1
|
Alam SR, Wallrabe H, Christopher KG, Siller KH, Periasamy A. Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy. Sci Rep 2022; 12:11938. [PMID: 35831321 PMCID: PMC9279287 DOI: 10.1038/s41598-022-15639-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the central organelles in cellular bio-energetics with key roles to play in energy metabolism and cell fate decisions. Fluorescence Lifetime Imaging microscopy (FLIM) is used to track metabolic changes by following the intrinsic co-enzymes NAD(P)H and FAD, present in metabolic pathways. FLIM records-lifetimes and the relative fractions of free (unbound) and bound states of NAD(P)H and FAD are achieved by multiphoton excitation of a pulsed femto-second infra-red laser. Optimization of multiphoton laser power levels is critical to achieve sufficient photon counts for correct lifetime fitting while avoiding phototoxic effects. We have characterized two photon (2p) laser induced changes at the intra-cellular level, specifically in the mitochondria, where damage was assessed at rising 2p laser average power excitation. Our results show that NAD(P)H-a2%—the lifetime-based enzyme bound fraction, an indicator of mitochondrial OXPHOS activity is increased by rising average power, while inducing changes in the mitochondria at higher power levels, quantified by different probes. Treatment response tracked by means of NAD(P)H-a2% can be confounded by laser-induced damage producing the same effect. Our study demonstrates that 2p-laser power optimization is critical by characterizing changes in the mitochondria at increasing laser average power.
Collapse
Affiliation(s)
- Shagufta Rehman Alam
- The W.M. Keck Center for Cellular Imaging, University of Virginia, Virginia, 22904, USA
| | - Horst Wallrabe
- The W.M. Keck Center for Cellular Imaging, University of Virginia, Virginia, 22904, USA
| | - Kathryn G Christopher
- The W.M. Keck Center for Cellular Imaging, University of Virginia, Virginia, 22904, USA
| | - Karsten H Siller
- Advanced Research Computing Services, University of Virginia, Virginia, 22904, USA
| | - Ammasi Periasamy
- The W.M. Keck Center for Cellular Imaging, University of Virginia, Virginia, 22904, USA. .,Departments of Biology and Biomedical Engineering, University of Virginia, Virginia, 22904, USA.
| |
Collapse
|
2
|
Vasanthakumari P, Romano RA, Rosa RGT, Salvio AG, Yakovlev V, Kurachi C, Hirshburg JM, Jo JA. Discrimination of cancerous from benign pigmented skin lesions based on multispectral autofluorescence lifetime imaging dermoscopy and machine learning. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:066002. [PMID: 35701871 PMCID: PMC9196925 DOI: 10.1117/1.jbo.27.6.066002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Accurate early diagnosis of malignant skin lesions is critical in providing adequate and timely treatment; unfortunately, initial clinical evaluation of similar-looking benign and malignant skin lesions can result in missed diagnosis of malignant lesions and unnecessary biopsy of benign ones. AIM To develop and validate a label-free and objective image-guided strategy for the clinical evaluation of suspicious pigmented skin lesions based on multispectral autofluorescence lifetime imaging (maFLIM) dermoscopy. APPROACH We tested the hypothesis that maFLIM-derived autofluorescence global features can be used in machine-learning (ML) models to discriminate malignant from benign pigmented skin lesions. Clinical widefield maFLIM dermoscopy imaging of 41 benign and 19 malignant pigmented skin lesions from 30 patients were acquired prior to tissue biopsy sampling. Three different pools of global image-level maFLIM features were extracted: multispectral intensity, time-domain biexponential, and frequency-domain phasor features. The classification potential of each feature pool to discriminate benign versus malignant pigmented skin lesions was evaluated by training quadratic discriminant analysis (QDA) classification models and applying a leave-one-patient-out cross-validation strategy. RESULTS Classification performance estimates obtained after unbiased feature selection were as follows: 68% sensitivity and 80% specificity with the phasor feature pool, 84% sensitivity, and 71% specificity with the biexponential feature pool, and 84% sensitivity and 32% specificity with the intensity feature pool. Ensemble combinations of QDA models trained with phasor and biexponential features yielded sensitivity of 84% and specificity of 90%, outperforming all other models considered. CONCLUSIONS Simple classification ML models based on time-resolved (biexponential and phasor) autofluorescence global features extracted from maFLIM dermoscopy images have the potential to provide objective discrimination of malignant from benign pigmented lesions. ML-assisted maFLIM dermoscopy could potentially assist with the clinical evaluation of suspicious lesions and the identification of those patients benefiting the most from biopsy examination.
