1
|
Vlocskó M, Piffkó J, Janovszky Á. Intraoperative Assessment of Resection Margin in Oral Cancer: The Potential Role of Spectroscopy. Cancers (Basel) 2023; 16:121. [PMID: 38201548 PMCID: PMC10777979 DOI: 10.3390/cancers16010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In parallel with the increasing number of oncological cases, the need for faster and more efficient diagnostic tools has also appeared. Different diagnostic approaches are available, such as radiological imaging or histological staining methods, but these do not provide adequate information regarding the resection margin, intraoperatively, or are time consuming. The purpose of this review is to summarize the current knowledge on spectrometric diagnostic modalities suitable for intraoperative use, with an emphasis on their relevance in the management of oral cancer. The literature agrees on the sensitivity, specificity, and accuracy of spectrometric diagnostic modalities, but further long-term prospective, multicentric clinical studies are needed, which may standardize the intraoperative assessment of the resection margin and the use of real-time spectroscopic approaches.
Collapse
Affiliation(s)
| | | | - Ágnes Janovszky
- Department of Oral and Maxillofacial Surgery, Albert Szent-Györgyi Medical School, University of Szeged, Kálvária 57, H-6725 Szeged, Hungary; (M.V.); (J.P.)
| |
Collapse
|
2
|
Katz L, Kiyota T, Woolman M, Wu M, Pires L, Fiorante A, Ye LA, Leong W, Berman HK, Ghazarian D, Ginsberg HJ, Das S, Aman A, Zarrine-Afsar A. Metabolic Lipids in Melanoma Enable Rapid Determination of Actionable BRAF-V600E Mutation with Picosecond Infrared Laser Mass Spectrometry in 10 s. Anal Chem 2023; 95:14430-14439. [PMID: 37695851 DOI: 10.1021/acs.analchem.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Rapid molecular profiling of biological tissues with picosecond infrared laser mass spectrometry (PIRL-MS) has enabled the detection of clinically important histologic types and molecular subtypes of human cancers in as little as 10 s of data collection and analysis time. Utilizing an engineered cell line model of actionable BRAF-V600E mutation, we observed statistically significant differences in 10 s PIRL-MS molecular profiles between BRAF-V600E and BRAF-wt cells. Multivariate statistical analyses revealed a list of mass-to-charge (m/z) values most significantly responsible for the identification of BRAF-V600E mutation status in this engineered cell line that provided a highly controlled testbed for this observation. These metabolites predicted BRAF-V600E expression in human melanoma cell lines with greater than 98% accuracy. Through chromatography and tandem mass spectrometry analysis of cell line extracts, a 30-member "metabolite array" was characterized for determination of BRAF-V600E expression levels in subcutaneous melanoma xenografts with an average sensitivity and specificity of 95.6% with 10 s PIRL-MS analysis. This proof-of-principle work warrants a future large-scale study to identify a metabolite array for 10 s determination of actionable BRAF-V600E mutation in human tissue to guide patient care.
