1
|
Wu S, Song L, Yu M, Gong C, Chen L. Inhibiting Matrix Metalloproteinases Protects Evoked Electromyography Amplitudes and Muscle Tension in the Orbicularis Oris Muscle in a Rat Model of Facial Nerve Injury. J Neuropathol Exp Neurol 2022; 81:816-824. [PMID: 35656867 PMCID: PMC9487608 DOI: 10.1093/jnen/nlac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Facial nerve injury results in degradation of the neuromuscular junction (NMJ) and blocks neurotransmission between the pre- and postsynaptic structures, which are separated by a synaptic cleft. Matrix metalloproteinases (MMPs), enzymes that degrade and modify the extracellular matrix, play critical roles in regulating NMJ remodeling. We previously demonstrated that MMP1, MMP2, MMP3, MMP7, and MMP9 are overexpressed in facial nerve-innervated orbicularis oris muscle after facial nerve injury in a rat model. In the present study, the MMP inhibitor prinomastat was administered to rats after facial nerve injury. The MMP levels, agrin expression, and muscle-specific kinase (MuSK) phosphorylation were evaluated. Variations in evoked electromyography (EEMG) amplitude were also recorded. Compared with the control group, MMP expression in the orbicularis oris after facial nerve injury was significantly reduced in the prinomastat group. Inhibition of MMP expression maintained agrin expression and MuSK phosphorylation; the NMJ morphology was also protected after the injury. Moreover, prinomastat treatment sustained EEMG amplitude and muscle tension after the injury. These findings indicate that inhibiting MMPs can protect the function and morphology of the NMJ and demonstrate the need for protection of the NMJ at early stages after facial nerve injury.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijun Song
- Hebei North University, Zhangjiakou, Hebei, P.R. China
| | - Meirong Yu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Gong
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Kartush JM, Rice KS, Minahan RE, Balzer GK, Yingling CD, Seubert CN. Best Practices in Facial Nerve Monitoring. Laryngoscope 2021; 131 Suppl 4:S1-S42. [PMID: 33729584 DOI: 10.1002/lary.29459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES/HYPOTHESIS Facial nerve monitoring (FNM) has evolved into a widely used adjunct for many surgical procedures along the course of the facial nerve. Even though majority opinion holds that FNM reduces the incidence of iatrogenic nerve injury, there are few if any studies yielding high-level evidence and no practice guidelines on which clinicians can rely. Instead, a review of the literature and medicolegal cases reveals significant variations in methodology, training, and clinical indications. STUDY DESIGN Literature review and expert opinion. METHODS Given the lack of standard references to serve as a resource for FNM, we assembled a multidisciplinary group of experts representing more than a century of combined monitoring experience to synthesize the literature and provide a rational basis to improve the quality of patient care during FNM. RESULTS Over the years, two models of monitoring have become well-established: 1) monitoring by the surgeon using a stand-alone device that provides auditory feedback of facial electromyography directly to the surgeon, and 2) a team, typically consisting of surgeon, technologist, and interpreting neurophysiologist. Regardless of the setting and the number of people involved, the reliability of monitoring depends on the integration of proper technical performance, accurate interpretation of responses, and their timely application to the surgical procedure. We describe critical steps in the technical set-up and provide a basis for context-appropriate interpretation and troubleshooting of recorded signals. CONCLUSIONS We trust this initial attempt to describe best practices will serve as a basis for improving the quality of patient care while reducing inappropriate variations. LEVEL OF EVIDENCE 4 Laryngoscope, 131:S1-S42, 2021.
