1
|
Han N, Yu N, Yu L. Aberrant expression of TRIM44, transcriptionally regulated by KLF9, contributes to the process of diabetic retinopathy. J Transl Med 2025; 23:433. [PMID: 40217303 PMCID: PMC11992793 DOI: 10.1186/s12967-025-06436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the common cause of diabetic vascular complications and it causes blindness. Until now, there are still some patients with DR who lack effective treatment. Tripartite motif containing 44 (TRIM44) has been shown to play a significant role in endothelial cells. However, the role of TRIM44 in DR remains unknown. METHODS Diabetes was induced in rats through the administration of an intraperitoneal injection of 65 mg/kg of streptozotocin (STZ). Rat retinal microvascular endothelial cells (RMECs) were subjected to stimulation under high glucose (HG) conditions. A thorough proteomic investigation and bioinformatic analysis were performed to identify the differentially expressed proteins (DEPs) in rat RMECs after blocking TRIM44. A dual luciferase reporter assay was employed to assess the luciferase activity of TRIM44. RESULTS TRIM44 was highly expressed in the retinal tissues of rats with diabetes and HG-induced RMECs. In vivo assays suggested that TRIM44 silencing improved the pathological alterations of DR rats as demonstrated by the downregulated expression of isolectin-B4 and VEGFA, along with a decrease in acellular capillaries within the retinal tissues. Knockdown of TRIM44 markedly reduced cell viability, proliferation, migration, invasion, and angiogenesis in HG-evoked RMECs. Mechanistically, TRIM44 was demonstrated to be activated transcriptionally by KLF transcription factor 9 (KLF9), a known facilitator of angiogenesis in DR. In HG-induced cells, the loss of TRIM44 resulted in the reverse of the endothelial cell function caused by KLF9 overexpression. After the comprehensive analysis, 64 upregulated and 38 downregulated DEPs were screened out for a series of functional enrichment analyses. CONCLUSIONS Collectively, this study demonstrates that TRIM44 knockdown suppressed diabetes-induced retinal vascular dysfunction in DR.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, China.
| |
Collapse
|
2
|
Peng L, Lai Y, Cao B. Advances in small extracellular vesicles: roles in the tumor microenvironment and epithelial ovarian cancer diagnosis and treatment. Front Oncol 2025; 15:1526944. [PMID: 40008006 PMCID: PMC11850269 DOI: 10.3389/fonc.2025.1526944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial ovarian cancer (EOC), one of the most prevalent subtypes of ovarian cancer, has a 5-year survival rate of less than 30%, highlighting the urgent need for novel diagnostic and therapeutic strategies. The tumor microenvironment (TME), a critical regulator of tumor progression, includes various components, among which small extracellular vesicles (sEVs) serve as important molecular carriers, having gained attention as significant contributors to cancer biology. These vesicles, released by cells into the extracellular space, are pivotal in the pathogenesis of EOC. In addition, sEVs show significant promise as biomarkers and therapeutic agents for the treatment and management of this malignancy. This review explores recent advancements in the understanding of sEVs within the TME and their potential applications in the diagnosis and treatment of EOC.