Collapse
Affiliation(s)
- Lauren Katz
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
| | - Michael Woolman
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Megan Wu
- Peter Gilgan Centre for Research and Learning & Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Layla Pires
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Alexa Fiorante
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Lan Anna Ye
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Wey Leong
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Hal K Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto and the Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | - Danny Ghazarian
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Howard J Ginsberg
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Sixth Floor, Toronto, ON M5S 1A8, Canada
| | - Sunit Das
- Peter Gilgan Centre for Research and Learning & Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Avenue, Suite 510, Toronto, ON M5G 0A3, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Arash Zarrine-Afsar
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
3
|
Katz L, Woolman M, Kiyota T, Pires L, Zaidi M, Hofer SO, Leong W, Wouters BG, Ghazarian D, Chan AW, Ginsberg HJ, Aman A, Wilson BC, Berman HK, Zarrine-Afsar A. Picosecond Infrared Laser Mass Spectrometry Identifies a Metabolite Array for 10 s Diagnosis of Select Skin Cancer Types: A Proof-of-Concept Feasibility Study. Anal Chem 2022; 94:16821-16830. [DOI: 10.1021/acs.analchem.2c03918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lauren Katz
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Layla Pires
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Mark Zaidi
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Stefan O.P. Hofer
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery and Surgical Oncology, University Health Network, University of Toronto. Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Wey Leong
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto Ontario M5G 2C1, Canada
| | - Brad G. Wouters
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Danny Ghazarian
- Department of Laboratory Medicine and Pathobiology, University of Toronto and University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - An-Wen Chan
- Division of Dermatology, Department of Medicine, University of Toronto, Canada and Women’s College Research Institute, Women’s College Hospital, 76 Grenville St, Toronto, Ontario M5S 1B2, Canada
| | - Howard J. Ginsberg
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, Ontario M5G 0A3, Canada
- Leslie Dan, Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, Ontario M5S 3M2, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Hal K. Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
4
|
Ulmschneider C, Baker J, Vize I, Jiang J. Phonosurgery: A review of current methodologies. World J Otorhinolaryngol Head Neck Surg 2021; 7:344-353. [PMID: 34632350 PMCID: PMC8486699 DOI: 10.1016/j.wjorl.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 01/11/2023] Open
Abstract
Cold-steel has served as the gold standard modality of phonosurgery for most of its history. Surgical laser technology has revolutionized this field with its wide use of applications. Additional modalities have also been introduced such as coagulative lasers, photodynamic therapy, and cryotherapy. This review will compare the surgical modalities of cold steel, surgical lasers, phototherapy and cryotherapy. The mechanism of action, tissue effects and typical uses will be addressed for each modality.
Collapse
Affiliation(s)
| | - Jeffrey Baker
- University of Wisconsin Madison School of Medicine and Public Health, United States
| | - Ian Vize
- University of Wisconsin Madison School of Medicine and Public Health, United States
| | - Jack Jiang
- University of Wisconsin Madison School of Medicine and Public Health, United States
| |
Collapse
|
5
|
Schluter M, Fuh MM, Maier S, Otte C, Kiani P, Hansen NO, Dwayne Miller RJ, Schluter H, Schlaefer A. Towards OCT-Navigated Tissue Ablation with a Picosecond Infrared Laser (PIRL) and Mass-Spectrometric Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:158-161. [PMID: 31945868 DOI: 10.1109/embc.2019.8856808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Medical lasers are commonly used in interventions to ablate tumor tissue. Recently, the picosecond infrared laser has been introduced, which greatly decreases damaging of surrounding healthy tissue. Further, its ablation plume contains intact biomolecules which can be collected and analyzed by mass spectrometry. This allows for a specific chracterization of the tissue. For a precise treatment, however, a suitable guidance is needed. Further, spatial information is required if the tissue is to be characterized at different parts in the ablated area. Therefore, we propose a system which employs optical coherence tomography as the guiding imaging modality. We describe a prototypical system which provides automatic ablation of areas defined in the image data. For this purpose, we use a calibration with a robot which drives the laser fiber and collects the arising plume. We demonstrate our system on porcine tissue samples.
