1
|
Schraivogel S, Weder S, Mantokoudis G, Caversaccio M, Wimmer W. Predictive Models for Radiation-Free Localization of Cochlear Implants' Most Basal Electrode Using Impedance Telemetry. IEEE Trans Biomed Eng 2025; 72:1453-1464. [PMID: 40030461 DOI: 10.1109/tbme.2024.3509527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
OBJECTIVE Ensuring the correct positioning of the electrode array during cochlear implant surgery is crucial for achieving optimal results. Electrical impedance measurements have recently emerged as a promising alternative to radiological imaging for electrode localization after surgery. This study aims to assess the performance of various machine learning algorithms to regress electrode locations using impedance telemetry. METHODS We conducted a comprehensive performance analysis on a selection of different models and features in an evaluation dataset of 118 cases. A final evaluation was performed on a hold-out dataset consisting of 13 cases. All cases used the same lateral wall electrode array with a length of . Model performance was benchmarked against existing models, emphasizing those previously published. RESULTS The best-performing model for predicting linear insertion depth (Extremely Randomized Trees) achieved a mean absolute error of (mean standard deviation) using leave-one-out cross-validation. We further reviewed the models in terms of feature importance and sensitivity to improve their interpretability and reliability. The gradient direction of the impedance matrix was found as one of the most important features. CONCLUSION Our results demonstrate that our machine learning approach is superior to previous models and has potential for use in routine clinical practice. In future studies, it needs to be confirmed that the models can generalize to other, i.e., shorter or longer, electrode arrays. SIGNIFICANCE The presented method for localizing implanted electrode contacts could also be relevant for neural prostheses with similar boundary conditions, such as vestibular implants.
Collapse
|
2
|
Radomska K, Talar M, Haber K, Mierzwińska-Dolny P, Fishman AJ, Mierzwiński J. Transimpedance Matrix Measurement (TIM) Parameters Evaluation for the Assessment of Cochlear Implant Electrode Placement and Modiolar Proximity in Children. Biomedicines 2025; 13:319. [PMID: 40002732 PMCID: PMC11852905 DOI: 10.3390/biomedicines13020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Introduction: Transimpedance matrix measurement (TIM) is an electrophysiological measurement protocol of the impedance patterns of electrode contacts within the cochlea. Several studies have reported that TIM is an effective tool for the identification of abnormal electrode array placement. However, the normative values for properly inserted electrodes, as well as correlation of the TIM patterns with the electrode position, are not completely determined. Objectives: The first aim of this study is to establish normative values of TIM measurements obtained in children with proper electrode array insertion and tip fold-over, with proper inner ear anatomy and in congenital anomalies. The second aim of this study is to compare TIM measurements in Slim Modiolar (SM) and in Contour Advance (CA) electrodes, as their position is different according to the modiolus proximity. Methods: A total of 55 pediatric patients were included in the study and underwent cochlear implantation. 62 intraoperative measurements were conducted in this group-50 in children with normal inner ear anatomy and 12 in children with inner ear malformations. After each implantation, a plain x-ray was obtained. Results: There were clear statistically significant differences in TIM patterns in patients where electrode fold-over was confirmed and between SM and CA electrodes. Conclusions: TIM is a promising technique for intraoperative analysis of electrode placement. TIM patterns differ and correlate consistently with the different models of array implanted. This study is the first to report TIM patterns observed in children with normal inner ear anatomy and in inner ear malformations.