Collapse
Affiliation(s)
- Priyanka Vasanthakumari
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Renan A. Romano
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Ramon G. T. Rosa
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Ana G. Salvio
- Skin Department of Amaral Carvalho Hospital, São Paulo, Brazil
| | - Vladislav Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| | - Cristina Kurachi
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Jason M. Hirshburg
- University of Oklahoma Health Science Center, Department of Dermatology, Oklahoma City, Oklahoma, United States
| | - Javier A. Jo
- University of Oklahoma, School of Electrical and Computer Engineering, Norman, Oklahoma, United States
| |
Collapse
|
3
|
Cao R, Wallrabe H, Siller K, Rehman Alam S, Periasamy A. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cytometry A 2019; 95:110-121. [PMID: 30604477 DOI: 10.1002/cyto.a.23711] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
Redox changes in live HeLa cervical cancer cells after doxorubicin treatment can either be analyzed by a novel fluorescence lifetime microscopy (FLIM)-based redox ratio NAD(P)H-a2%/FAD-a1%, called fluorescence lifetime redox ratio or one of its components (NAD(P)H-a2%), which is actually driving that ratio and offering a simpler and alternative metric and are both compared. Auto-fluorescent NAD(P)H, FAD lifetime is acquired by 2- photon excitation and Tryptophan by 3-photon, at 4 time points after treatment up to 60 min demonstrating early drug response to doxorubicin. Identical Fields-of-view (FoV) at each interval allows single-cell analysis, showing heterogeneous responses to treatment, largely based on their initial control redox state. Based on a discrete ROI selection method, mitochondrial OXPHOS and cytosolic glycolysis are discriminated. Furthermore, putative FRET interaction and energy transfer between tryptophan residue carrying enzymes and NAD(P)H correlate with NAD(P)H-a2%, as does the NADPH/NADH ratio, highlighting a multi-parametric assay to track metabolic changes in live specimens. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ruofan Cao
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building (PLSB), University of Virginia, 90 Geldard Drive, Charlottesville, Virginia, 22904.,Department of Biology, University of Virginia, 409 McCormick Road, Charlottesville, Virginia, 22904
| | - Horst Wallrabe
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building (PLSB), University of Virginia, 90 Geldard Drive, Charlottesville, Virginia, 22904.,Department of Biology, University of Virginia, 409 McCormick Road, Charlottesville, Virginia, 22904
| | - Karsten Siller
- Advanced Research Computing Services, Division of St-VP Information Technology, University of Virginia, 1023 Millmont Street, Charlottesville, Virginia, 22904
| | - Shagufta Rehman Alam
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building (PLSB), University of Virginia, 90 Geldard Drive, Charlottesville, Virginia, 22904
| | - Ammasi Periasamy
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building (PLSB), University of Virginia, 90 Geldard Drive, Charlottesville, Virginia, 22904.,Department of Biology, University of Virginia, 409 McCormick Road, Charlottesville, Virginia, 22904.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, 22904