Collapse
|
6
|
Abstract
Objective: Using a contact-free laser technique for stapedotomy reduces the risk of mechanical damage of the stapes footplate. However, the risk of inner ear dysfunction due to thermal, acoustic, or direct damage has still not been solved. The objective of this study was to describe the first experiences in footplate perforation in cadaver tissue performed by the novel Picosecond-Infrared-Laser (PIRL), allowing a tissue preserving ablation. Patients and Intervention: Three human cadaver stapes were perforated using a fiber-coupled PIRL. The results were compared with footplate perforations performed with clinically applied Er:YAG laser. Therefore, two different laser energies for the Er:YAG laser (30 and 60 mJ) were used for footplate perforation of three human cadaver stapes each. Main Outcome Measure: Comparisons were made using histology and environmental scanning electron microscopy (ESEM) analysis. Results: The perforations performed by the PIRL (total energy: 640–1070 mJ) revealed a precise cutting edge with an intact trabecular bone structure and no considerable signs of coagulation. Using the Er:YAG-Laser with a pulse energy of 30 mJ (total energy: 450–600 mJ), a perforation only in the center of the ablation zone was possible, whereas with a pulse energy of 60 mJ (total energy: of 195–260 mJ) the whole ablation zone was perforated. For both energies, the cutting edge appeared irregular with trabecular structure of the bone only be conjecturable and signs of superficial carbonization. Conclusion: The microscopic results following stapes footplate perforation suggest a superiority of the PIRL in comparison to the Er:YAG laser regarding the precision and tissue preserving ablation.
Collapse
|
7
|
Dapic I, Baljeu-Neuman L, Uwugiaren N, Kers J, Goodlett DR, Corthals GL. Proteome analysis of tissues by mass spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:403-441. [PMID: 31390493 DOI: 10.1002/mas.21598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Tissues and biofluids are important sources of information used for the detection of diseases and decisions on patient therapies. There are several accepted methods for preservation of tissues, among which the most popular are fresh-frozen and formalin-fixed paraffin embedded methods. Depending on the preservation method and the amount of sample available, various specific protocols are available for tissue processing for subsequent proteomic analysis. Protocols are tailored to answer various biological questions, and as such vary in lysis and digestion conditions, as well as duration. The existence of diverse tissue-sample protocols has led to confusion in how to choose the best protocol for a given tissue and made it difficult to compare results across sample types. Here, we summarize procedures used for tissue processing for subsequent bottom-up proteomic analysis. Furthermore, we compare protocols for their variations in the composition of lysis buffers, digestion procedures, and purification steps. For example, reports have shown that lysis buffer composition plays an important role in the profile of extracted proteins: the most common are tris(hydroxymethyl)aminomethane, radioimmunoprecipitation assay, and ammonium bicarbonate buffers. Although, trypsin is the most commonly used enzyme for proteolysis, in some protocols it is supplemented with Lys-C and/or chymotrypsin, which will often lead to an increase in proteome coverage. Data show that the selection of the lysis procedure might need to be tissue-specific to produce distinct protocols for individual tissue types. Finally, selection of the procedures is also influenced by the amount of sample available, which range from biopsies or the size of a few dozen of mm2 obtained with laser capture microdissection to much larger amounts that weight several milligrams.
Collapse
Affiliation(s)
- Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | | | - Naomi Uwugiaren
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Jesper Kers
- Department of Pathology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - David R Goodlett
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- University of Maryland, 20N. Pine Street, Baltimore, MD 21201
| | - Garry L Corthals
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Mass spectrometry-based intraoperative tumor diagnostics. Future Sci OA 2019; 5:FSO373. [PMID: 30906569 PMCID: PMC6426168 DOI: 10.4155/fsoa-2018-0087] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023] Open
Abstract
In surgical oncology, decisions regarding the amount of tissue to be removed can have important consequences: the decision between preserving sufficient healthy tissue and eliminating all tumor cells is one to be made intraoperatively. This review discusses the latest technical innovations for a more accurate tumor margin localization based on mass spectrometry. Highlighting the latest mass spectrometric inventions, real-time diagnosis seems to be within reach; focusing on the intelligent knife, desorption electrospray ionization, picosecond infrared laser and MasSpec pen, the current technical status is evaluated critically concerning its scientific and medical practice.