Collapse
Affiliation(s)
- Katarzyna Radomska
- Department of Otolaryngology, Pomeranian University of Medicine, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Marcin Talar
- Department of Otolaryngology, Pomeranian University of Medicine, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Medicus Sp. z o.o., pl. Strzelecki 24, 50-224 Wrocław, Poland
| | - Karolina Haber
- Pediatric Cochlear Implant Program, Department of Otolaryngology, Audiology and Phoniatrics, Children’s Hospital of Bydgoszcz, Ul. Chodkiewicza 44, 85-667 Bydgoszcz, Poland
- Department of Developmental Age Diseases, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Paulina Mierzwińska-Dolny
- Pediatric Cochlear Implant Program, Department of Otolaryngology, Audiology and Phoniatrics, Children’s Hospital of Bydgoszcz, Ul. Chodkiewicza 44, 85-667 Bydgoszcz, Poland
| | - Andrew J. Fishman
- Pediatric Cochlear Implant Program, Department of Otolaryngology, Audiology and Phoniatrics, Children’s Hospital of Bydgoszcz, Ul. Chodkiewicza 44, 85-667 Bydgoszcz, Poland
- Department of ORL, Military Medical Academy, 11000 Belgrade, Serbia
- Department of Otolaryngology, University of Missouri, Columbia, MO 65211, USA
| | - Józef Mierzwiński
- Pediatric Cochlear Implant Program, Department of Otolaryngology, Audiology and Phoniatrics, Children’s Hospital of Bydgoszcz, Ul. Chodkiewicza 44, 85-667 Bydgoszcz, Poland
- Department of Developmental Age Diseases, Nicolaus Copernicus University, 87-100 Torun, Poland
| |
Collapse
|
3
|
Gottfried TM, Galeazzi P, Föger A, Dejaco D, Tröger A, Fischer N, Innerhofer V, Di Trapani F, Weiss N, Seebacher J, Dierker A, Schmutzhard J. Evaluation of an impedance-based method to monitor the insertion of the electrode array during cochlear implantation. Eur Arch Otorhinolaryngol 2024; 281:4121-4131. [PMID: 38564010 PMCID: PMC11266372 DOI: 10.1007/s00405-024-08584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Cochlear implantation is a prevalent remedy for severe-to-profound hearing loss. Optimising outcomes and hearing preservation, and minimising insertion trauma, require precise electrode placement. Objective monitoring during the insertion process can provide valuable insights and enhance surgical precision. This study assesses the feasibility and performance of an impedance-based method for monitoring electrode insertion, compared to the surgeon's feedback. METHODS The study utilised the Insertion Monitoring Tool (IMT) research software, allowing for real-time measurement of impedance and evoked compound action potential (eCAP) during electrode insertion in 20 patient implantations. This enabled an impedance-based method to continuously assess the status of each electrode during the insertion process. The feasibility and performance was evaluated and compared to the surgeon's feedback approach. eCAP measurements focused merely on feasibility without searching specific responses. RESULTS The IMT demonstrated feasibility in measuring real-time impedances and eCAP during the insertion of the electrode array. The impedance-based method exhibited potential for accurately monitoring the insertion depth with a high success rate. However, further development is needed to improve the number of usable contacts. CONCLUSIONS Objective monitoring with the impedance-based method shows promise as a valuable tool to enhance the precision of cochlear implant electrode insertion respecting insertion distance estimation. The IMT research software proved feasible in recording real-time impedances and eCAP during electrode insertion. While this impedance-based method exhibits high success rates, further improvements are required to optimise the number of usable contacts. This study highlights the potential of objective monitoring techniques to enhance cochlear implantation outcomes.
Collapse
Affiliation(s)
- Timo M Gottfried
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Tyrol, Austria
| | - Pablo Galeazzi
- MED-EL Medical Electronics, Worldwide Headquarters, Fürstenweg 77a, Innsbruck, Tyrol, Austria
| | - Aline Föger
- MED-EL Medical Electronics, Worldwide Headquarters, Fürstenweg 77a, Innsbruck, Tyrol, Austria
| | - Daniel Dejaco
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Tyrol, Austria
| | - Andrea Tröger
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Tyrol, Austria
| | - Natalie Fischer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Tyrol, Austria
| | - Veronika Innerhofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Tyrol, Austria
| | - Francesco Di Trapani
- MED-EL Medical Electronics, Worldwide Headquarters, Fürstenweg 77a, Innsbruck, Tyrol, Austria
| | - Nora Weiss
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Bochum, North Rhine-Westphalia, Bleichstraße 15, 44787, Bochum, Germany
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Josef Seebacher
- Departement of Hearing, Speech and Voice Disorders, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Tyrol, Austria
| | - Angelika Dierker
- MED-EL Medical Electronics, Worldwide Headquarters, Fürstenweg 77a, Innsbruck, Tyrol, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstr. 35, 6020, Innsbruck, Tyrol, Austria.