Collapse
Affiliation(s)
- Liang Peng
- Department of Gynecology, The Second People’s Hospital of Jingdezhen, Jingdezhen, Jiangxi, China
| | - Yi Lai
- Department of Laboratory Medicine, Yiwu Hospital Affiliated to Hangzhou Medical College, Yiwu, Zhejiang, China
| | - Baodi Cao
- Department of Gynecology, The Second People’s Hospital of Jingdezhen, Jingdezhen, Jiangxi, China
| |
Collapse
|
3
|
Alsaab HO, Almutairy B, Almobarki AO, Mughaedh MAA, Alzahrani MS. Exosome's role in ovarian disease pathogenesis and therapy; Focus on ovarian cancer and failure. J Reprod Immunol 2025; 167:104403. [PMID: 39662240 DOI: 10.1016/j.jri.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
In the eukaryotic system, exosomes are categorized as unique extracellular vesicles with dimensions ranging from 30 to 150 nm. These vesicles contain a variety of endogenous molecules, such as proteins, DNA, mRNA, microRNA, and circular RNA. They are essential for a wide range of metabolic events and have the potential to be used as therapeutic or diagnostic targets for a number of diseases, including ovarian diseases. By inducing changes in the surrounding environment, the donor exosomes transfer their contents to the receiving cells, so demonstrating the biological implications of major interactions between cells. Mesenchymal stem cells (MSCs) have produced exosomes have shown promise as a treatment for premature organ failure (POF or POI). Furthermore, exosomal transport has many complexities, and contributes to the pathophysiology of ovarian cancer by affecting cell growth, migration, metastastsis and etc. Owing to these facts, in this paper, we present the progress developed in the understanding of exosomes as a viable therapeutic avenue and indisputable prognostic targets in ovarian disorders.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | | | | | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif , Saudi Arabia
| |
Collapse
|
4
|
Saadh MJ, Allela OQB, Kareem RA, Chandra M, Malathi H, Nathiya D, Kapila I, Sameer HN, Hamad AK, Athab ZH, Adil M. Exosomal signaling in gynecologic cancer development: The role of cancer-associated fibroblasts. Pathol Res Pract 2024; 266:155766. [PMID: 39689399 DOI: 10.1016/j.prp.2024.155766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Gynecologic cancer, a prevalent and debilitating disease affecting women worldwide, is characterized by the uncontrolled proliferation of cells in the reproductive organs. The complex etiology of gynecologic cancer encompasses multiple subtypes, including cervical, ovarian, uterine, vaginal, and vulvar cancers. Despite optimal treatment strategies, which typically involve cytoreductive surgery and platinum-based chemotherapy, gynecologic cancer frequently exhibits recalcitrant relapse and poor prognosis. Recent studies have underscored the significance of the tumor microenvironment in ovarian carcinogenesis, particularly with regards to the discovery of aberrant genomic, transcriptomic, and proteomic profiles. Within this context, cancer-associated fibroblasts (CAFs) emerge as a crucial component of the stromal cell population, playing a pivotal role in oncogenesis and cancer progression. CAF-derived exosomes, small extracellular vesicles capable of conveying biological information between cells, have been implicated in a range of tumor-related processes, including tumorigenesis, cell proliferation, metastasis, drug resistance, and immune responses. Furthermore, aberrant expression of CAF-derived exosomal noncoding RNAs and proteins has been found to strongly correlate with clinical and pathological characteristics of gynecologic cancer patients. Our review provides a novel perspective on the role of CAF-derived exosomes in gynecologic cancer, highlighting their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ish Kapila
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
5
|
Qin L, Zeng X, Qiu X, Chen X, Liu S. The role of N6-methyladenosine modification in tumor angiogenesis. Front Oncol 2024; 14:1467850. [PMID: 39691597 PMCID: PMC11649548 DOI: 10.3389/fonc.2024.1467850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 12/19/2024] Open
Abstract
Tumor angiogenesis is a characteristics of malignant cancer progression that facilitates cancer cell growth, diffusion and metastasis, and has an indispensable role in cancer development. N6-methyladenosine (m6A) is among the most prevalent internal modifications in eukaryotic RNAs, and has considerable influence on RNA metabolism, including its transcription, splicing, localization, translation, recognition, and degradation. The m6A modification is generated by m6A methyltransferases ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). There is accumulating evidence that abnormal m6A modification is involved in the pathogenesis of multiple diseases, including cancers, and promotes cancer occurrence, development, and progression through its considerable impact on oncoprotein expression. Furthermore, increasing studies have demonstrated that m6A modification can influence angiogenesis in cancers through multiple pathways to regulate malignant processes. In this review, we elaborate the role of m6A modification in tumor angiogenesis-related molecules and pathways in detail, providing insights into the interactions between m6A and tumor angiogenesis. Moreover, we describe how targeting m6A modification in combination with anti-angiogenesis drugs is expected to be a promising anti-tumor treatment strategy, with potential value for addressing the challenge of drug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Shiquan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical
University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Farooqi AA, Shepetov AM, Rakhmetova V, Ruslan Z, Almabayeva A, Saussakova S, Baigonova K, Baimaganbetova K, Sundetgali K, Kapanova G. Interplay between JAK/STAT pathway and non-coding RNAs in different cancers. Noncoding RNA Res 2024; 9:1009-1022. [PMID: 39022684 PMCID: PMC11254501 DOI: 10.1016/j.ncrna.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 07/20/2024] Open
Abstract