| |
Collapse
|
4
|
Alam SR, Wallrabe H, Svindrych Z, Chaudhary AK, Christopher KG, Chandra D, Periasamy A. Investigation of Mitochondrial Metabolic Response to Doxorubicin in Prostate Cancer Cells: An NADH, FAD and Tryptophan FLIM Assay. Sci Rep 2017; 7:10451. [PMID: 28874842 PMCID: PMC5585313 DOI: 10.1038/s41598-017-10856-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) is one of the leading cancers in men in the USA. Lack of experimental tools that predict therapy response is one of the limitations of current therapeutic regimens. Mitochondrial dysfunctions including defective oxidative phosphorylation (OXPHOS) in cancer inhibit apoptosis by modulating ROS production and cellular signaling. Thus, correction of mitochondrial dysfunction and induction of apoptosis are promising strategies in cancer treatment. We have used Fluorescence Lifetime Imaging Microscopy (FLIM) to quantify mitochondrial metabolic response in PCa cells by tracking auto-fluorescent NAD(P)H, FAD and tryptophan (Trp) lifetimes and their enzyme-bound fractions as markers, before and after treatment with anti-cancer drug doxorubicin. A 3-channel FLIM assay and quantitative analysis of these markers for cellular metabolism show in response to doxorubicin, NAD(P)H mean fluorescence lifetime (τm) and enzyme-bound (a2%) fraction increased, FAD enzyme-bound (a1%) fraction was decreased, NAD(P)H-a2%/FAD-a1% FLIM-based redox ratio and ROS increased, followed by induction of apoptosis. For the first time, a FRET assay in PCa cells shows Trp-quenching due to Trp-NAD(P)H interactions, correlating energy transfer efficiencies (E%) vs NAD(P)H-a2%/FAD-a1% as sensitive parameters in predicting drug response. Applying this FLIM assay as early predictor of drug response would meet one of the important goals in cancer treatment.
Collapse
Affiliation(s)
- Shagufta Rehman Alam
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building, University of Virginia, 90 Geldard Dr., Charlottesville, Virginia, 22904, USA
| | - Horst Wallrabe
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building, University of Virginia, 90 Geldard Dr., Charlottesville, Virginia, 22904, USA
| | - Zdenek Svindrych
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building, University of Virginia, 90 Geldard Dr., Charlottesville, Virginia, 22904, USA
| | - Ajay K Chaudhary
- Roswell Park Cancer Institute, Centre for Genetics and Pharmacology, Department of Pharmacology and Therapeutics, Elm & Carlton Streets, Buffalo, New York, 14263, USA
| | - Kathryn G Christopher
- Departments of Biology and Biomedical Engineering, University of Virginia, 90 Geldard Dr., Charlottesville, Virginia, 22904, USA
| | - Dhyan Chandra
- Roswell Park Cancer Institute, Centre for Genetics and Pharmacology, Department of Pharmacology and Therapeutics, Elm & Carlton Streets, Buffalo, New York, 14263, USA
| | - Ammasi Periasamy
- The W.M. Keck Center for Cellular Imaging, Physical and Life Sciences Building, University of Virginia, 90 Geldard Dr., Charlottesville, Virginia, 22904, USA. .,Departments of Biology and Biomedical Engineering, University of Virginia, 90 Geldard Dr., Charlottesville, Virginia, 22904, USA.