| |
Collapse
|
4
|
Schraivogel S, Aebischer P, Wagner F, Weder S, Mantokoudis G, Caversaccio M, Wimmer W. Postoperative Impedance-Based Estimation of Cochlear Implant Electrode Insertion Depth. Ear Hear 2023; 44:1379-1388. [PMID: 37157125 PMCID: PMC10583924 DOI: 10.1097/aud.0000000000001379] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/01/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES Reliable determination of cochlear implant electrode positions shows promise for clinical applications, including anatomy-based fitting of audio processors or monitoring of electrode migration during follow-up. Currently, electrode positioning is measured using radiography. The primary objective of this study is to extend and validate an impedance-based method for estimating electrode insertion depths, which could serve as a radiation-free and cost-effective alternative to radiography. The secondary objective is to evaluate the reliability of the estimation method in the postoperative follow-up over several months. DESIGN The ground truth insertion depths were measured from postoperative computed tomography scans obtained from the records of 56 cases with an identical lateral wall electrode array. For each of these cases, impedance telemetry records were retrieved starting from the day of implantation up to a maximum observation period of 60 mo. Based on these recordings, the linear and angular electrode insertion depths were estimated using a phenomenological model. The estimates obtained were compared with the ground truth values to calculate the accuracy of the model. RESULTS Analysis of the long-term recordings using a linear mixed-effects model showed that postoperative tissue resistances remained stable throughout the follow-up period, except for the two most basal electrodes, which increased significantly over time (electrode 11: ~10 Ω/year, electrode 12: ~30 Ω/year). Inferred phenomenological models from early and late impedance telemetry recordings were not different. The insertion depth of all electrodes was estimated with an absolute error of 0.9 mm ± 0.6 mm or 22° ± 18° angle (mean ± SD). CONCLUSIONS Insertion depth estimations of the model were reliable over time when comparing two postoperative computed tomography scans of the same ear. Our results confirm that the impedance-based position estimation method can be applied to postoperative impedance telemetry recordings. Future work needs to address extracochlear electrode detection to increase the performance of the method.
Collapse
Affiliation(s)
- Stephan Schraivogel
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Aebischer
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stefan Weder
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marco Caversaccio
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wilhelm Wimmer
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Technical University of Munich, Germany; TUM School of Medicine, Klinikum rechts der Isar, Department of Otorhinolaryngology
| |
Collapse
|
5
|
Hrncirik F, Roberts I, Sevgili I, Swords C, Bance M. Models of Cochlea Used in Cochlear Implant Research: A Review. Ann Biomed Eng 2023; 51:1390-1407. [PMID: 37087541 PMCID: PMC10264527 DOI: 10.1007/s10439-023-03192-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/24/2023]
Abstract
As the first clinically translated machine-neural interface, cochlear implants (CI) have demonstrated much success in providing hearing to those with severe to profound hearing loss. Despite their clinical effectiveness, key drawbacks such as hearing damage, partly from insertion forces that arise during implantation, and current spread, which limits focussing ability, prevent wider CI eligibility. In this review, we provide an overview of the anatomical and physical properties of the cochlea as a resource to aid the development of accurate models to improve future CI treatments. We highlight the advancements in the development of various physical, animal, tissue engineering, and computational models of the cochlea and the need for such models, challenges in their use, and a perspective on their future directions.
Collapse
Affiliation(s)
- Filip Hrncirik
- Cambridge Hearing Group, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Iwan Roberts
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ilkem Sevgili
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Chloe Swords
- Cambridge Hearing Group, Cambridge, UK
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Manohar Bance
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
6
|
