1
|
Okur S, Okumuş Z. Effects of low-level laser therapy and therapeutic ultrasound on Freund's complete adjuvant-induced knee arthritis model in rats. Arch Rheumatol 2023; 38:32-43. [PMID: 37235114 PMCID: PMC10208612 DOI: 10.46497/archrheumatol.2022.9409] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/05/2022] [Indexed: 08/08/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate and monitor the effect of low-level laser therapy (LLLT) and therapeutic ultrasound (TU) alone, or combined with intra-articular prednisolone (P) in Freund's complete adjuvant (FCA)-induced knee arthritis model in rats. MATERIALS AND METHODS A total of 56 adult male Wistar rats were divided into seven groups: control (C), disease control (RA), P, TU, LLLT (L), P + TU (P+TU), P + LLLT (P+L) groups. The skin temperature, radiography, joint volume, serum rheumatoid factor (RF), interleukin (IL)-1β, serum tumor necrosis factor-alpha (TNF-α), and histopathological evaluation of joint were performed. RESULTS Thermal imaging and radiographic examination provided results consistent with the severity of the disease. The mean joint temperature (°C) was the highest in the RA (36.2±1.6) group on Day 28. The P+TU and P+L groups significantly decreased radiological scores at the end of the study. The rat serum TNF-α, IL-1β, and RF levels in all groups were significantly higher compared to the C group (p<0.05). Compared to the RA group, serum TNF-α, IL-1β, and RF levels were significantly lower in the treatment groups (p<0.05). The P+TU and P+L group was showed minimal chondrocyte degeneration and cartilage erosion and mild cartilage fibrillation and mononuclear cell infiltration of synovial membrane compared to the P, TU, and L group. CONCLUSION The LLLT and TU effectively reduced inflammation. In addition, a more effective result was obtained from the use of LLLT and TU combined with intra-articular P. This result may be due to insufficient dose of LLLT and TU, thus further studies should be focus on at higher dose ranges on FCA arthritis model in rats.
Collapse
Affiliation(s)
- Sıtkıcan Okur
- Department of Veterinary Surgery, Atatürk University Faculty of Veterinary Medicine, Erzurum, Türkiye
| | - Zafer Okumuş
- Department of Veterinary Surgery, Atatürk University Faculty of Veterinary Medicine, Erzurum, Türkiye
| |
Collapse
|
2
|
Zhu S, Ma X, Ding X, Gan J, Deng Y, Wang Y, Sun A. Comparative evaluation of low-level light therapy and ethinyl estradiol and desogestrel combined oral contraceptive for clinical efficacy and regulation of serum biochemical parameters in primary dysmenorrhoea: a prospective randomised multicentre trial. Lasers Med Sci 2022; 37:2239-2248. [PMID: 35028764 PMCID: PMC8758216 DOI: 10.1007/s10103-021-03490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
We aimed to compare low-level light therapy with oral contraceptive pills for pain relief and serum levels of nitric oxide and prostaglandin E2 in patients with primary dysmenorrhoea. This was a randomised, active comparator-controlled, multicentre study. In total, 156 patients were randomised to receive either low-level light therapy with light-emitting diodes (LED) applying on two acupoints, namely, conception vessel 4 (CV4) and CV6 or conventional treatment with oral Marvelon, 30 µg of ethinyl estradiol and 150 µg of desogestrel (DSG/EE), for three consecutive menstrual cycles. The main outcome was the proportion of patients who achieved 33% or more decrease in pain scores measured using the visual analogue scale, which was deemed as efficient rate. Absolute changes in visual analogue scale scores, serum levels of nitric oxide (assessed by nitrites and nitrates reflecting nitric oxide metabolism) and prostaglandin E2 (measured by enzyme-linked immunosorbent assay) were the secondary outcomes. A total of 135 patients completed the study (73 in the light therapy group and 62 in the DSG/EE group). The efficient rate at the end of treatment was comparable between the groups (73.6% vs. 85.7%, χ2 = 2.994, p = 0.084). A more significant reduction in pain scores was observed in the DSG/EE group (39.25% vs. 59.52%, p < 0.001). Serum levels of prostaglandin E2 significantly decreased from baseline but did not differ between groups (- 109.57 ± 3.99 pg/mL vs. - 118.11 ± 12.93 pg/mL, p = 0.51). Nitric oxide concentration remained stable in both groups. Low-level light therapy with LED-based device applied on acupuncture points CV4 and CV6 demonstrated a similar level of dysmenorrhoea pain reduction to DSG/EE combined contraceptive. Both treatment modalities achieved clinically meaningful levels of pain reduction. Registration on ClinicalTrials.gov: TRN: NCT03953716, Date: April 04, 2019.