Collapse
|
9
|
Krutilin A, Maier S, Schuster R, Kruber S, Kwiatkowski M, Robertson WD, Hansen NO, Miller RJD, Schlüter H. Sampling of Tissues with Laser Ablation for Proteomics: Comparison of Picosecond Infrared Laser and Microsecond Infrared Laser. J Proteome Res 2019; 18:1451-1457. [PMID: 30669834 DOI: 10.1021/acs.jproteome.9b00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It was recently shown that sampling of tissues with a picosecond infrared laser (PIRL) for analysis with bottom-up proteomics is advantageous compared to mechanical homogenization. Because the cold ablation of tissues with PIRL irradiation is soft, proteins remain intact and even enzymatic activities are detectable in PIRL homogenates. In contrast, it was observed that irradiation of tissues with a microsecond infrared laser (MIRL) heats the tissue, thereby causing significant damage. In this study, we investigated the question if sampling of tissues with a MIRL for analysis of their proteomes via bottom-up proteomics is possible and how the results are different from sampling of tissues with a PIRL. Comparison of the proteomes of the MIRL and PIRL tissue homogenates showed that the yield of proteins identified by bottom-up proteomics was larger in PIRL homogenates of liver tissue, whereas the yield was higher in MIRL homogenates of muscle tissue, which has a significantly higher content of connective tissue than liver tissue. In the PIRL homogenate of renal tissue, enzymatic activities were detectable, whereas in the corresponding MIRL homogenate, enzymatic activities were absent. In conclusion, MIRL and PIRL pulses are suited for sampling tissues for bottom-up proteomics. If it is important for bottom-up proteomic investigations to inactivate enzymatic activities already in the tissue before its ablation, MIRL tissue sampling is an option, because the proteins in the tissues are denatured and inactivated by the heating of the tissue during irradiation with MIRL irradiation prior to the ablation of the tissue. This heating effect is absent during irradiation of tissue with a PIRL; therefore, sampling of tissues with a PIRL is a choice for purifying enzymes, because their activities are maintained.
Collapse
Affiliation(s)
- Andrey Krutilin
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Stephanie Maier
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Raphael Schuster
- University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| | - Sebastian Kruber
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Marcel Kwiatkowski
- Groningen Research Institute of Pharmacy, Pharmacokinetics, Toxicology and Targeting , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , Netherlands
| | - Wesley D Robertson
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Nils-Owe Hansen
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - R J Dwayne Miller
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany.,Departments of Chemistry and Physics , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , Martinistraße 52 , 20246 Hamburg , Germany
| |
Collapse
|
10
|
Ischenko AA, Weber PM, Miller RJD. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem Rev 2017; 117:11066-11124. [DOI: 10.1021/acs.chemrev.6b00770] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anatoly A. Ischenko
- Institute
of Fine Chemical Technologies, Moscow Technological University, Vernadskogo
86, 119571 Moscow, Russia
| | - Peter M. Weber
- Department
of Chemistry, Brown University, 324 Brook Street, 02912 Providence, Rhode Island, United States
| | - R. J. Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments
of Chemistry and Physics, University of Toronto, 80 St. George, M5S 3H6 Toronto, Canada
| |
Collapse
|
11
|
Petersen H, Tavakoli F, Kruber S, Münscher A, Gliese A, Hansen NO, Uschold S, Eggert D, Robertson WD, Gosau T, Sehner S, Kwiatkowski M, Schlüter H, Schumacher U, Knecht R, Miller RJD. Comparative study of wound healing in rat skin following incision with a novel picosecond infrared laser (PIRL) and different surgical modalities. Lasers Surg Med 2016; 48:385-91. [PMID: 26941063 PMCID: PMC5396142 DOI: 10.1002/lsm.22498] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 01/22/2023]
Abstract