Söderqvist S, Sivonen V, Koivisto J, Aarnisalo A, Sinkkonen ST. Spread of the intracochlear electrical field: Implications for assessing electrode array location in cochlear implantation. Hear Res 2023; 434:108790. [PMID: 37196460 DOI: 10.1016/j.heares.2023.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The electrode-generated intracochlear electrical field (EF) spreads widely along the scala tympani surrounded by poorly-conducting tissue and it can be measured with monopolar transimpedance matrix (TIMmp). Bipolar TIM (TIMbp) allows estimations of local potential differences. With TIMmp, the correct alignment of the electrode array can be assessed, and TIMbp may be useful in more subtle evaluations of the electrode array's intracochlear location. In this temporal bone study, we investigated the effect of the cross-sectional scala area (SA) and the electrode-medial-wall distance (EMWD) on both TIMmp and TIMbp using three types of electrode arrays. Also, multiple linear regressions based on the TIMmp and TIMbp measurements were used to estimate the SA and EMWD. Six cadaver temporal bones were consecutively implanted with a lateral-wall electrode array (Slim Straight) and with two different precurved perimodiolar electrode arrays (Contour Advance and Slim Modiolar) for variation in EMWD. The bones were imaged with cone-beam computed tomography with simultaneous TIMmp and TIMbp measurements. The results from imaging and EF measurements were compared. SA increased from apical to basal direction (r = 0.96, p < 0.001). Intracochlear EF peak negatively correlated with SA (r = -0.55, p < 0.001) irrespective of the EMWD. The rate of the EF decay did not correlate with SA but it was faster in the proximity of the medial wall than in more lateral positions (r = 0.35, p < 0.001). For a linear comparison between the EF decaying proportionally to squared distance and anatomic dimensions, a square root of inverse TIMbp was applied and found to be affected by both SA and EMWD (r = 0.44 and r = 0.49, p < 0.001 for both). A regression model confirmed that together TIMmp and TIMbp can be used to estimate both SA and EMWD (R2 = 0.47 and R2 = 0.44, respectively, p < 0.001 for both). In TIMmp, EF peaks grow from basal to apical direction and EF decay is steeper in the proximity of the medial wall than in more lateral positions. Local potentials measured via TIMbp correlate with both SA and EMWD. Altogether, TIMmp and TIMbp can be used to assess the intracochlear and intrascalar position of the electrode array, and they may reduce the need for intra- and postoperative imaging in the future.
Collapse
Affiliation(s)
- Samuel Söderqvist
- Department of Otorhinolaryngology - Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, Helsinki 00130, Finland.
| | - Ville Sivonen
- Department of Otorhinolaryngology - Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, Helsinki 00130, Finland
| | - Juha Koivisto
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Antti Aarnisalo
- Department of Otorhinolaryngology - Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, Helsinki 00130, Finland
| | - Saku T Sinkkonen
- Department of Otorhinolaryngology - Head and Neck Surgery and Tauno Palva Laboratory, Head and Neck Center, Helsinki University Hospital and University of Helsinki, Kasarmikatu 11-13, Helsinki 00130, Finland
| |
Collapse
|
7
|
Robotic pullback technique of a precurved cochlear-implant electrode array using real-time impedance sensing feedback. Int J Comput Assist Radiol Surg 2023; 18:413-421. [PMID: 36331796 DOI: 10.1007/s11548-022-02772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE During traditional insertion of cochlear implant (CI) electrode arrays (EAs), surgeons rely on limited tactile feedback and visualization of the EA entering the cochlea to control the insertion. One insertion approach for precurved EAs involves slightly overinserting the EA and then retracting it slightly to achieve closer hugging of the modiolus. In this work, we investigate whether electrical impedance sensing could be a valuable real-time feedback tool to advise this pullback technique. METHODS Using a to-scale 3D-printed scala tympani model, a robotic insertion tool, and a custom impedance sensing system, we performed experiments to assess the bipolar insertion impedance profiles for a cochlear CI532/632 precurved EA. Four pairs of contacts from the 22 electrode contacts were chosen based on preliminary testing and monitored in real time to halt the robotic insertion once the closest modiolar position had been achieved but prior to when the angular insertion depth (AID) would be reduced. RESULTS In this setting, the open-loop robotic insertion impedance profiles were very consistent between trials. The exit of each contact from the external stylet of this EA was clearly discernible on the impedance profile. In closed-loop experiments using the pullback technique, the average distance from the electrode contacts to the modiolus was reduced without greatly affecting the AID by using impedance feedback in real time to determine when to stop EA retraction. CONCLUSION Impedance sensing, and specifically the access resistance component of impedance, could be a valuable real-time feedback tool in the operating room during CI EA insertion. Future work should more thoroughly analyze the effects of more realistic operating room conditions and inter-patient variability on this technique.