Progress in the identification of core multi-protein modules within JAK/STAT pathway has enabled researchers to develop a better understanding of the linchpin role of deregulated signaling cascade in carcinogenesis and metastasis. More excitingly, complex interplay between JAK/STAT pathway and non-coding RNAs has been shown to reprogramme the outcome of signaling cascade and modulate immunological responses within tumor microenvironment. Wealth of information has comprehensively illustrated that most of this complexity regulates the re-shaping of the immunological responses. Increasingly sophisticated mechanistic insights have illuminated fundamental role of STAT-signaling in polarization of macrophages to M2 phenotype that promotes disease aggressiveness. Overall, JAK/STAT signaling drives different stages of cancer ranging from cancer metastasis to the reshaping of the tumor microenvironment. JAK/STAT signaling has also been found to play role in the regulation of infiltration and activity of natural killer cells and CD4/CD8 cells by PD-L1/PD-1 signaling. In this review, we have attempted to set spotlight on regulation of JAK/STAT pathway by microRNAs, long non-coding RNAs and circular RNAs in primary tumors and metastasizing tumors. Therefore, existing knowledge gaps need to be addressed to propel this fledgling field of research to the forefront and bring lncRNAs and circRNAs to the frontline of clinical practice. Leveraging the growing momentum will enable interdisciplinary researchers to gain transition from segmented view to a fairly detailed conceptual continuum.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Abay M. Shepetov
- Department of Nephrology, Asfendiyarov Kazakh National Medical University, Tole Bi St 94, Almaty, 050000, Kazakhstan
| | | | - Zharilkassimov Ruslan
- Department of Surgical Diseases with a Course of Cardio-thoracic Surgery and Maxillofacial Surgery, NJSC “Astana Medical University”, Astana, Kazakhstan
| | - Aigul Almabayeva
- Department of Human Anatomy, NJSC “Astana Medical University”, Astana City, Kazakhstan
| | - Saniya Saussakova
- Department of Public Health and Management, NJSC “Astana Medical University”, Astana, Kazakhstan
| | | | | | | | - Gulnara Kapanova
- Al-Farabi Kazakh National University, Kazakhstan
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty, 050040, Kazakhstan
| |
Collapse
|
7
|
Schwarzenbach H. Interplay of microRNAs and circRNAs in Epithelial Ovarian Cancer. Noncoding RNA 2024; 10:51. [PMID: 39452837 PMCID: PMC11510331 DOI: 10.3390/ncrna10050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Epithelial ovarian cancer (EOC) with its high death incidence rate is generally detected at advanced stages. During its progression, EOC often develops peritoneal metastasis aggravating the outcomes of EOC patients. Studies on non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), have analyzed the impact of miRNAs and circRNAs, along with their interaction among each other, on cancer cells. MiRNAs can act as oncogenes or tumor suppressors modulating post-transcriptional gene expression. There is accumulating evidence that circRNAs apply their stable, covalently closed, continuous circular structures to competitively inhibit miRNA function, and so act as competing endogenous RNAs (ceRNAs). This interplay between both ncRNAs participates in the malignity of a variety of cancer types, including EOC. In the current review, I describe the characteristics of miRNAs and circRNAs, and discuss their interplay with each other in the development, progression, and drug resistance of EOC. Sponging of miRNAs by circRNAs may be used as a biomarker and therapeutic target in EOC.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Zhang L, Li X, Gao H, Li P. The Role of Circular RNA Variants Generated from the NFIX Gene in Different Diseases. Mol Pharm 2024; 21:1027-1037. [PMID: 38315004 DOI: 10.1021/acs.molpharmaceut.3c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Circular RNAs (circRNAs) have been identified as important regulators in different developmental processes and disease pathogenesis. The loop structure of circRNAs makes them very stable in different conditions and microenvironments. circRNAs can affect microRNA (miRNA) and RNA binding protein (RBP) activity, encode functional proteins and regulate gene transcription. Recently, two circNFIX variants derived from the same gene, the Nuclear Factor I X (NFIX) gene, were determined as participants in the pathological processes of various diseases such as heart diseases and cancers. Both circNFIX variants are exonic circular RNAs and mainly function by sponging miRNAs. In this review, we summarize the current knowledge on circRNAs, elucidate the origins and properties of two circNFIX variants, explore the roles of two circNFIX variants in different diseases, and present clinical perspectives.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Xin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Huijuan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, No. 38 DengZhou Road, Qingdao 266021, China
| |
Collapse
|
9
|
Li B, Xuan H, Yin Y, Wu S, Du L. The N 6-methyladenosine modification in pathologic angiogenesis. Life Sci 2024; 339:122417. [PMID: 38244915 DOI: 10.1016/j.lfs.2024.122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
The vascular system is a vital circulatory network in the human body that plays a critical role in almost all physiological processes. The production of blood vessels in the body is a significant area of interest for researchers seeking to improve their understanding of vascular function and maintain normal vascular operation. However, an excessive or insufficient vascular regeneration process may lead to the development of various ailments such as cancer, eye diseases, and ischemic diseases. Recent preclinical and clinical studies have revealed new molecular targets and principles that may enhance the therapeutic effect of anti-angiogenic strategies. A thorough comprehension of the mechanism responsible for the abnormal vascular growth in disease processes can enable researchers to better target and effectively suppress or treat the disease. N6-methyladenosine (m6A), a common RNA methylation modification method, has emerged as a crucial regulator of various diseases by modulating vascular development. In this review, we will cover how m6A regulates various vascular-related diseases, such as cancer, ocular diseases, neurological diseases, ischemic diseases, emphasizing the mechanism of m6A methylation regulators on angiogenesis during pathological process.
