1
|
Kurenkova AD, Serejnikova NB, Sheleg SA, Fayzullin AL, Denisov NE, Igrunkova AV, Sadchikova ER, Antoshin AA, Timashev PS. Lactoferrin Stimulates Chondrogenesis and Promotes Healing of the Auricular Elastic Cartilage. Int J Mol Sci 2025; 26:1956. [PMID: 40076584 PMCID: PMC11900435 DOI: 10.3390/ijms26051956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Ear reconstruction surgeries for congenital deformities and trauma are common, highlighting the need for improved cartilage regeneration. Lactoferrin (LF), a natural and cost-effective protein, is promising due to its anti-inflammatory, antimicrobial, and prochondrogenic properties. This study investigates the effects of LF on the viability, proliferation, and chondrogenesis of rabbit auricular chondrocytes. For in vitro studies, auricular chondrocytes were cultured for three passages, after which 3D pellets were formed. LF significantly increased chondrocyte metabolic activity by 1.5 times at doses of 10 and 500 μg/mL. At passage 3, LF at concentrations of 10 and 100 μg/mL increased cell proliferation rates by 2- and 1.5-fold, respectively. Immunohistochemical staining of the pellets demonstrated that LF at 10 μg/mL increased the amount of sex-determining region Y-Box Transcription Factor 9 (Sox9)+ cells by 30%, while at 100 μg/mL, it doubled the type II collagen deposits. For in vivo studies, a rabbit ear defect model was utilized. On post-operative day 60, the LF-treated group exhibited more mature cartilage regeneration, with a higher density of elastic fibers. By day 90 post-surgery, LF application led to the restoration of normal elastic cartilage throughout the defect. These findings suggest that LF promotes auricular chondrocytes chondrogenesis and could be beneficial for tissue engineering of the elastic cartilage.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Natalia B. Serejnikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Sofia A. Sheleg
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Alexey L. Fayzullin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Nikolai E. Denisov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Alexandra V. Igrunkova
- Department of Human Anatomy and Histology, N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), 11, Building 10, Mokhovaya St., 125009 Moscow, Russia
| | - Elena R. Sadchikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119344 Moscow, Russia;
| | - Artem A. Antoshin
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119991 Moscow, Russia; (N.B.S.); (A.L.F.); (A.A.A.); (P.S.T.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
2
|
Reutter S, Kern J, Jakob Y, Rotter N, Gvaramia D. Small spheroids for head and neck cartilage tissue engineering. Sci Rep 2024; 14:32114. [PMID: 39738737 PMCID: PMC11686322 DOI: 10.1038/s41598-024-83847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture. The capacity of cells to aggregate into microtissues enables an alternative bottom-up approach to producing cartilage with or without further scaffolding support. Here we explored the optimal conditions for obtaining small spheroids from head and neck cartilage tissues. We used chondrocytes (CCs) and chondroprogenitors (CPCs) isolated from auricular and nasoseptal cartilage to prepare spheroids using ultra-low attachment (ULA) plates or micromass cultures. Different cell densities were tested to estimate the minimal cell number required for optimal spheroid formation. Furthermore, we evaluated the influence of key chondrogenic cytokines, such as transforming growth factor (TGF)-β, connective tissue growth factor (CTGF), and insulin-like growth factor (IGF)-1, on spheroid morphology and the production of cartilage extracellular matrix (ECM) components. Spheroids expressing cartilage markers were formed with 2.5 × 104 cells in a commercially available chondrogenic differentiation medium on ULA plates but not in conventional micromass cultures. Differences were seen in auricular and nasal spheroids with respect to growth patterns and response to cytokine composition. Auricular spheroids were larger and showed size increase in culture, whereas nasal aggregates tended to shrink. Cytokines differentially influenced spheroid growth, and ECM structure and composition. Under all tested conditions, both spheroid types generated one or more cartilage ECM components, including elastin, which was also found in nasal spheroids despite their hyaline origin. Our results suggest that spheroid cultures can offer a viable approach to generating mature cartilage tissue without a biomaterial scaffold. Furthermore, nasal CCs and CPCs can be used to generate elastic cartilage. The findings of the study provide technical insights toward the goal of obtaining cartilage microtissues that can be potentially used for reconstructive procedures of HNC cartilage defects.
Collapse
Affiliation(s)
- Sven Reutter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany
| | - Yvonne Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany
| | - David Gvaramia
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- Department of Otorhinolaryngology, Head and Neck Surgery, University Clinic Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
3
|
Oba T, Okamoto S, Ueno Y, Matsuo M, Tadokoro T, Kobayashi S, Yasumura K, Kagimoto S, Inaba Y, Taniguchi H. In vitro elastic cartilage reconstruction using human auricular perichondrial chondroprogenitor cell-derived micro 3D spheroids. J Tissue Eng 2022; 13:20417314221143484. [PMID: 36582939 PMCID: PMC9793062 DOI: 10.1177/20417314221143484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/19/2022] [Indexed: 12/25/2022] Open
Abstract
Morphologically stable scaffold-free elastic cartilage tissue is crucial for treating external ear abnormalities. However, establishing adequate mechanical strength is challenging, owing to the difficulty of achieving chondrogenic differentiation in vitro; thus, cartilage reconstruction is a complex task. Auricular perichondrial chondroprogenitor cells exhibit high proliferation potential and can be obtained with minimal invasion. Therefore, these cells are an ideal resource for elastic cartilage reconstruction. In this study, we aimed to develop a novel in vitro scaffold-free method for elastic cartilage reconstruction, using human auricular perichondrial chondroprogenitor cells. Inducing chondrogenesis by using microscopic spheroids similar to auricular hillocks significantly increased the chondrogenic potential. The size and elasticity of the tissue were maintained after craniofacial transplantation in immunodeficient mice, suggesting that the reconstructed tissue was morphologically stable. Our novel tissue reconstruction method may facilitate the development of future treatments for external ear abnormalities.
Collapse
Affiliation(s)
- Takayoshi Oba
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan,Department of Orthopaedic Surgery,
Yokohama City University, Kanazawa-ku, Yokohama City, Kanagawa, Japan,Takayoshi Oba, Department of Regenerative
Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura,
Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Satoshi Okamoto
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan
| | - Yasuharu Ueno
- Division of Regenerative Medicine,
Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical
Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| | - Megumi Matsuo
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan
| | - Tomomi Tadokoro
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan
| | - Shinji Kobayashi
- Department of Plastic and
Reconstructive Surgery, Kanagawa Children’s Medical Center, Minami-ku, Yokohama,
Kanagawa, Japan
| | - Kazunori Yasumura
- Department of Plastic and
Reconstructive Surgery, Kanagawa Children’s Medical Center, Minami-ku, Yokohama,
Kanagawa, Japan
| | - Shintaro Kagimoto
- Department of Plastic and
Reconstructive Surgery, Yokohama City University, Kanazawa-ku, Yokohama, Kanagawa,
Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery,
Yokohama City University, Kanazawa-ku, Yokohama City, Kanagawa, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine,
Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama,
Japan,Division of Regenerative Medicine,
Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical
Science, the University of Tokyo, Minato-ku, Tokyo, Japan
| |
Collapse
|
4
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|