Collapse
Affiliation(s)
- Jack M Kartush
- Michigan Ear Institute, Farmington Hills, Michigan, U.S.A
| | | | - Robert E Minahan
- Department of Neurology, Georgetown University, Washington, District of Columbia, U.S.A
| | - Gene K Balzer
- Real Time Neuromonitoring Associates, Real Time Neuromonitoring AssociatesNashville, Tennessee, U.S.A
| | - Charles D Yingling
- The Golden Gate Neuromonitoring, Department of Otolaryngology and Head and Neck Surgery, Stanford University, San Francisco, California, U.S.A
| | - Christoph N Seubert
- Department of Anesthesiology, Division of Neuroanesthesiology, University of Florida College of Medicine, Gainesville, Florida, U.S.A
| |
Collapse
|
3
|
Xu J, Huang Y, Li S, Chen L, Xue Z. Nicotinic acetylcholine receptor subunit expression in the gastrocnemius and in the orbicularis oris before and after facial nerve injury in rats. Neurol Res 2019; 41:817-826. [PMID: 31204603 DOI: 10.1080/01616412.2019.1617501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: To observe the expression of nicotinic acetylcholine receptor (AChR) subunits in normal orbicularis oris and gastrocnemius muscles and to explore the relationships between the expression of AChR subunits and the severity of facial nerve injury. Methods: Gene and protein expression of AChR subunits in the orbicularis oris and gastrocnemius muscles of male Sprague-Dawley rats was measured by reverse transcription polymerase chain reaction and western blotting, respectively, 1-90 days after graded facial nerve injury. Results: Expression of ε-AChR in the normal orbicularis oris was significantly higher than that in the gastrocnemius, whereas no γ subunit expression was observed. Expression of α, β, δ, ε, and γ subunits was upregulated in the orbicularis oris and was positively correlated with the degree of facial nerve injury. Discussion: We demonstrated the higher expression of the AChR subunits in the orbicularis oris, compared to gastrocnemius muscles. The differences in expression of these subunits between muscles innervated by the facial nerve and somatic nerves and the correlation of AChR subunit expression with the degree of facial nerve injury yield insights into the sensitivity to muscle relaxants during intraoperative facial nerve monitoring.
Collapse
Affiliation(s)
- Jing Xu
- Department of Anesthesiology, Eye and ENT Hospital of Fudan University , Shanghai , China.,Department of Anesthesiology, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Yong Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Shitong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Zhanggang Xue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
4
|
Two Pathways Regulate Differential Expression of nAChRs Between the Orbicularis Oris and Gastrocnemius. J Surg Res 2019; 243:130-142. [PMID: 31174064 DOI: 10.1016/j.jss.2019.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/02/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND We previously demonstrated differential expression of nicotinic acetylcholine receptors (nAChRs) in the facial nerve-innervated orbicularis oris and somatic nerve-innervated gastrocnemius, which contribute to different sensitivities to muscle relaxants. Furthermore, the orbicularis oris exhibits less sensitivity to muscle relaxants after facial nerve injury, which is also related to upregulation of nAChRs. Here, we explored the regulatory mechanism for the different expression patterns. Because the agrin/Lrp4/MuSK/rapsyn and neuregulin1/ErbB signaling pathways are indispensable for maintaining the expression of nAChRs, we examined the activity of these two signaling pathways in gastrocnemius and orbicularis oris innervated by normal or injured facial nerves. MATERIALS AND METHODS A quantitative analysis of these two signaling pathways was realized by immunofluorescence, and immunoprecipitation was applied to detect the level of phosphorylated MuSK in the gastrocnemius and orbicularis oris innervated by normal or injured facial nerves in adult rats. RESULTS ErbB and the phosphorylated MuSK were expressed more in orbicularis oris than in gastrocnemius (P < 0.05). No significant difference was found in the expression of agrin/Lrp4/MuSK/rapsyn. After facial nerve injury, the level of agrin and the percentage of phosphorylated MuSK decreased significantly, although the expression levels of MuSK, rapsyn, and neuregulin1/ErbB were highly upregulated. CONCLUSIONS Differential expression of the neuregulin1/ErbB signaling pathway may account for the different expression patterns of nAChRs at the neuromuscular junctions of the orbicularis oris and gastrocnemius. Overexpression of MuSK and rapsyn may contribute to upregulation of nAChRs after facial nerve injury.