Collapse
Affiliation(s)
- Bin Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hanqin Xuan
- Department of Pathology, the First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
10
|
Su Z, Li W, Lei Z, Hu L, Wang S, Guo L. Regulation of Angiogenesis by Non-Coding RNAs in Cancer. Biomolecules 2024; 14:60. [PMID: 38254660 PMCID: PMC10813527 DOI: 10.3390/biom14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have been identified as crucial regulators of various biological processes through epigenetic regulation, transcriptional regulation, and post-transcriptional regulation. Growing evidence suggests that dysregulation and activation of non-coding RNAs are closely associated with tumor angiogenesis, a process essential for tumor growth and metastasis and a major contributor to cancer-related mortality. Therefore, understanding the molecular mechanisms underlying tumor angiogenesis is of utmost importance. Numerous studies have documented the involvement of different types of non-coding RNAs in the regulation of angiogenesis. This review provides an overview of how non-coding RNAs regulate tumor angiogenesis. Additionally, we discuss emerging strategies that exploit non-coding RNAs for anti-angiogenic therapy in cancer treatment. Ultimately, this review underscores the crucial role played by non-coding RNAs in tumor angiogenesis and highlights their potential as therapeutic targets for anti-angiogenic interventions against cancer.
Collapse
Affiliation(s)
- Zhiyue Su
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenshu Li
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Department of Basic Medicine, Kangda College, Nanjing Medical University, Lianyungang 222000, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
11
|
Dzhugashvili E, Tamkovich S. Exosomal Cargo in Ovarian Cancer Dissemination. Curr Issues Mol Biol 2023; 45:9851-9867. [PMID: 38132461 PMCID: PMC10742327 DOI: 10.3390/cimb45120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among all gynecologic cancers and is characterized by early peritoneal spread. The growth and development of OC are associated with the formation of ascitic fluid, creating a unique tumor microenvironment. Understanding the mechanisms of tumor progression is crucial in identifying new diagnostic biomarkers and developing novel therapeutic strategies. Exosomes, lipid bilayer vesicles measuring 30-150 nm in size, are known to establish a crucial link between malignant cells and their microenvironment. Additionally, the confirmed involvement of exosomes in carcinogenesis enables them to mediate the invasion, migration, metastasis, and angiogenesis of tumor cells. Functionally active non-coding RNAs (such as microRNAs, long non-coding RNAs, circRNAs), proteins, and lipid rafts transported within exosomes can activate numerous signaling pathways and modify gene expression. This review aims to expand our understanding of the role of exosomes and their contents in OC carcinogenesis processes such as epithelial-mesenchymal transition (EMT), angiogenesis, vasculogenic mimicry, tumor cell proliferation, and peritoneal spread. It also discusses the potential for utilizing exosomal cargo to develop novel "liquid biopsy" biomarkers for early OC diagnosis.