| |
Collapse
|
5
|
Zhang Z, Sun H, Zhang J, Ge C, Dong S, Li Z, Li R, Chen X, Li M, Chen Y, Zou Y, Qian Z, Yang L, Yang J, Zhu Z, Liu Z, Song X. Safety and Efficacy of Transplantation with Allogeneic Skin Tumors to Treat Chemically-Induced Skin Tumors in Mice. Med Sci Monit 2016; 22:3113-23. [PMID: 27587310 PMCID: PMC5019137 DOI: 10.12659/msm.900148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Transplantation with allogeneic cells has become a promising modality for cancer therapy, which can induce graft-versus-tumor (GVT) effect. This study was aimed at assessing the safety, efficacy, and tissue type GVT (tGVT) response of transplantation with allogeneic skin tumors to treat chemically-induced skin tumors in mice. Material/Methods FVB/N and ICR mice were exposed topically to chemicals to induce skin tumors. Healthy ICR mice were transplanted with allogeneic skin tumors from FVB/N mice to test the safety. The tumor-bearing ICR mice were transplanted with, or without, allogeneic skin tumors to test the efficacy. The body weights (BW), body condition scores (BCS), tumor volumes in situ, metastasis tumors, overall survival, and serum cytokines were measured longitudinally. Results Transplantation with no more than 0.03 g allogeneic skin tumors from FVB/N mice to healthy ICR mice was safe. After transplantation with allogeneic skin tumors to treat tumor-bearing mice, it inhibited the growth of tumors slightly at early stage, accompanied by fewer metastatic tumors at 24 days after transplantation (21.05% vs. 47.37%), while there were no statistically significant differences in the values of BW, BCS, tumor volumes in situ, metastasis tumors, and overall survival between the transplanted and non-transplanted groups. The levels of serum interleukin (IL)-2 were significantly reduced in the controls (P<0.05), but not in the recipients, which may be associated with the tGVT response. Conclusions Our results suggest that transplantation with allogeneic skin tumors is a safe treatment in mice, which can induce short-term tGVT response mediated by IL-2.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Hua Sun
- PET/CT Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Jianhua Zhang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Suwei Dong
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Xiaodan Chen
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Mei Li
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Yun Chen
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Yingying Zou
- Department of Pathology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Zhongyi Qian
- Laboratory of Morphology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Lei Yang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Jinyan Yang
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Zhitao Zhu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Zhimin Liu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| | - Xin Song
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China (mainland)
| |
Collapse
|
6
|
Oztekin EK, Hahn DW. Differential Laser-Induced Perturbation Spectroscopy for Analysis of Mixtures of the Fluorophores l-Phenylalanine, l-Tyrosine and l-Tryptophan Using a Fluorescence Probe. Photochem Photobiol 2016; 92:658-66. [PMID: 27416797 DOI: 10.1111/php.12618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/21/2016] [Indexed: 11/28/2022]
Abstract
Quantitative detection of common endogenous fluorophores is accomplished using differential laser-induced perturbation spectroscopy (DLIPS) with a 193-nm UV fluorescence probe and various UV perturbation wavelengths. In this study, DLIPS is explored as an alternative to traditional fluorescence spectroscopy alone, with a goal of exploring natural fluorophores pursuant to biological samples and tissue analysis. To this end, aromatic amino acids, namely, l-phenylalanine, l-tyrosine and l-tryptophan are mixed with differing mass ratios and then classified with various DLIPS schemes. Classification with a traditional fluorescence probe is used as a benchmark. The results show a 20% improvement in classification performance of the DLIPS method over the traditional fluorescence method using partial least squares (PLS) analysis. Additional multivariate analyses are explored, and the relevant photochemistry is elucidated in the context of perturbation wavelengths. We conclude that DLIPS is a promising biosensing approach with potential for in vivo analysis given the current findings with fluorophores relevant to biological tissues.
Collapse
Affiliation(s)
- Erman K Oztekin
- Mechanical and Aerospace Engineering Department, University of Florida, Gainesville, FL
| | - David W Hahn
- Mechanical and Aerospace Engineering Department, University of Florida, Gainesville, FL.
| |
Collapse
|
7
|
Ebenezar J, Aruna PR, Ganesan S. Native fluorescence spectroscopic characterization of DMBA induced carcinogenesis in mice skin for the early detection of tissue transformation. Analyst 2015; 140:4170-81. [DOI: 10.1039/c4an00650j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objective of the study is to characterize the endogenous porphyrin fluorescence in a dimethylbenz(a)anthracene (DMBA) induced mouse skin tumor model using native fluorescence emission and excitation spectroscopy.