Collapse
Affiliation(s)
- Shiyang Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, China
| | - Xiao Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, China
| | - Xuesong Ding
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, China
| | - Jingwen Gan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, China
| | - Yan Deng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, China
| | - Yanfang Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, China
| | - Aijun Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, Beijing, China.
| |
Collapse
|
3
|
Multi-Wavelength Photobiomodulation Therapy Combined with Static Magnetic Field on Long-Term Pulmonary Complication after COVID-19: A Case Report. Life (Basel) 2021; 11:life11111124. [PMID: 34833000 PMCID: PMC8617935 DOI: 10.3390/life11111124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Photobiomodulation therapy, alone (PBMT) or combined with a static magnetic field (PBMT-sMF), has been demonstrated to be effective in the regeneration of tissues, modulation of inflammatory processes, and improvement in functional capacity. However, the effects of PBMT-sMF on the pulmonary system and COVID-19 patients remain scarce. Therefore, in this case report, we demonstrated the use of PBMT-sMF for peripheral oxygen saturation, pulmonary function, massive lung damage, and fibrosis as a pulmonary complication after COVID-19. CASE REPORT A 53-year-old Mexican man who presented with decreased peripheral oxygen saturation, massive lung damage, and fibrosis after COVID-19 received PBMT-sMF treatment once a day for 45 days. The treatment was irradiated at six sites in the lower thorax and upper abdominal cavity and two sites in the neck area. We observed that the patient was able to leave the oxygen support during the treatment, and increase his peripheral oxygen saturation. In addition, the patient showed improvements in pulmonary severity scores and radiological findings. Finally, the patient presented with normal respiratory mechanics parameters in the medium-term, indicating total pulmonary recovery. CONCLUSIONS The use of PBMT-sMF may potentially lead to safe treatment of and recovery from pulmonary complications after COVID-19, with regard to the structural and functional aspects.
Collapse
|
4
|
De Marchi T, Frâncio F, Ferlito JV, Weigert R, de Oliveira C, Merlo AP, Pandini DL, Pasqual-Júnior BA, Giovanella D, Tomazoni SS, Leal-Junior EC. Effects of Photobiomodulation Therapy Combined with Static Magnetic Field in Severe COVID-19 Patients Requiring Intubation: A Pragmatic Randomized Placebo-Controlled Trial. J Inflamm Res 2021; 14:3569-3585. [PMID: 34335043 PMCID: PMC8318710 DOI: 10.2147/jir.s318758] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes. Patients and Methods We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases. Results Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = −6.80; 95% CI = −18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05). Conclusion Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count. Trial Registration Number (Clinical Trials.gov) NCT04386694.
