed 10 differently expressed microRNAs: 5 - upregulated; 5 - downregulated. In the gMEN-1 and control groups, 26 differently expressed microRNAs were found: 24 - upregulated; 2 - downregulated. The miRNAs most differing in expression among the groups were selected for further validation by RT-qPCR (in the groups of gMEN1 vs phMEN1 - miR-3613-5p, miR-335-5p, miR-32-5p, miR-425-3p, miR-25-5p, miR-576-5p, miR-215-5p, miR-30a-3p, miR-141-3p, miR-760, miR-501-3p; gMEN1 vs control - miR-1976, miR-144-5p miR-532-3p, miR-375; as well as in phMEN1 vs control - miR-944, miR-191-5p, miR-98-5p). CONCLUSION In a pilot study, we detected microRNAs that may be expressed differently between patients with gMEN-1 and phMEN-1. The results need to be validated using different measurement method with larger sample size.
Collapse
Affiliation(s)
- Д. А. Трухина
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. О. Мамедова
- Национальный медицинский исследовательский центр эндокринологии
| | | | | | - Ж. Е. Белая
- Национальный медицинский исследовательский центр эндокринологии
| | | |
Collapse
|
8
|
Li J, Jiang JL, Chen YM, Lu WQ. KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway. J Pathol Clin Res 2023; 9:423-435. [PMID: 37147883 PMCID: PMC10397377 DOI: 10.1002/cjp2.325] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 05/07/2023]
Abstract
Krüppel-like factor 2 (KLF2) belongs to the zinc finger family and is thought to be a tumor suppressor gene due to its low expression in various cancer types. However, its functional role and molecular pathway involvement in colorectal cancer (CRC) are not well defined. Herein, we investigated the potential mechanism of KLF2 in CRC cell invasion, migration, and epithelial-mesenchymal transition (EMT). We utilized the TCGA and GEPIA databases to analyze the expression of KLF2 in CRC patients and its correlation with different CRC stages and CRC prognosis. RT-PCR, western blot, and immunohistochemistry assays were used to measure KLF2 expression. Gain-of-function assays were performed to evaluate the role of KLF2 in CRC progression. Moreover, mechanistic experiments were conducted to investigate the molecular mechanism and involved signaling pathways regulated by KLF2. Additionally, we also conducted a xenograft tumor assay to evaluate the role of KLF2 in tumorigenesis. KLF2 expression was low in CRC patient tissues and cell lines, and low expression of KLF2 was associated with poor CRC prognosis. Remarkably, overexpressing KLF2 significantly inhibited the invasion, migration, and EMT capabilities of CRC cells, and tumor growth in xenografts. Mechanistically, KLF2 overexpression induced ferroptosis in CRC cells by regulating glutathione peroxidase 4 expression. Moreover, this KLF2-dependent ferroptosis in CRC cells was mediated by inhibiting the PI3K/AKT signaling pathway that resulted in the suppression of invasion, migration, and EMT of CRC cells. We report for the first time that KLF2 acts as a tumor suppressor in CRC by inducing ferroptosis via inhibiting the PI3K/AKT signaling pathway, thus providing a new direction for CRC prognosis assessment and targeted therapy.
Collapse
Affiliation(s)
- Jia Li
- Department of General SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenPR China
| | - Ji Ling Jiang
- Department of General SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenPR China
| | - Yi Mei Chen
- Department of Breast SurgeryShenzhen Women & Children's Health Care HospitalShenzhenPR China
| | - Wei Qi Lu
- Department of Gastrointestinal SurgeryFirst Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouPR China
| |
Collapse
|
9
|
Soffritti I, D’Accolti M, Maccari C, Bini F, Mazziga E, Arcangeletti MC, Caselli E. Coinfection of Dermal Fibroblasts by Human Cytomegalovirus and Human Herpesvirus 6 Can Boost the Expression of Fibrosis-Associated MicroRNAs. Microorganisms 2023; 11:412. [PMID: 36838377 PMCID: PMC9958881 DOI: 10.3390/microorganisms11020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Tissue fibrosis can affect every type of tissue or organ, often leading to organ malfunction; however, the mechanisms involved in this process are not yet clarified. A role has been hypothesized for Human Cytomegalovirus (HCMV) and Human Herpesvirus 6 (HHV-6) infections as triggers of systemic sclerosis (SSc), a severe autoimmune disease causing progressive tissue fibrosis, since both viruses and antiviral immune responses toward them have been detected in patients. Moreover, HCMV or HHV-6A infection was reported to increase the expression of fibrosis-associated transcriptional factors and miRNAs in human dermal fibroblasts. However, it is unlikely that they have separate effects in the infected host, as both viruses are highly prevalent in the human population. Thus, our study aimed to investigate, by quantitative real-time PCR microarray, the impact of HCMV/HHV-6A coinfection on the expression of pro-fibrotic miRNAs in coinfected cells, compared to the effect of single viruses. The results showed a possible synergistic effect of the two viruses on pro-fibrotic miRNA expression, thus suggesting that HCMV and HHV-6 may enhance each other and cooperate at inducing enhanced miRNA-driven fibrosis. These data may also suggest a possible use of virus-induced miRNAs as novel diagnostic or prognostic biomarkers for SSc and its clinical treatment.
Collapse
Affiliation(s)
- Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Maria D’Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Clara Maccari
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Francesca Bini
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Eleonora Mazziga
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| | - Maria-Cristina Arcangeletti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|