Collapse
|
8
|
Choi JH, Jeong KH, Sung JY, Kim NI, Shin MK. Autofluorescence analysis of dermatitis and squamous cell carcinoma in paraffin wax-embedded skin samples. Clin Exp Dermatol 2014; 40:123-8. [DOI: 10.1111/ced.12458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 11/30/2022]
Affiliation(s)
- J. H. Choi
- Department of Dermatology; College of Medicine; Kyung Hee University; Seoul Korea
| | - K. H. Jeong
- Department of Dermatology; College of Medicine; Kyung Hee University; Seoul Korea
| | - J. Y. Sung
- Department of Pathology; College of Medicine; Kyung Hee University; Seoul Korea
| | - N. I. Kim
- Department of Dermatology; College of Medicine; Kyung Hee University; Seoul Korea
| | - M. K. Shin
- Department of Dermatology; College of Medicine; Kyung Hee University; Seoul Korea
| |
Collapse
|
9
|
Dartnell LR, Roberts TA, Moore G, Ward JM, Muller JP. Fluorescence characterization of clinically-important bacteria. PLoS One 2013; 8:e75270. [PMID: 24098687 PMCID: PMC3787103 DOI: 10.1371/journal.pone.0075270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/15/2013] [Indexed: 11/19/2022] Open
Abstract
Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination.
Collapse
Affiliation(s)
- Lewis R. Dartnell
- UCL Institute for Origins, University College London, London, United Kingdom
- The Centre for Planetary Sciences at UCL/Birkbeck, University College London, London, United Kingdom
- * E-mail:
| | - Tom A. Roberts
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom
| | - Ginny Moore
- Clinical Microbiology & Virology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - John M. Ward
- The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Jan-Peter Muller
- The Centre for Planetary Sciences at UCL/Birkbeck, University College London, London, United Kingdom
- Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Surrey, United Kingdom
| |
Collapse
|
10
|
Buschke DG, Squirrell JM, Ansari H, Smith MA, Rueden CT, Williams JC, Lyons GE, Kamp TJ, Eliceiri KW, Ogle BM. Multiphoton flow cytometry to assess intrinsic and extrinsic fluorescence in cellular aggregates: applications to stem cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:540-554. [PMID: 20684798 PMCID: PMC5505260 DOI: 10.1017/s1431927610000280] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Detection and tracking of stem cell state are difficult due to insufficient means for rapidly screening cell state in a noninvasive manner. This challenge is compounded when stem cells are cultured in aggregates or three-dimensional (3D) constructs because living cells in this form are difficult to analyze without disrupting cellular contacts. Multiphoton laser scanning microscopy is uniquely suited to analyze 3D structures due to the broad tunability of excitation sources, deep sectioning capacity, and minimal phototoxicity but is throughput limited. A novel multiphoton fluorescence excitation flow cytometry (MPFC) instrument could be used to accurately probe cells in the interior of multicell aggregates or tissue constructs in an enhanced-throughput manner and measure corresponding fluorescent properties. By exciting endogenous fluorophores as intrinsic biomarkers or exciting extrinsic reporter molecules, the properties of cells in aggregates can be understood while the viable cellular aggregates are maintained. Here we introduce a first generation MPFC system and show appropriate speed and accuracy of image capture and measured fluorescence intensity, including intrinsic fluorescence intensity. Thus, this novel instrument enables rapid characterization of stem cells and corresponding aggregates in a noninvasive manner and could dramatically transform how stem cells are studied in the laboratory and utilized in the clinic.