Collapse
Affiliation(s)
- Thiago De Marchi
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil.,Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Fabiano Frâncio
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil.,Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Renata Weigert
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Ana Paula Merlo
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | | | | - Shaiane Silva Tomazoni
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| | - Ernesto Cesar Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil.,Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| |
Collapse
|
5
|
De Marchi T, Frâncio F, Ferlito JV, Weigert R, de Oliveira C, Merlo AP, Pandini DL, Pasqual-Júnior BA, Giovanella D, Tomazoni SS, Leal-Junior EC. Effects of Photobiomodulation Therapy Combined with Static Magnetic Field in Severe COVID-19 Patients Requiring Intubation: A Pragmatic Randomized Placebo-Controlled Trial. J Inflamm Res 2021; 14:3569-3585. [PMID: 34335043 DOI: 10.1101/2020.12.02.20237974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/10/2021] [Indexed: 05/28/2023] Open
Abstract
PURPOSE We aimed to investigate the effects of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) on the length of intensive care unit (ICU) stay and mortality rate of severe COVID-19 patients requiring invasive mechanical ventilation and assess its role in preserving respiratory muscles and modulating inflammatory processes. PATIENTS AND METHODS We conducted a prospectively registered, triple-blinded, randomized, placebo-controlled trial of PBMT-sMF in severe COVID-19 ICU patients requiring invasive mechanical ventilation. Patients were randomly assigned to receive either PBMT-sMF or a placebo daily throughout their ICU stay. The primary outcome was length of ICU stay, defined by either discharge or death. The secondary outcomes were survival rate, diaphragm muscle function, and the changes in blood parameters, ventilatory parameters, and arterial blood gases. RESULTS Thirty patients were included and equally randomized into the two groups. There were no significant differences in the length of ICU stay (mean difference, MD = -6.80; 95% CI = -18.71 to 5.11) between the groups. Among the secondary outcomes, significant differences were observed in diaphragm thickness, fraction of inspired oxygen, partial pressure of oxygen/fraction of inspired oxygen ratio, C-reactive protein levels, lymphocyte count, and hemoglobin (p < 0.05). CONCLUSION Among severe COVID-19 patients requiring invasive mechanical ventilation, the length of ICU stay was not significantly different between the PBMT-sMF and placebo groups. In contrast, PBMT-sMF was significantly associated with reduced diaphragm atrophy, improved ventilatory parameters and lymphocyte count, and decreased C-reactive protein levels and hemoglobin count. TRIAL REGISTRATION NUMBER CLINICAL TRIALSGOV NCT04386694.
Collapse
Affiliation(s)
- Thiago De Marchi
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
| | - Fabiano Frâncio
- University Center of Bento Gonçalves (UNICNEC), Bento Gonçalves, Rio Grande do Sul, Brazil
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Renata Weigert
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | - Ana Paula Merlo
- Hospital Tacchini, Bento Gonçalves, Rio Grande do Sul, Brazil
| | | | | | | | - Shaiane Silva Tomazoni
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| | - Ernesto Cesar Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Post-graduate Program in Rehabilitation Sciences, Nove de Julho University, São Paulo, Brazil
- Physiotherapy Research Group, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- ELJ Consultancy, Scientific Consultants, São Paulo, Brazil
| |
Collapse
|
6
|
Bricher Choque PN, Vieira RP, Ulloa L, Grabulosa C, Irigoyen MC, De Angelis K, Ligeiro De Oliveira AP, Tracey KJ, Pavlov VA, Consolim-Colombo FM. The Cholinergic Drug Pyridostigmine Alleviates Inflammation During LPS-Induced Acute Respiratory Distress Syndrome. Front Pharmacol 2021; 12:624895. [PMID: 34017249 PMCID: PMC8129580 DOI: 10.3389/fphar.2021.624895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 01/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical illness complication that is associated with high mortality. ARDS is documented in severe cases of COVID-19. No effective pharmacological treatments for ARDS are currently available. Dysfunctional immune responses and pulmonary and systemic inflammation are characteristic features of ARDS pathogenesis. Recent advances in our understanding of the regulation