Background and Objective As a result of wound healing the original tissue is replaced by dysfunctional scar tissue. Reduced tissue damage during surgical procedures beneficially affects the size of the resulting scar and overall healing time. Thus the choice of a particular surgical instrument can have a significant influence on the postoperative wound healing. To overcome these problems of wound healing we applied a novel picosecond infrared laser (PIRL) system to surgical incisions. Previous studies indicated that negligible thermal, acoustic, or ionization stress effects to the surrounding tissue results in a superior wound healing. Study Design/Materials and Methods Using the PIRL system as a surgical scalpel, we performed a prospective wound healing study on rat skin and assessed its final impact on scar formation compared to the electrosurgical device and cold steel. As for the incisions, 6 full‐thickness, 1‐cm long‐linear skin wounds were created on the dorsum of four rats using the PIRL, an electrosurgical device, and a conventional surgical scalpel, respectively. Rats were euthanized after 21 days of wound healing. The thickness of the subepithelial fibrosis, the depth and the transverse section of the total scar area of each wound were analyzed histologically. Results After 21 days of wound healing the incisions made by PIRL showed minor scar tissue formation as compared to the electrosurgical device and the scalpel. Highly significant differences (P < 0.001) were noted by comparing the electrosurgical device with PIRL and scalpel. The transverse section of the scar area also showed significant differences (P = 0.043) when comparing PIRL (mean: 141.46 mm2; 95%CI: 105.8–189.0 mm2) with scalpel incisions (mean: 206.82 mm2; 95%CI: 154.8–276.32 mm2). The subepithelial width of the scars that resulted from using the scalpel were 1.3 times larger than those obtained by using the PIRL (95%CI: 1.0–1.6) though the difference was not significant (P < 0.083). Conclusions The hypothesis that PIRL results in minimal scar formation with improved cosmetic outcomes was positively verified. In particular the resection of skin tumors or pathological scars, such as hypertrophic scars or keloids, are promising future fields of PIRL application. Lasers Surg. Med. 48:385–391, 2016. © 2016 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hannes Petersen
- Department of Otorhinolaryngology, Head and Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Fatemeh Tavakoli
- Department of Otorhinolaryngology, Head and Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Sebastian Kruber
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, Head and Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Alexandra Gliese
- Department of Otorhinolaryngology, Head and Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Nils-Owe Hansen
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Stephanie Uschold
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Dennis Eggert
- Heinrich-Pette-Institute, Leibnitz Institute of Experimental Virology, Hamburg, 20246, Germany
| | - Wesley D Robertson
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Tobias Gosau
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Susanne Sehner
- Department of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Marcel Kwiatkowski
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Hartmut Schlüter
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Rainald Knecht
- Department of Otorhinolaryngology, Head and Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| |
Collapse
|
12
|
Ren L, Robertson WD, Reimer R, Heinze C, Schneider C, Eggert D, Truschow P, Hansen NO, Kroetz P, Zou J, Miller RJD. Towards instantaneous cellular level bio diagnosis: laser extraction and imaging of biological entities with conserved integrity and activity. NANOTECHNOLOGY 2015; 26:284001. [PMID: 26111866 DOI: 10.1088/0957-4484/26/28/284001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The prospect for spatial imaging with mass spectroscopy at the level of the cell requires new means of cell extraction to conserve molecular structure. To this aim, we demonstrate a new laser extraction process capable of extracting intact biological entities with conserved biological function. The method is based on the recently developed picosecond infrared laser (PIRL), designed specifically to provide matrix-free extraction by selectively exciting the water vibrational modes under the condition of ultrafast desorption by impulsive vibrational excitation (DIVE). The basic concept is to extract the constituent protein structures on the fastest impulsive limit for ablation to avoid excessive thermal heating of the proteins and to use strongly resonant 1-photon conditions to avoid multiphoton ionization and degradation of the sample integrity. With various microscope imaging and biochemical analysis methods, nanoscale single protein molecules, viruses, and cells in the ablation plume are found to be morphologically and functionally identical with their corresponding controls. This method provides a new means to resolve chemical activity within cells and is amenable to subcellular imaging with near-field approaches. The most important finding is the conserved nature of the extracted biological material within the laser ablation plume, which is fully consistent with in vivo structures and characteristics.