Collapse
|
5
|
Huang Y, Xing Y, Wang H, Chen L, Li S. Differences in pharmacodynamic responses to rocuronium in normal or injured orbicularis oris are associated with expression of acetylcholine receptor subunits. Sci Rep 2017; 7:3238. [PMID: 28607408 PMCID: PMC5468304 DOI: 10.1038/s41598-017-03549-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/02/2017] [Indexed: 01/22/2023] Open
Abstract
Previous research has indicated that differences in sensitivities to muscle relaxants exist between facial nerve- and somatic nerve-innervated muscles. Here, we report that the 50% inhibitory concentration (IC50) values for rocuronium were significantly larger in the normal orbicularis oris than those in the gastrocnemius. Increased IC50 values and reduced twitch tension were observed after facial nerve injury. The normal orbicularis oris had a smaller muscle fiber cross-sectional area (CSA) and a larger ratio of endplate surface area (ESA) to muscle fiber CSA (ESA/CSA), but no difference was found in the density of nicotinic acetylcholine receptor (nAChR) subunits on endplates between normal orbicularis oris and gastrocnemius. Expression of the nAChR α1, β1, δ, ε, and γ subunits increased significantly on the postsynaptic membranes of endplates and extra-junctional muscle membranes after facial nerve injury. Our results suggest that facial nerve-innervated muscle was less sensitive than somatic nerve-innervated muscle, and the mechanisms underlying this result may be related to muscle fiber CSA and the ESA/CSA ratio, but not to the density of nAChR subunits on endplates. Facial nerve injury caused the resistance to neuromuscular blockers and reduced twitch tension, which was related to qualitative, quantitative, and locational changes in nAChR subunits.
Collapse
Affiliation(s)
- Yong Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yian Xing
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianhua Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shitong Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Yu J, Wang M, Liu J, Zhang X, Yang S. Effect of electroacupuncture on the expression of agrin and acetylcholine receptor subtypes in rats with tibialis anterior muscular atrophy induced by sciatic nerve injection injury. Acupunct Med 2017; 35:268-275. [PMID: 28069562 PMCID: PMC5561360 DOI: 10.1136/acupmed-2015-011005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 11/21/2022]
Abstract
Objective To investigate the effects of electroacupuncture (EA) on mRNA and protein expression of agrin, acetylcholine receptor (AChR)-ε and AChR-γ in a rat model of tibialis anterior muscle atrophy induced by sciatic nerve injection injury, and to examine the underlying mechanism of action. Methods Fifty-four adult Sprague-Dawley rats were divided into four groups: healthy control group (CON, n=6); sciatic nerve injury group (SNI, n=24), comprising rats euthanased at 1, 2, 4 and 6 weeks, respectively, after penicillin injection-induced SNI (n=6 each); CON+EA group (n=12), comprising healthy rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA at GB30 and ST36); and SNI+EA group, comprising rats euthanased at 4 and 6 weeks (after 2 and 4 weeks, respectively, of EA). The sciatic nerve functional index (SFI), tibialis anterior muscle weight, muscle fibre cross-sectional area (CSA), and changes in agrin, AChR-ε, and AChR-γ expression levels were analysed. Results Compared with the control group (CON), SNI rats showed decreased SFI. The weight of the tibialis anterior muscle and muscle fibre CSA decreased initially and recovered slightly over time. mRNA/protein expression of agrin and AChR-ε were downregulated and AChR-γ expression was detectable (vs zero expression in the CON/CON+EA groups). There were no significant differences in CON+EA versus CON groups. However, the SNI+EA group exhibited significant improvements compared with the untreated SNI group (p<0.05). Conclusions EA may alleviate tibialis anterior muscle atrophy induced by sciatic nerve injection injury by upregulating agrin and AChR-ε and downregulating AChR-γ.