Collapse
|
8
|
Salkim E, Zamani M, Jiang D, Saeed SR, Demosthenous A. Insertion Guidance Based on Impedance Measurements of a Cochlear Electrode Array. Front Comput Neurosci 2022; 16:862126. [PMID: 35814346 PMCID: PMC9260075 DOI: 10.3389/fncom.2022.862126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
The cochlear implantable neuromodulator provides substantial auditory perception to those with severe or profound impaired hearing. Correct electrode array positioning in the cochlea is one of the important factors for quality hearing, and misplacement may lead to additional injury to the cochlea. Visual inspection of the progress of electrode insertion is limited and mainly relies on the surgeon's tactile skills, and there is a need to detect in real-time the electrode array position in the cochlea during insertion. The available clinical measurement presently provides very limited information. Impedance measurement may be used to assist with the insertion of the electrode array. Using computational modeling of the cochlea, and its local tissue layers merging with the associated neuromodulator electrode array parameters, the impedance variations at different insertion depths and the proximities to the cochlea walls have been analyzed. In this study, an anatomical computational model of the temporal region of a patient is used to derive the relationship between impedance variations and the electrode proximity to the cochlea wall and electrode insertion depth. The aim was to examine whether the use of electrode impedance variations can be an effective marker of electrode proximity and electrode insertion depth. The proposed anatomical model simulates the quasi-static electrode impedance variations at different selected points but at considerable computation cost. A much less computationally intensive geometric model (~1/30) provided comparative impedance measurements with differences of <2%. Both use finite element analysis over the entire cross-section area of the scala tympani. It is shown that the magnitude of the impedance varies with both electrode insertion depth and electrode proximity to the adjacent anatomical layers (e.g., cochlea wall). In particular, there is a 1,400% increase when the electrode array is moved very close to the cochlea wall. This may help the surgeon to find the optimal electrode position within the scala tympani by observation of such impedance characteristics. The misplacement of the electrode array within the scala tympani may be eliminated by using the impedance variation metric during electrode array insertion if the results are validated with an experimental study.
Collapse
Affiliation(s)
- Enver Salkim
- Department of Electronic and Electrical Engineering, University College London (UCL), London, United Kingdom
- Department of Electronic and Electrical Engineering, Biomedical Device Technology Group, Muş Alparslan University, Muş, Turkey
- *Correspondence: Enver Salkim
| | - Majid Zamani
- Department of Electronic and Electrical Engineering, University College London (UCL), London, United Kingdom
| | - Dai Jiang
- Department of Electronic and Electrical Engineering, University College London (UCL), London, United Kingdom
| | | | - Andreas Demosthenous
- Department of Electronic and Electrical Engineering, University College London (UCL), London, United Kingdom
| |
Collapse
|
9
|
Real-Time Data-Driven Approach for Prediction and Correction of Electrode Array Trajectory in Cochlear Implantation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cochlear implants provide hearing perception to people with severe to profound hearing loss. The electrode array (EA) inserted during the surgery directly stimulates the hearing nerve, bypassing the acoustic hearing system. The complications during the EA insertion in the inner ear may cause trauma leading to infection, residual hearing loss, and poor speech perception. This work aims to reduce the trauma induced during electrode array insertion process by carefully designing a sensing method, an actuation system, and data-driven control strategy to guide electrode array in scala tympani. Due to limited intra-operative feedback during the insertion process, complex bipolar electrical impedance is used as a sensing element to guide EA in real time. An automated actuation system with three degrees of freedom was used along with a complex impedance meter to record impedance of consecutive electrodes. Prediction of EA direction (medial, middle, and lateral) was carried out by an ensemble of random forest, shallow neural network, and k-nearest neighbour in an offline setting with an accuracy of 86.86%. The trained ensemble was then utilized in vitro for prediction and correction of EA direction in real time in the straight path with an accuracy of 80%. Such a real-time system also has application in other electrode implants and needle and catheter insertion guidance.