Collapse
Affiliation(s)
- L Ren
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Linke SJ, Ren L, Frings A, Steinberg J, Wöllmer W, Katz T, Reimer R, Hansen NO, Jowett N, Richard G, Dwayne Miller RJ. [Perspectives of laser-assisted keratoplasty: current overview and first preliminary results with the picosecond infrared laser (λ = 3 µm)]. Ophthalmologe 2015; 111:523-30. [PMID: 24942118 DOI: 10.1007/s00347-013-2995-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND This article provides a review of the current state of laser-assisted keratoplasty and describes a first proof of concept study to test the feasibility of a new mid-infrared (MIR) picosecond laser to perform applanation-free corneal trephination. METHODS The procedure is based on a specially adapted laser system (PIRL-HP2-1064 OPA-3000, Attodyne, Canada) which works with a wavelength of 3,000 ± 90 nm, a pulse duration of 300 ps and a repetition rate of 1 kHz. The picosecond infrared laser (PIRL) beam is delivered to the sample by a custom-made optics system with an implemented scanning mechanism. Corneal specimens were mounted on an artificial anterior chamber and subsequent trephination was performed with the PIRL under stable intraocular pressure conditions. RESULTS A defined corneal ablation pattern, e.g. circular, linear, rectangular or disc-shaped, can be selected and its specific dimensions are defined by the user. Circular and linear ablation patterns were employed for the incisions in this study. Linear and circular penetrating PIRL incisions were examined by macroscopic inspection, histology, confocal microscopy and environmental scanning electron microscopy (ESEM) for characterization of the incisional quality. Using PIRL reproducible and stable incisions could be made in human and porcine corneal samples with minimal damage to the surrounding tissue. CONCLUSION The PIRL laser radiation in the mid-infrared spectrum with a wavelength of 3 µm is exactly tuned to one of the dominant vibrational excitation bands of the water molecule, serves as an effective tool for applanation-free corneal incision and might broaden the armamentarium of corneal transplant surgery.
Collapse
Affiliation(s)
- S J Linke
- Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Deutschland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A new technology for applanation free corneal trephination: the picosecond infrared laser (PIRL). PLoS One 2015; 10:e0120944. [PMID: 25781907 PMCID: PMC4363595 DOI: 10.1371/journal.pone.0120944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
The impact of using a Femtosecond laser on final functional results of penetrating keratoplasty is low. The corneal incisions presented here result from laser ablations with ultrafast desorption by impulsive vibrational excitation (DIVE). The results of the current study are based on the first proof-of-principle experiments using a mobile, newly introduced picosecond infrared laser system, and indicate that wavelengths in the mid-infrared range centered at 3 μm are efficient for obtaining applanation-free deep cuts on porcine corneas.
Collapse
|
15
|
Böttcher A, Kucher S, Knecht R, Jowett N, Krötz P, Reimer R, Schumacher U, Anders S, Münscher A, Dalchow CV, Miller RJD. Reduction of thermocoagulative injury via use of a picosecond infrared laser (PIRL) in laryngeal tissues. Eur Arch Otorhinolaryngol 2015; 272:941-948. [PMID: 25575843 DOI: 10.1007/s00405-015-3501-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/03/2015] [Indexed: 11/24/2022]
Abstract
The carbon dioxide (CO2) laser is routinely used in glottic microsurgery for the treatment of benign and malignant disease, despite significant collateral thermal damage secondary to photothermal vaporization without thermal confinement. Subsequent tissue response to thermal injury involves excess collagen deposition resulting in scarring and functional impairment. To minimize collateral thermal injury, short-pulse laser systems such as the microsecond pulsed erbium:yttrium-aluminium-garnet (Er:YAG) laser and picosecond infrared laser (PIRL) have been developed. This study compares incisions made in ex vivo human laryngeal tissues by CO2 and Er:YAG lasers versus PIRL using light microscopy, environmental scanning electron microscopy (ESEM), and infrared thermography (IRT). In comparison to the CO2 and Er:YAG lasers, PIRL incisions showed significantly decreased mean epithelial (59.70 µm) and subepithelial (22.15 µm) damage zones (p < 0.05). Cutting gaps were significantly narrower for PIRL (133.70 µm) compared to Er:YAG and CO2 lasers (p < 0.05), which were more than 5 times larger. ESEM revealed intact collagen fibers along PIRL cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 and Er:YAG laser incisions. IRT demonstrated median temperature rise of 4.1 K in PIRL vocal fold incisions, significantly less than for Er:YAG laser cuts (171.85 K; p < 0.001). This study has shown increased cutting precision and reduced lateral thermal damage zones for PIRL ablation in comparison to conventional CO2 and Er:YAG lasers in human glottis and supraglottic tissues.