Collapse
Affiliation(s)
- David G. Buschke
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Jayne M. Squirrell
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Hidayath Ansari
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Michael A. Smith
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Curtis T. Rueden
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Material Sciences Program, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Gary E. Lyons
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Department of Anatomy, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Timothy J. Kamp
- Departments of Medicine, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Material Sciences Program, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
11
|
Bae Y, Son T, Stuart Nelson J, Kim JH, Choi EH, Jung B. Dermatological feasibility of multimodal facial color imaging modality for cross-evaluation of facial actinic keratosis. Skin Res Technol 2011; 17:4-10. [PMID: 20923462 DOI: 10.1111/j.1600-0846.2010.00464.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/PURPOSE Digital color image analysis is currently considered as a routine procedure in dermatology. In our previous study, a multimodal facial color imaging modality (MFCIM), which provides a conventional, parallel- and cross-polarization, and a fluorescent color image, was introduced for objective evaluation of various facial skin lesions. This study introduces a commercial version of MFCIM, DermaVision-PRO, for routine clinical use in dermatology and demonstrates its dermatological feasibility for cross-evaluation of skin lesions. METHODS/RESULTS Sample images of subjects with actinic keratosis or non-melanoma skin cancers were obtained at four different imaging modes. Various image analysis methods were applied to cross-evaluate the skin lesion and, finally, to extract valuable diagnostic information. DermaVision-PRO is potentially a useful tool as an objective macroscopic imaging modality for quick prescreening and cross-evaluation of facial skin lesions. CONCLUSION DermaVision-PRO may be utilized as a useful tool for the cross-evaluation of widely distributed facial skin lesions and as an efficient database management of patient information.
Collapse
Affiliation(s)
- Youngwoo Bae
- Department of Biomedical Engineering, Yonsei University, Wonju, Korea
| | | | | | | | | | | |
Collapse
|
12
|
Li D, Zheng W, Qu JY. Imaging of epithelial tissue in vivo based on excitation of multiple endogenous nonlinear optical signals. OPTICS LETTERS 2009; 34:2853-5. [PMID: 19756127 DOI: 10.1364/ol.34.002853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We demonstrate an integrated optical microscope to image the living epithelial tissue by simultaneously exciting multiple endogenous nonlinear optical signals. By employing the spectral lifetime detection capability, this technology provides a unique approach to sensing the fine structure, the protein distribution, and the cellular metabolism of epithelial tissue in vivo. In particular, we investigated the two-photon excitation fluorescence (TPEF) of tryptophan, an essential amino acid serving as the building block of protein. Our findings show that the TPEF of cellular tryptophan produces a good contrast to reveal the morphology of the epithelial cell layer, and the contrast can be further enhanced by applying low-concentration acetic acid.
Collapse
Affiliation(s)
- Dong Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
13
|
Péry E, Blondel WCPM, Thomas C, Guillemin F. Monte Carlo modeling of multilayer phantoms with multiple fluorophores: simulation algorithm and experimental validation. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:024048. [PMID: 19405776 DOI: 10.1117/1.3122368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work is first a description of a statistical simulation algorithm developed for simulating the spectral absorption and emission of several fluorophores in an absorbing and diffusing multilayer model. Second, a detailed experimental validation of the simulation program is conducted on two sets of liquid and solid multilayer phantoms, containing one, two, or three fluorophores, within absorbing and scattering media. Experimental spatially resolved reflectance spectra are acquired in the wavelength band 400 to 800 nm and compared to corresponding simulated spectra. The degree of similarity between experimentation and simulation data is quantified. The results obtained underline good correlations with mean errors varying from 2 to 10%, depending on the number of layers and on the complexity of the phantom's composition.
Collapse
Affiliation(s)
- Emilie Péry
- Nancy University, Automatic Control Research Centre (CRAN), Joint Research Unit (UMR) 7039 Nancy University, National Center for Scientific Research (CNRS), F-54516 Vandoeuvre-les-Nancy, France.
| | | | | | | |
Collapse
|
14
|
Abstract
Lasers and optical technologies play a significant role in aesthetic and reconstructive surgery. The unique ability of optical technologies to target specific structures and layers in tissues to effect chemical, mechanical, or thermal changes makes them a powerful tool in cutaneous rejuvenation, hair removal, fat removal, and treatment of vascular lesions such as port-wine stains, among many other procedures. With the development of adjunct techniques such as epidermal cooling, lasers and optical technologies have become more versatile and safe. The constant improvement of existing applications and the emergence of novel applications such as photodynamic therapy, nanoparticles, spectroscopy, and noninvasive imaging continue to revolutionize aesthetic medicine by offering a minimally invasive alternative to traditional surgery. In the future, therapies will be based on individualized, maximum, safe radiant exposure to deliver optimal dosimetry. Lasers and optical technologies are headed toward safer, easier, more quantifiable, and more individualized therapy.