Collapse
Affiliation(s)
- Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
12
|
Ghaedrahmati F, Nasrolahi A, Najafi S, Mighani M, Anbiyaee O, Haybar H, Assareh AR, Kempisty B, Dzięgiel P, Azizidoost S, Farzaneh M. Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 2023; 25:3101-3121. [PMID: 37039938 DOI: 10.1007/s12094-023-03178-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, US
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Yi Q, Yue J, Liu Y, Shi H, Sun W, Feng J, Sun W. Recent advances of exosomal circRNAs in cancer and their potential clinical applications. J Transl Med 2023; 21:516. [PMID: 37525158 PMCID: PMC10388565 DOI: 10.1186/s12967-023-04348-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA that forms a covalently closed, uninterrupted loop. The expression of circRNA differs among cell types and tissues, and various circRNAs are aberrantly expressed in a variety of diseases, including cancer. Aberrantly expressed circRNAs contribute to disease progression by acting as microRNA sponges, functional protein sponges, or novel templates for protein translation. Recent studies have shown that circRNAs are enriched in exosomes. Exosomes are spherical bilayer vesicles released by cells into extracellular spaces that mediate intercellular communication by delivering cargoes. These cargoes include metabolites, proteins, lipids, and RNA molecules. Exosome-mediated cell-cell or cell-microenvironment communications influence the progression of carcinogenesis by regulating cell proliferation, angiogenesis, metastasis as well as immune escape. In this review, we summarize the current knowledge about exosomal circRNAs in cancers and discuss their specific functions in tumorigenesis. Additionally, we discuss the potential value of exosomal circRNAs as diagnostic biomarkers and the potential applications of exosomal circRNA-based cancer therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Jiaji Yue
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Yang Liu
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Houyin Shi
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
14
|
Gombos G, Németh N, Pös O, Styk J, Buglyó G, Szemes T, Danihel L, Nagy B, Balogh I, Soltész B. New Possible Ways to Use Exosomes in Diagnostics and Therapy via JAK/STAT Pathways. Pharmaceutics 2023; 15:1904. [PMID: 37514090 PMCID: PMC10386711 DOI: 10.3390/pharmaceutics15071904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomes have the potential to be the future of personalized diagnostics and therapy. They are nano-sized particles between 30 and 100 nm flowing in the extracellular milieu, where they mediate cell-cell communication and participate in immune system regulation. Tumor-derived exosomes (TDEs) secreted from different types of cancer cells are the key regulators of the tumor microenvironment. With their immune suppressive cargo, TDEs prevent the antitumor immune response, leading to reduced effectiveness of cancer treatment by promoting a pro-tumorigenic microenvironment. Involved signaling pathways take part in the regulation of tumor proliferation, differentiation, apoptosis, and angiogenesis. Signal transducers and activators of transcription factors (STATs) and Janus kinase (JAK) signaling pathways are crucial in malignancies and autoimmune diseases alike, and their potential to be manipulated is currently the focus of interest. In this review, we aim to discuss exosomes, TDEs, and the JAK/STAT pathways, along with mediators like interleukins, tripartite motif proteins, and interferons.
Collapse
Affiliation(s)
- Gréta Gombos
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Nikolett Németh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 01 Bratislava, Slovakia
| | - Ludovit Danihel
- 3rd Surgical Clinic, Faculty of Medicine, Comenius University and Merciful Brothers University Hospital, 811 08 Bratislava, Slovakia
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
15
|
Wang KH, Ding DC. The Role and Applications of Exosomes in Gynecological Cancer: A Review. Cell Transplant 2023; 32:9636897231195240. [PMID: 37632354 PMCID: PMC10467393 DOI: 10.1177/09636897231195240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023] Open
Abstract
Exosomes are phospholipid bilayer vesicles that are released by all types of cells, containing proteins, lipids, and nucleic acids such as DNAs and RNAs. Exosomes can be transferred between cells and play a variety of physiological and pathological regulatory functions. Noncoding RNAs, including micro RNAs, long noncoding RNAs, and circular RNAs, are the most studied biomolecules from exosomes and more and more studies found that noncoding RNAs play an important role in the diagnosis, prognosis, and treatment of diseases, including various types of cancer. Gynecological malignancies such as ovarian, endometrial, and cervical cancer seriously threaten women's life. Therefore, this article reviews the roles and applications of exosomes in gynecological malignancies, including the promotion or inhibition of tumor progression and regulation of tumor microenvironments, and as potential therapeutic targets for treating gynecological cancers.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, R.O.C
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, R.O.C
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| |
Collapse
|