Collapse
Affiliation(s)
- Arne Böttcher
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Otorhinolaryngology, Head and Neck Surgery, Charité-University Medical Center Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Stanislav Kucher
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Prosthetic Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainald Knecht
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathan Jowett
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otolaryngology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA, USA
| | - Peter Krötz
- Atomically Resolved Dynamics Division, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Rudolph Reimer
- Leibniz Institute for Experimental Virology, Heinrich Pette Institute, University of Hamburg, Hamburg, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Anders
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten V Dalchow
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R J Dwayne Miller
- Atomically Resolved Dynamics Division, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| |
Collapse
|
16
|
Jowett N, Wöllmer W, Reimer R, Zustin J, Schumacher U, Wiseman PW, Mlynarek AM, Böttcher A, Dalchow CV, Lörincz BB, Knecht R, Miller RJD. Bone ablation without thermal or acoustic mechanical injury via a novel picosecond infrared laser (PIRL). Otolaryngol Head Neck Surg 2013; 150:385-93. [PMID: 24376121 DOI: 10.1177/0194599813517213] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVE A precise means to cut bone without significant thermal or mechanical injury has thus far remained elusive. A novel non-ionizing ultrafast pulsed picosecond infrared laser (PIRL) may provide the solution. Tissue ablation with the PIRL occurs via a photothermal process with thermal and stress confinement, resulting in efficient material ejection greatly enhanced through front surface spallation photomechanical effects. By comparison, the Er:YAG laser (EYL) ablates via photothermal and cavitation-induced photomechanical effects without thermal or acoustic confinement, leading to significant collateral tissue injury. This study compared PIRL and EYL bone ablation by infrared thermography (IRT), environmental scanning electron microscopy (ESEM), and histology. STUDY DESIGN Prospective, comparative, ex vivo animal model. SETTING Optics laboratory. SUBJECTS AND METHODS Ten circular area defects were ablated in ex vivo chicken humeral cortex using PIRL and EYL at similar average power (~70 mW) under IRT. Following fixation, ESEM and undecalcified light microscopy images were obtained and examined for signs of cellular injury. RESULTS Peak rise in surface temperature was negligible and lower for PIRL (1.56 °C; 95% CI, 0.762-2.366) compared to EYL ablation (12.99 °C; 95% CI, 12.189-13.792) (P < .001). ESEM and light microscopy demonstrated preserved cortical microstructure following PIRL ablation in contrast to diffuse thermal injury seen with EYL ablation. Microfractures were not observed. CONCLUSION Ablation of cortical bone using the PIRL generates negligible and significantly less heat than EYL ablation while preserving cortical microstructure. This novel laser has great potential in advancing surgical techniques where precision osseous manipulation is required.
Collapse
Affiliation(s)
- Nathan Jowett
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Böttcher A, Jowett N, Kucher S, Reimer R, Schumacher U, Knecht R, Wöllmer W, Münscher A, Dalchow CV. Use of a microsecond Er:YAG laser in laryngeal surgery reduces collateral thermal injury in comparison to superpulsed CO2 laser. Eur Arch Otorhinolaryngol 2013; 271:1121-8. [DOI: 10.1007/s00405-013-2761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|