Collapse
Affiliation(s)
- Edward C Wu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, 1002 Health Sciences Rd E, Irvine, CA 92612, USA
| | | |
Collapse
|
15
|
Li D, Zheng W, Qu JY. Two-photon autofluorescence microscopy of multicolor excitation. OPTICS LETTERS 2009; 34:202-204. [PMID: 19148255 DOI: 10.1364/ol.34.000202] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We developed a two-photon autofluorescence lifetime imaging system with excitations selected from the supercontinuum generated from a photonic crystal fiber. The system excites multiple endogenous fluorophores, such as nicotinamide adenine dinucleotide (NADH) and tryptophan, simultaneously and produces coregistered two-photon autofluorescence images of a biological sample. The technology provides a unique approach to investigate the cellular metabolic activity and protein expression in cells that are potentially important for noninvasive precancer diagnostics. We demonstrated that by taking the tryptophan fluorescence as a reference the ratio of NADH to the tryptophan signal serves as a sensitive indicator of cellular metabolism. The ratio can also clearly differentiate normal cells from cancer cells. The tryptophan fluorescence lifetime images of cells shows that the lifetime of tryptophan fluorescence, varying over a wide range, may be highly dependent on the expression and structure of the protein that tryptophan is packed in.
Collapse
Affiliation(s)
- Dong Li
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | |
Collapse
|
16
|
Amouroux M, Díaz-Ayil G, Blondel WCPM, Bourg-Heckly G, Leroux A, Guillemin F. Classification of ultraviolet irradiated mouse skin histological stages by bimodal spectroscopy: multiple excitation autofluorescence and diffuse reflectance. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:014011. [PMID: 19256699 DOI: 10.1117/1.3077194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Histopathological analysis and in vivo optical spectroscopy were used to discriminate several histological stages of UV-irradiated mouse skin. At different times throughout the 30-week irradiation, autofluorescence (AF) and diffuse reflectance (DR) spectra were acquired in a bimodal approach. Then skin was sampled and processed to be classified, according to morphological criteria, into four histological categories: normal, and three types of hyperplasia (compensatory, atypical, and dysplastic). After extracting spectral characteristics, principal component analysis (data reduction) and the k-nearest neighbor classifying method were applied to compare diagnostic performances of monoexcitation AF (based on each of the seven excitation wavelengths: 360, 368, 390, 400, 410, 420, and 430 nm), multiexcitation AF (combining the seven excitation wavelengths), DR, and bimodal spectroscopies. Visible wavelengths are the most sensitive ones to discriminate compensatory from precancerous (atypical and dysplastic) states. Multiexcitation AF provides an average 6-percentage-point increased sensitivity compared to the best scores obtained with monoexcitation AF for all pairs of tissue categories. Bimodality results in a 4-percentage-point increase of specificity when discriminating the three types of hyperplasia. Thus, bimodal spectroscopy appears to be a promising tool to discriminate benign from precancerous stages; clinical investigations should be carried out to confirm these results.