Collapse
|
10
|
Leblans M, Sismono F, Vanpoucke F, van Dinther J, Lerut B, Kuhweide R, Offeciers E, Zarowski A. Novel Impedance Measures as Biomarker for Intracochlear Fibrosis. Hear Res 2022; 426:108563. [DOI: 10.1016/j.heares.2022.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
|
11
|
Sijgers L, Huber A, Tabibi S, Grosse J, Roosli C, Boyle P, Koka K, Dillier N, Pfiffner F, Dalbert A. Predicting Cochlear Implant Electrode Placement Using Monopolar, Three-Point and Four-Point Impedance Measurements. IEEE Trans Biomed Eng 2022; 69:2533-2544. [PMID: 35143392 DOI: 10.1109/tbme.2022.3150239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to investigate the relationship between cochlear implant (CI) electrode distances to the cochleas inner wall (the modiolus) and electrical impedance measurements made at the CIs electrode contacts. We introduced a protocol for three-point impedances in which we recorded bipolar impedances in response to monopolar stimulation at a neighboring electrode. We aimed to assess the usability of three-point impedances and two existing CI impedance measurement methods (monopolar and four-point impedances) for predicting electrode positioning during CI insertion. METHODS Impedances were recorded during stepwise CI electrode array insertions in cadaveric human temporal bones. The positioning of the electrodes with respect to the modiolus was assessed at each step using cone beam computed tomography. Linear mixed regression analysis was performed to assess the relationship between the impedances and electrode-modiolar distances. The experimental results were compared to clinical impedance data and to an existing lumped-element model of an implanted CI. RESULTS Three-point and four-point impedances strongly correlated with electrode-modiolar distance. In contrast, monopolar impedances were only minimally affected by changes in electrode positioning with respect to the modiolus. An overall model specificity of 62% was achieved when incorporating all impedance parameters. This specificity could be increased beyond 73% when prior expectations of electrode positioning were incorporated in the model. CONCLUSION Three-point and four-point impedances are promising measures to predict electrode-modiolar distance in real-time during CI insertion. SIGNIFICANCE This work shows how electrical impedance measurements can be used to predict the CIs electrode positioning in a biologically realistic model.
Collapse
|
12
|
Bruns TL, Riojas KE, Labadie RF, Webster RJ. Real-Time Localization of Cochlear-Implant Electrode Arrays Using Bipolar Impedance Sensing. IEEE Trans Biomed Eng 2022; 69:718-724. [PMID: 34379586 PMCID: PMC8918040 DOI: 10.1109/tbme.2021.3104104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Surgeons have no direct objective feedback on cochlear-implant electrode array (EA) positioning during insertion, yet optimal hearing outcomes are contingent on placing the EA as close as feasible to viable neural endings. This paper describes a system to non-invasively determine intracochlear positioning of an EA, without requiring any modifications to existing commercial EAs themselves. METHODS Electrical impedance has been suggested as a way to measure EA proximity to the inner wall of the cochlea that houses auditory nerve endings-the modiolus. In this paper, we extend prior work and demonstrate for the first time the relationship between bipolar access resistance and proximity of the EA to the modiolus (E-M proximity). We also evaluate two methods for producing direct, real-time estimates of E-M proximity from bipolar impedance measurements. RESULTS We show that bipolar access resistance is highly correlated with E-M proximity and can be approximately modeled by a power law function. This one dimensional model is shown to be capable of producing accurate real-time estimates of E-M proximity, but its simplicity also limits the potential for future improvement. To address this challenge, we propose a new prediction approach based on a recurrent neural network, which generated an overall prediction accuracy of 93.7%. CONCLUSION Bipolar access resistance is highly correlated with E-M proximity, and can be used to estimate EA positioning. SIGNIFICANCE This work shows how impedance sensing can be used to localize an EA during insertion into the small, enclosed cochlear environment, without requiring any modifications to existing clinically used EAs.
Collapse
Affiliation(s)
- Trevor L. Bruns
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katherine E. Riojas
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Robert F. Labadie
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J. Webster
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
Robotics, automation, active electrode arrays, and new devices for cochlear implantation: A contemporary review. Hear Res 2022; 414:108425. [PMID: 34979455 DOI: 10.1016/j.heares.2021.108425] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023]
Abstract
In the last two decades, cochlear implant surgery has evolved into a minimally invasive, hearing preservation surgical technique. The devices used during surgery have benefited from technological advances that have allowed modification and possible improvement of the surgical technique. Robotics has recently gained popularity in otology as an effective tool to overcome the surgeon's limitations such as tremor, drift and accurate force control feedback in laboratory testing. Cochlear implantation benefits from robotic assistance in several steps during the surgical procedure: (i) during the approach to the middle ear by automated mastoidectomy and posterior tympanotomy or through a tunnel from the postauricular skin to the middle ear (i.e. direct cochlear access); (ii) a minimally invasive cochleostomy by a robot-assisted drilling tool; (iii) alignment of the correct insertion axis on the basal cochlear turn; (iv) insertion of the electrode array with a motorized insertion tool. In recent years, the development of bone-attached parallel robots and image-guided surgical robotic systems has allowed the first successful cochlear implantation procedures in patients via a single hole drilled tunnel. Several other robotic systems, new materials, sensing technologies applied to the electrodes, and smart devices have been developed, tested in experimental models and finally some have been used in patients with the aim of reducing trauma in cochleostomy, and permitting slow and more accurate insertion of the electrodes. Despite the promising results in laboratory tests in terms of minimal invasiveness, reduced trauma and better hearing preservation, so far, no clinical benefits on residual hearing preservation or better speech performance have been demonstrated. Before these devices can become the standard approach for cochlear implantation, several points still need to be addressed, primarily cost and duration of the procedure. One can hope that improvement in the cost/benefit ratio will expand the technology to every cochlear implantation procedure. Laboratory research and clinical studies on patients should continue with the aim of making intracochlear implant insertion an atraumatic and reversible gesture for total preservation of the inner ear structure and physiology.