Collapse
Affiliation(s)
- Jianqi Yu
- Department of Anatomy, Zunyi Medical College, Zunyi, Guizhou, People's Republic of China
| | - Meng Wang
- Department of Anatomy, Zunyi Medical College, Zunyi, Guizhou, People's Republic of China
| | - Junying Liu
- Department of Digestive System, Central Hospital of Zhoukou City, Zhoukou, Henan, People's Republic of China
| | - Xiaoming Zhang
- Department of Anatomy, Zunyi Medical College, Zunyi, Guizhou, People's Republic of China.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shengbo Yang
- Department of Anatomy, Zunyi Medical College, Zunyi, Guizhou, People's Republic of China
| |
Collapse
|
7
|
Olmstead DN, Mesnard-Hoaglin NA, Batka RJ, Haulcomb MM, Miller WM, Jones KJ. Facial nerve axotomy in mice: a model to study motoneuron response to injury. J Vis Exp 2015:e52382. [PMID: 25742324 DOI: 10.3791/52382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The goal of this surgical protocol is to expose the facial nerve, which innervates the facial musculature, at its exit from the stylomastoid foramen and either cut or crush it to induce peripheral nerve injury. Advantages of this surgery are its simplicity, high reproducibility, and the lack of effect on vital functions or mobility from the subsequent facial paralysis, thus resulting in a relatively mild surgical outcome compared to other nerve injury models. A major advantage of using a cranial nerve injury model is that the motoneurons reside in a relatively homogenous population in the facial motor nucleus in the pons, simplifying the study of the motoneuron cell bodies. Because of the symmetrical nature of facial nerve innervation and the lack of crosstalk between the facial motor nuclei, the operation can be performed unilaterally with the unaxotomized side serving as a paired internal control. A variety of analyses can be performed postoperatively to assess the physiologic response, details of which are beyond the scope of this article. For example, recovery of muscle function can serve as a behavioral marker for reinnervation, or the motoneurons can be quantified to measure cell survival. Additionally, the motoneurons can be accurately captured using laser microdissection for molecular analysis. Because the facial nerve axotomy is minimally invasive and well tolerated, it can be utilized on a wide variety of genetically modified mice. Also, this surgery model can be used to analyze the effectiveness of peripheral nerve injury treatments. Facial nerve injury provides a means for investigating not only motoneurons, but also the responses of the central and peripheral glial microenvironment, immune system, and target musculature. The facial nerve injury model is a widely accepted peripheral nerve injury model that serves as a powerful tool for studying nerve injury and regeneration.
Collapse
Affiliation(s)
- Deborah N Olmstead
- Anatomy and Cell Biology, Indiana University School of Medicine; Research and Development Services, Richard L. Roudebush VA Medical Center
| | | | - Richard J Batka
- Anatomy and Cell Biology, Indiana University School of Medicine; Research and Development Services, Richard L. Roudebush VA Medical Center
| | - Melissa M Haulcomb
- Anatomy and Cell Biology, Indiana University School of Medicine; Research and Development Services, Richard L. Roudebush VA Medical Center
| | - Whitney M Miller
- Anatomy and Cell Biology, Indiana University School of Medicine; Research and Development Services, Richard L. Roudebush VA Medical Center
| | - Kathryn J Jones
- Anatomy and Cell Biology, Indiana University School of Medicine; Research and Development Services, Richard L. Roudebush VA Medical Center;
| |
Collapse
|
8
|
Huang L, Yang M, Chen L, Li S. Resistance to rocuronium of rat diaphragm as compared with limb muscles. J Surg Res 2014; 192:471-9. [DOI: 10.1016/j.jss.2014.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/03/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
9
|
Xing Y, Chen L, Li S. Evoked electromyography to rocuronium in orbicularis oris and gastrocnemius in facial nerve injury in rabbits. J Surg Res 2013; 185:198-205. [PMID: 23809181 DOI: 10.1016/j.jss.2013.05.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/15/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Muscles innervated by the facial nerve show different sensitivities to muscle relaxants than muscles innervated by somatic nerves, especially in the presence of facial nerve injury. We compared the evoked electromyography (EEMG) response of orbicularis oris and gastrocnemius in with and without a non-depolarizing muscle relaxant in a rabbit model of graded facial nerve injury. METHODS Differences in EEMG response and inhibition by rocuronium were measured in the orbicularis oris and gastrocnemius muscles 7 to 42 d after different levels of facial nerve crush injuries in adult rabbits. RESULTS Baseline EEMG of orbicularis oris was significantly smaller than those of the gastrocnemius. Gastrocnemius was more sensitive to rocuronium than the facial muscles (P < 0.05). Baseline EEMG and EEMG amplitude of orbicularis oris in the presence of rocuronium was negatively correlated with the magnitude of facial nerve injury but the sensitivity to rocuronium was not. No significant difference was found in the onset time and the recovery time of rocuronium among gastrocnemius and normal or damaged facial muscles. CONCLUSIONS Muscles innervated by somatic nerves are more sensitive to rocuronium than those innervated by the facial nerve, but while facial nerve injury reduced EEMG responses, the sensitivity to rocuronium is not altered. Partial neuromuscular blockade may be a suitable technique for conducting anesthesia and surgery safely when EEMG monitoring is needed to preserve and protect the facial nerve. Additional caution should be used if there is a risk of preexisting facial nerve injury.
Collapse
Affiliation(s)
- Yian Xing
- Department of Anesthesiology, The Affiliated First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | |
Collapse
|