Collapse
Affiliation(s)
- Marine Amouroux
- Nancy-University, Centre de Recherche en Automatique de Nancy, CRAN UMR 7039 CNRS, 2 avenue de la Foreet de Haye, 54516 Vandoeuvre-les-Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Kalaivani R, Masilamani V, Sivaji K, Elangovan M, Selvaraj V, Balamurugan S, Al-Salhi M. Fluorescence Spectra of Blood Components for Breast Cancer Diagnosis. Photomed Laser Surg 2008; 26:251-6. [DOI: 10.1089/pho.2007.2162] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- R. Kalaivani
- Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai, India
| | - V. Masilamani
- Department of Physics, King Saud University, Riyadh, Saudi Arabia
| | - K. Sivaji
- Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai, India
| | | | - V. Selvaraj
- National Institute of Epidemiology, ICMR, Chennai, India
| | | | - M.S. Al-Salhi
- Department of Physics, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Wollina U, Nelskamp C, Scheibe A, Fassler D, Schmidt WD. Fluorescence?remission sensoring of skin tumours: preliminary results. Skin Res Technol 2007; 13:463-71. [PMID: 17908200 DOI: 10.1111/j.1600-0846.2007.00252.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Nonmelanoma skin cancer (NMSC) is one of the most common malignancies in men. Objective evaluation by digital dermoscopy, as for pigmented lesions, does not provide sufficient data to discriminate between benign and malignant lesions. Therefore, other techniques have to be developed. SETTING Hospitalized patients of an academic teaching hospital were evaluated. PATIENTS AND METHODS Because the simultaneous measurement of fluorescence and remission of skin is impossible, a principle of subsequent measurement of remission and fluorescence had been developed by our group. This was combined with dermoscopic imaging. VIS-NIR remission spectroscopy was performed using the laboratory device TIDAS. Fluorescence spectroscopy was realized using a SKINSKAN. Fluorescence emission was detected by a highly sensitive PMT-detector. Based on this evaluation, we developed an optimized measuring device (FRIS, fluorescence-remission-imaging sensor) combining sensors for fluorescence, remission and digital imaging with a white light ring illumination, a drilled mirror and fibre optics. FRIS consists of an industrial personal computer with a touch screen combining three UV-VIS spectrometer modules and a white light source for remission measurements and referencing. Furthermore, included are a CCD coloured camera module and an LED white light ring-illumination. Fluorescence emission is realized by a UV-LED with a peak wavelength of 370 nm. System control uses Window frames and a specifically developed software Skinrem3.exe . Using this technology, we performed a pilot study in 19 patients with 30 NMSC-suspicious lesions including: actinic keratosis (n=10), basal cell carcinoma (BCC; n=16) and squamous cell carcinoma (SCC; n=4 with two in situ carcinomas). RESULTS Reproducibility measured or FRIS by relative standard deviation of repeated spectroscopic measurements was <0.1% for remission and 2% for fluorescence. The technology was able to generate typical pattern of remission-corrected fluorescence data. The fluorescence differences at 430 nm allow a differentiation between actinic keratoses and BCC. A decrease of the corrected lesional fluorescence >2 AU indicates BCC. To substantiate the diagnostic potency of this technology, further studies are needed. CONCLUSIONS A combination of fluorescence and remission readings of skin provides objective data in NMSC. We developed the FRIS equipment that allows a reproducible measurement and easy handling.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology and Allergology, Hospital Dresden-Friedrichstadt, Academic Teaching Hospital of the Technical University of Dresden, Friedrichstrasse, Dresden, Germany.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Visible light and near infrared light interact with biological tissue by absorption and scattering. Diffuse optical imaging and spectroscopy reconstructs tissue physiologic parameters based on noninvasive measurement of tissue optical properties. This technology can be used to differentiate physiologic and molecular signatures of both malignant and benign tissues, as they relate to the area of cancer research. Major advantages are the use of non-ionizing radiation, real-time continuous data acquisition, low cost, and portability. Limitations include low spatial resolution and limited reproducibility. This paper reviews the currently available state-of-the-art technologies for diffuse optical imaging and spectroscopy and their applications in cancer research.
Collapse
Affiliation(s)
- Ronald X Xu
- The Ohio State University, Assistant Professor, Department of Biomedical Engineering, 270 Bevis Hall, 1080 Carmack Road, Columbus, OH 43210, USA.
| | | |
Collapse
|