Collapse
|
14
|
Hafeez N, Du X, Boulgouris N, Begg P, Irving R, Coulson C, Tourrel G. Electrical impedance guides electrode array in cochlear implantation using machine learning and robotic feeder. Hear Res 2021; 412:108371. [PMID: 34689069 DOI: 10.1016/j.heares.2021.108371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/22/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Cochlear Implant provides an electronic substitute for hearing to severely or profoundly deaf patients. However, postoperative hearing outcomes significantly depend on the proper placement of electrode array (EA) into scala tympani (ST) during cochlear implant surgery. Due to limited intra-operative methods to access array placement, the objective of the current study was to evaluate the relationship between EA complex impedance and different insertion trajectories in a plastic ST model. A prototype system was designed to measure bipolar complex impedance (magnitude and phase) and its resistive and reactive components of electrodes. A 3-DoF actuation system was used as an insertion feeder. 137 insertions were performed from 3 different directions at a speed of 0.08 mm/s. Complex impedance data of 8 electrode pairs were sequentially recorded in each experiment. Machine learning algorithms were employed to classify both the full and partial insertion lengths. Support Vector Machine (SVM) gave the highest 97.1% accuracy for full insertion. When a real-time prediction was tested, Shallow Neural Network (SNN) model performed better than other algorithms using partial insertion data. The highest accuracy was found at 86.1% when 4 time samples and 2 apical electrode pairs were used. Direction prediction using partial data has the potential of online control of the insertion feeder for better EA placement. Accessing the position of the electrode array during the insertion has the potential to optimize its intraoperative placement that will result in improved hearing outcomes.
Collapse
Affiliation(s)
- Nauman Hafeez
- Institute of Environment, Health and Societies, Brunel University, London, UB8 3PH, UK.
| | - Xinli Du
- Institute of Environment, Health and Societies, Brunel University, London, UB8 3PH, UK
| | - Nikolaos Boulgouris
- Institute of Environment, Health and Societies, Brunel University, London, UB8 3PH, UK
| | - Philip Begg
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Richard Irving
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Chris Coulson
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | | |
Collapse
|
15
|
A Novel Capacitive Cochlear Implant Electrode Array Sensing System to Discriminate Failure Patterns. Otol Neurotol 2021; 42:713-720. [PMID: 33661236 DOI: 10.1097/mao.0000000000003054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The research is to propose a sensing system to ensure the electrode array being correctly placed inside the cochlea. Instead of applying extra sensors to the array, the capacitive information from multiple points of the array is gathered and analyzed to determine the state and behavior of the electrode array. METHODS The sensing system measures electrode bipolar capacitances between multiple pairs of electrodes during the insertion. The principal component analysis (PCA) method is then applied to analysis the recorded data to discriminate insertion patterns. RESULTS In total, 384 capacitance profiles from electrode pair (1, 2), and electrode pair (15, 16) were analyzed and compared. In an account of both the electrode pairs, the threshold distance was examined to be d = 1.99 at the average comparison type. The experiment results showed the success rate is over 80% to identify buckling during the insertion on a 2D cochlear model. CONCLUSION This early-stage investigation shows great potential compared with the current practice, which does not provide any feedback to surgeons. The system demonstrates the feasibility of a sensing method for auto-reoccupation electrodes behavior, and it will help surgeons to avoid misplacement of the electrode array inside the cochlea.