of inflammation point to an important role of the vagus-nerve-mediated inflammatory reflex and neural cholinergic signaling. We examined whether pharmacological cholinergic activation using a clinically approved (for myasthenia gravis) cholinergic drug, the acetylcholinesterase inhibitor pyridostigmine alters pulmonary and systemic inflammation in mice with lipopolysaccharide (LPS)-induced ARDS. Male C57Bl/6 mice received one intratracheal instillation of LPS or were sham manipulated (control). Both groups were treated with either vehicle or pyridostigmine (1.5 mg/kg twice daily, 3 mg/day) administered by oral gavage starting at 1 h post-LPS and euthanized 24 h after LPS administration. Other groups were either sham manipulated or received LPS for 3 days and were treated with vehicle or pyridostigmine and euthanized at 72 h. Pyridostigmine treatment reduced the increased total number of cells and neutrophils in the bronchoalveolar lavage fluid (BALF) in mice with ARDS at 24 and 72 h. Pyridostigmine also reduced the number of macrophages and lymphocytes at 72 h. In addition, pyridostigmine suppressed the levels of TNF, IL-1β, IL-6, and IFN-γ in BALF and plasma at 24 and 72 h. However, this cholinergic agent did not significantly altered BALF and plasma levels of the anti-inflammatory cytokine IL-10. Neither LPS nor pyridostigmine affected BALF IFN-γ and IL-10 levels at 24 h post-LPS. In conclusion, treatments with the cholinergic agent pyridostigmine ameliorate pulmonary and systemic inflammatory responses in mice with endotoxin-induced ARDS. Considering that pyridostigmine is a clinically approved drug, these findings are of substantial interest for implementing pyridostigmine in therapeutic strategies for ARDS.
Collapse
Affiliation(s)
- Pamela Nithzi Bricher Choque
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Rodolfo P. Vieira
- Post-graduation Program in Bioengineering and in Biomedical Engineering, Universidade Brasil, São Paulo, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo, Brazil
- Federal University of São Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation, São Paulo, Brazil
- Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Luis Ulloa
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Caren Grabulosa
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Maria Claudia Irigoyen
- Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, Brazil
| | - Katia De Angelis
- Departament of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Paula Ligeiro De Oliveira
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Kevin J. Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Valentin A. Pavlov
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Fernanda Marciano Consolim-Colombo
- Laboratory of Pulmonary Immunology, Postgraduate Program in Medicine, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Hypertension Unit, Heart Institute (INCOR), Medical School of University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Methods of effective low-level laser therapy in the treatment of patients with bronchial asthma (literature review). Biomedicine (Taipei) 2020; 10:1-20. [PMID: 33854908 PMCID: PMC7608842 DOI: 10.37796/2211-8039.1000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Bronchial asthma is an autoimmune disease, one of the most common and practically non-treatable by standard methods. At present, the used drugs only maintain a state of temporary remission, simultaneously having a negative effect on various organs and structures and causing side effects. At the same time, the experts have ignored more than 50 years of successful experience of low-level laser therapy, the results of hundreds of studies proving the effectiveness of the method in treating patients with all forms of bronchial asthma. It is proved that therapeutic and periodic (2–4 per year) courses of low-level laser therapy can significantly decrease the frequency and severity of attacks, reduce or cancel the reception of medicines, as well as negative consequences. In this brief review, only some part of studies is given as an example; pediatrics issues are almost not discussed. However, the review clearly demonstrates that various methods of laser illumination (specific techniques are given) make it possible to influence almost all the known pathogenesis of the disease, and low-level laser therapy is a truly effective method of treatment. We note that there are very few publications published on the topic outside of Russia. Russian scientists, as always, are ahead of world science and low-level laser therapy practice.