Collapse
|
16
|
Comparison of a Mid Scala and a Perimodiolar Electrode in Adults: Performance, Impedances, and Psychophysics. Otol Neurotol 2020; 41:467-475. [PMID: 32176125 DOI: 10.1097/mao.0000000000002579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The HiFocus Mid-Scala electrode array (HFms) is designed to sit within the scala tympani without touching either the lateral wall or the modiolus. The aim of this study was to compare the HFms to the Helix perimodiolar electrode array. METHOD Two groups of recipients with Helix (n = 22 ears) and HFms (n = 29 ears) electrode arrays were retrospectively identified and matched by age at implantation and duration of severe to profound deafness. Most comfortable listening levels (M), impedances, Freiburger Monosyllables in quiet, and Oldenburg sentences in adaptive noise were compared at 3, 6, and 12 months postimplant. RESULTS Median scores for monosyllables in quiet for the HFms group were significantly better than the Helix group at each test interval (p < 0.05). Speech perception in quiet also significantly improved from 3 to 12 months for both groups (p < 0.001). There was no significant difference between the groups for speech in noise. Impedances were significantly lower for the HFms group at 12 months (p < 0.05) except at the basal end and M levels were generally higher. CONCLUSIONS The HFms group had better median performance for monosyllables in quiet than the Helix group at each test interval, although performance in noise was similar. For speech in noise, the HFms group appear to reach optimum performance quicker than the Helix group. Impedances were lower in the HFms group across the array, other than at the most basal end, and support our hypothesis that the HFms assumes a more lateral position within the cochlea than the Helix electrode, although our article did not include imaging data.
Collapse
|
17
|
Yasin R, Dedmon M, Dillon N, Simaan N. Investigating variability in cochlear implant electrode array alignment and the potential of visualization guidance. Int J Med Robot 2019; 15:e2009. [PMID: 31099146 DOI: 10.1002/rcs.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022]
Abstract
Background Internal cochlear anatomy is difficult to discern from external inspection, hindering cochlear implant electrode insertion. Methods A user study characterized the repeatability of standard surgical technique and examined the role of visual inspection and guidance cues in reducing electrode array insertion misalignment. Results Without guidance, a large spread in angles of insertion, up to 30°, was observed, highlighting the need for intraoperative guidance. Visual inspection did not significantly improve overall orientation, suggesting the need for alternate intracochlear visualization methods and/or increased training to effectively improve surgeon understanding of the visualized images. Visual cues and guidance software increased repeatability of surgeon performance, reducing one metric of repeatability to ±2°. Conclusions This study establishes a baseline for surgeon variability in cochlear implant insertion and supports the need and lays the groundwork for future intraoperative guidance techniques.
Collapse
Affiliation(s)
- Rashid Yasin
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew Dedmon
- Department of Otolaryngology, 1211 Medical Center Drive, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Neal Dillon
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Nabil Simaan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
18
|
Giardina CK, Krause ES, Koka K, Fitzpatrick DC. Impedance Measures During in vitro Cochlear Implantation Predict Array Positioning. IEEE Trans Biomed Eng 2019; 65:327-335. [PMID: 29346102 DOI: 10.1109/tbme.2017.2764881] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Improper electrode placement during cochlear implant (CI) insertion can adversely affect speech perception outcomes. However, the intraoperative methods to determine positioning are limited. Because measures of electrode impedance can be made quickly, the goal of this study was to assess the relationship between CI impedance and proximity to adjacent structures. METHODS An Advanced Bionics CI array was inserted into a clear, plastic cochlea one electrode contact at a time in a saline bath (nine trials). At each insertion depth, response to biphasic current pulses was used to calculate access resistance (Ra), polarization resistance (Rp), and polarization capacitance (Cp). These measures were correlated to actual proximity as assessed by microscopy using linear regression models. RESULTS Impedance increased with insertion depth and proximity to the inner wall. Specifically, Ra increased, Cp decreased, and Rp slightly increased. Incorporating all impedance measures afforded a prediction model (r = 0.88) while optimizing for sub-mm positioning afforded a model with 78.3% specificity. CONCLUSION Impedance in vitro greatly changes with electrode insertion depth and proximity to adjacent structures in a predicable manner. SIGNIFICANCE Assessing proximity of the CI to adjacent structures is a significant first step in qualifying the electrode-neural interface. This information should aid in CI fitting, which should help maximize hearing and speech outcomes with a CI. Additionally, knowledge of the relationship between impedance and positioning could have utility in other tissue implants in the brain, retina, or spinal cord.
Collapse
|