Collapse
|
8
|
Baghizadeh Fini M, Olyaee P, Homayouni A. The Effect of Low-Level Laser Therapy on the Acceleration of Orthodontic Tooth Movement. J Lasers Med Sci 2020; 11:204-211. [PMID: 32273964 DOI: 10.34172/jlms.2020.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In clinical practice, low-level laser therapy (LLLT) is widely used. The main aim of this review is to assess the effectiveness of LLLT in accelerating tooth movement in human subjects. The PRISMA checklist was utilized as a guideline to carry out this systematic review. The electronic databases were searched from Google Scholar (2014-2018) and PubMed, and comprehensive research on this topic was also manually conducted. Therefore, 77 articles randomized clinical trials (RCTs) or controlled clinical trials (CCTs) were selected. After screening studies, consequently, eleven trials met the inclusion criteria. Eight out of 11 studies showed LLLT has a significant impact on the acceleration of orthodontic tooth movement, and there was no statistically significant difference in the rate of tooth movement between the laser group and the control group in the two remaining studies. Furthermore, five out of 11 articles showed that LLLT has no adverse effects. Although we have some degree of understanding from a cellular point of view to LLLT effects, we still do not know whether these cellular level changes have any effect on the clinical acceleration of orthodontic tooth movement. The results are inconclusive and cannot be generalized to the public community; therefore, well-structured studies are required.
Collapse
Affiliation(s)
| | - Pooya Olyaee
- DDS, MSc in Orthodontics, MSc in Implantology, Faculty of Dentistry, Goethe University, Frankfurt, Germany
| | - Ahmadreza Homayouni
- Industrial Engineering and Management Department, Oklahoma State University, US
| |
Collapse
|
9
|
Photobiomodulation modulates the resolution of inflammation during acute lung injury induced by sepsis. Lasers Med Sci 2018; 34:191-199. [DOI: 10.1007/s10103-018-2688-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 12/28/2022]
|
10
|
Ramos L, Marcos RL, Torres-Silva R, Pallota RC, Magacho T, Mafra FFP, Macedo MM, Carvalho RLDP, Bjordal JM, Lopes-Martins RAB. Characterization of Skeletal Muscle Strain Lesion Induced by Stretching in Rats: Effects of Laser Photobiomodulation. Photomed Laser Surg 2018; 36:460-467. [DOI: 10.1089/pho.2018.4473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Luciano Ramos
- Faculdade Pitágoras Guarapari–Rod, Governador Jones dos Santos Neves, Guarapari, Espírito Santo, Brazil
| | - Rodrigo Labat Marcos
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, Brazil
| | - Romildo Torres-Silva
- Postgraduate Program in Biomedical Engineering, Technological Research Center–NPT, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, Brazil
| | - Rodney Capp Pallota
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho, São Paulo, Brazil
| | - Tatiana Magacho
- Faculdade Pitágoras Guarapari–Rod, Governador Jones dos Santos Neves, Guarapari, Espírito Santo, Brazil
| | - Fernando Francisco Pazello Mafra
- Postgraduate Program in Biomedical Engineering, Technological Research Center–NPT, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, Brazil
| | - Michel Monteiro Macedo
- Postgraduate Program in Biomedical Engineering, Technological Research Center–NPT, Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, Brazil
| | | | | | | |
Collapse
|
11
|
Siqueira VPC, Evangelista MIS, Dos Santos A, Marcos RL, Ligeiro-de-Oliveira AP, Pavani C, Damazo AS, Lino-Dos-Santos-Franco A. Light-Emitting Diode treatment ameliorates allergic lung inflammation in experimental model of asthma induced by ovalbumin. JOURNAL OF BIOPHOTONICS 2017; 10:1683-1693. [PMID: 28417574 DOI: 10.1002/jbio.201600247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 06/07/2023]
Abstract
Since asthma is a multifactorial disease where treatment sometimes is not effective, new therapies that improve the respiratory discomfort of patients are of great importance. Phototherapy as Light-emitting diode (LED) has emerged as a treatment that presents good results for diseases that are characterized by inflammation. Thus, our objective was to investigate the effects of LED on lung inflammation, by an evaluation of lung cell infiltration, mucus secretion, oedema, and the production of cytokines. Male Balb/c mice were or not sensitized and challenged with ovalbumin (OVA) and treated or not with LED therapy (1 h and 4 h after each OVA challenge). Twenty-four hours after the last OVA challenge, analyzes were performed. Our results showed that LED treatment in asthmatic mice reduced the lung cell infiltration, the mucus production, the oedema, and the tracheal's contractile response. It also increased the IL-10 and the IFN-gamma levels. The effects of LED treatment on lung inflammation may be modulated by IL-10, IFN-gamma, and by mast cells. This study may provide important information about the effects of LED, and in addition, it may open the possibility of a new approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | - Alana Dos Santos
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Rodrigo Labat Marcos
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Ana Paula Ligeiro-de-Oliveira
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Christiane Pavani
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Amílcar Sabino Damazo
- Department of Basic Science in Health, Faculty of Medical Sciences, Federal University of Cuiabá, Cuiabá, Brazil
| | | |
Collapse
|
12
|
Beneficial effects of Red Light-Emitting Diode treatment in experimental model of acute lung injury induced by sepsis. Sci Rep 2017; 7:12670. [PMID: 28978926 PMCID: PMC5627274 DOI: 10.1038/s41598-017-13117-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/19/2017] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a severe disease with a high mortality index and it is responsible for the development of acute lung injury (ALI). We evaluated the effects of light-emitting diode (LED) on ALI induced by sepsis. Balb-c mice were injected with lipopolysaccharide or saline and then irradiated or not with red LED on their tracheas and lungs for 150 s, 2 and 6 h after LPS injections. The parameters were investigated 24 h after the LPS injections. Red LED treatment reduced neutrophil influx and the levels of interleukins 1β, 17 A and, tumor necrosis factor-α; in addition to enhanced levels of interferon γ in the bronchoalveolar fluid. Moreover, red LED treatment enhanced the RNAm levels of IL-10 and IFN-γ. It also partially reduced the elevated oxidative burst and enhanced apoptosis, but it did not alter the translocation of nuclear factor κB, the expression of toll-like receptor 4 (TLR4), as well as, oedema or mucus production in their lung tissues. Together, our data has shown the beneficial effects of short treatment with LED on ALI that are caused by gram negative bacterial infections. It is suggested that LED applications are an inexpensive and non-invasive additional treatment for sepsis.
Collapse
|
13
|
das Neves MF, Dos Reis MCR, de Andrade EAF, Lima FPS, Nicolau RA, Arisawa EÂL, Andrade AO, Lima MO. Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients. Lasers Med Sci 2016; 31:1293-300. [PMID: 27299571 DOI: 10.1007/s10103-016-1968-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
A cerebrovascular accident (CVA) may affect basic motor functions, including spasticity that may be present in the upper extremity and/or the lower extremity, post-stroke. Spasticity causes pain, muscle force reduction, and decreases the time to onset of muscle fatigue. Several therapeutic resources have been employed to treat CVA to promote functional recovery. The clinical use of low-level laser therapy (LLLT) for rehabilitation of muscular disorders has provided better muscle responses. Thus, the aim of this study was to evaluate the effect of the application of LLLT in spastic muscles in patients with spasticity post-CVA. A double-blind clinical trial was conducted with 15 volunteer stroke patients who presented with post-stroke spasticity. Both males and females were treated; the average age was 51.5 ± 11.8 years old; the participants entered the study ranging from 11 to 48 months post-stroke onset. The patients participated in three consecutive phases (control, placebo, and real LLLT), in which all tests of isometric endurance of their hemiparetic lower limb were performed. LLLT (diode laser, 100 mW 808 nm, beam spot area 0.0314 cm(2), 127.39 J/cm(2)/point, 40 s) was applied before isometric endurance. After the real LLLT intervention, we observed significant reduction in the visual analogue scale for pain intensity (p = 0.0038), increased time to onset of muscle fatigue (p = 0.0063), and increased torque peak (p = 0.0076), but no significant change in the root mean square (RMS) value (electric signal in the motor unit during contraction, as obtained with surface electromyography). Our results suggest that the application of LLLT may contribute to increased recruitment of muscle fibers and, hence, to increase the onset time of the spastic muscle fatigue, reducing pain intensity in stroke patients with spasticity, as has been observed in healthy subjects and athletes.
Collapse
Affiliation(s)
- Marcele Florêncio das Neves
- Universidade do Vale do Paraíba - Laboratório de Engenharia de Reabilotação Sensório Motora, Instituto de Pesquisa e Desenvolvimento, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, SP, Brasil.
| | - Mariana César Ribeiro Dos Reis
- Universidade do Vale do Paraíba - Laboratório de Engenharia de Reabilotação Sensório Motora, Instituto de Pesquisa e Desenvolvimento, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, SP, Brasil
| | - Eliana Aparecida Fonseca de Andrade
- Universidade do Vale do Paraíba - Laboratório de Engenharia de Reabilotação Sensório Motora, Instituto de Pesquisa e Desenvolvimento, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, SP, Brasil
| | - Fernanda Pupio Silva Lima
- Universidade do Vale do Paraíba - Laboratório de Engenharia de Reabilotação Sensório Motora, Instituto de Pesquisa e Desenvolvimento, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, SP, Brasil
| | - Renata Amadei Nicolau
- Universidade do Vale do Paraíba, Centro de Laserterapia e Fotobiologia, Instituto de Pesquisa e Desenvolvimento, São José dos Campos, SP, Brasil
| | - Emília Ângela Loschiavo Arisawa
- Universidade do Vale do Paraíba, Laboratório de Espectroscopia Vibracional Biomédica, Instituto de Pesquisa e Desenvolvimento, São José dos Campos, SP, Brasil
| | | | - Mário Oliveira Lima
- Universidade do Vale do Paraíba - Laboratório de Engenharia de Reabilotação Sensório Motora, Instituto de Pesquisa e Desenvolvimento, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, SP, Brasil
| |
Collapse
|
14
|
Ge MK, He WL, Chen J, Wen C, Yin X, Hu ZA, Liu ZP, Zou SJ. Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review and meta-analysis. Lasers Med Sci 2014; 30:1609-18. [DOI: 10.1007/s10103-014-1538-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/03/2014] [Indexed: 02/07/2023]
|
15
|
Souza NHC, Marcondes PT, Albertini R, Mesquita-Ferrari RA, Fernandes KPS, Aimbire F. Low-level laser therapy suppresses the oxidative stress-induced glucocorticoids resistance in U937 cells: relevance to cytokine secretion and histone deacetylase in alveolar macrophages. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:327-36. [PMID: 24419178 DOI: 10.1016/j.jphotobiol.2013.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is present in severe asthma and contributes to the low response to corticoids through the downregulation of histone deacetylase (HDAC) and the increase of cytokines. Low-level laser therapy (LLLT) has been proven to be an anti-inflammatory. Thus, we investigated the laser effect on lipopolysaccharide (LPS)-induced cytokine secretion and HDAC activity in U937 cells under oxidative stress. U937 cells activated with oxidative stress were treated with dexamethasone (dexa) or laser. Cytokines and phosphoinositide 3-kinase (PI3K) were measured by ELISA whilst the HDAC was detected through colorimetric assay. LPS activated- U937 cells cytokines secretion increased with H2O2 (hydrogen peroxide) as well as with TSA (trichostatin). The HDAC activity in activated U937 cells was decreased. LLLT and dexa inhibited the LPS-stimulated U937 cells cytokines, but dexa effect disappeared with H2O2. With TSA, the LLLT was less effective on H2O2/LPS stimulated- U937 cells cytokines. Dexa failed on H2O2/LPS- induced HDAC, while LLLT restored the HDAC and the dexa effect. LLLT plus prostaglandin E2 (PGE2) increased cyclic adenosine monophosphate (cAMP) and potentiated the laser action on oxidative stress-induced cytokine. LLLT reduced the PI3K and its effects on cytokine and HDAC was suppressed with LY294002. In situations of corticoid resistance, LLLT acts decreasing the cytokines and HDAC through the activation of the protein kinase A via the inhibition of PI3K.
Collapse
Affiliation(s)
- N H C Souza
- Rehabilitation Sciences Department, University Nove de Julho - Rua Vergueiro, 235 São Paulo, SP, Brazil
| | - P T Marcondes
- Department of Science and Technology, Federal University of São Paulo - Unifesp, São José dos Campos, SP, Brazil
| | - R Albertini
- Rehabilitation Sciences Department, University Nove de Julho - Rua Vergueiro, 235 São Paulo, SP, Brazil
| | - R A Mesquita-Ferrari
- Rehabilitation Sciences Department, University Nove de Julho - Rua Vergueiro, 235 São Paulo, SP, Brazil
| | - K P S Fernandes
- Rehabilitation Sciences Department, University Nove de Julho - Rua Vergueiro, 235 São Paulo, SP, Brazil
| | - F Aimbire
- Department of Science and Technology, Federal University of São Paulo - Unifesp, São José dos Campos, SP, Brazil.
| |
Collapse
|
16
|
Kim G, Kim E. Anti-Inflammation Effects of Low Intensity Laser Therapy on Monosodium Iodoacetate-induced Osteoarthritis in Rats. J Phys Ther Sci 2013. [DOI: 10.1589/jpts.25.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gyeyeop Kim
- Department of Physical Therapy, College of Health and Welfare, Dongshin University
| | - Eunjung Kim
- Department of Physical Therapy, Nambu University: Department of Physical Therapy, Nambu University
| |
Collapse
|
17
|
Influence of the HPA axis on the inflammatory response in cutaneous wounds with the use of 670-nm laser photobiomodulation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 116:114-20. [DOI: 10.1016/j.jphotobiol.2012.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 11/22/2022]
|
18
|
Suppressive effect of low-level laser therapy on tracheal hyperresponsiveness and lung inflammation in rat subjected to intestinal ischemia and reperfusion. Lasers Med Sci 2012; 28:551-64. [PMID: 22562449 DOI: 10.1007/s10103-012-1088-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.
Collapse
|
19
|
Low-Level Laser Therapy (LLLT) at 830 nm Positively Modulates Healing of Tracheal Incisions in Rats: A Preliminary Histological Investigation. Photomed Laser Surg 2011; 29:613-8. [DOI: 10.1089/pho.2010.2950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
20
|
de Lima FM, Villaverde A, Albertini R, Corrêa J, Carvalho R, Munin E, Araújo T, Silva J, Aimbire F. Dual Effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: Action on anti- and pro-inflammatory cytokines. Lasers Surg Med 2011; 43:410-20. [DOI: 10.1002/lsm.21053] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Murayama H, Sadakane K, Yamanoha B, Kogure S. Low-power 808-nm laser irradiation inhibits cell proliferation of a human-derived glioblastoma cell line in vitro. Lasers Med Sci 2011; 27:87-93. [DOI: 10.1007/s10103-011-0924-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
|
22
|
Pallotta RC, Bjordal JM, Frigo L, Leal Junior ECP, Teixeira S, Marcos RL, Ramos L, Messias FDM, Lopes-Martins RAB. Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers Med Sci 2011; 27:71-8. [PMID: 21484455 PMCID: PMC3254867 DOI: 10.1007/s10103-011-0906-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/22/2011] [Indexed: 11/27/2022]
Abstract
Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230–250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO2 inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE2 production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation.
Collapse
Affiliation(s)
- Rodney Capp Pallotta
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Low-level laser therapy (LLLT) acts as cAMP-elevating agent in acute respiratory distress syndrome. Lasers Med Sci 2010; 26:389-400. [PMID: 21184127 DOI: 10.1007/s10103-010-0874-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 12/06/2010] [Indexed: 11/27/2022]
Abstract
The aim of this work was to investigate if the low-level laser therapy (LLLT) on acute lung inflammation (ALI) induced by lipopolysaccharide (LPS) is linked to tumor necrosis factor (TNF) in alveolar macrophages (AM) from bronchoalveolar lavage fluid (BALF) of mice. LLLT has been reported to actuate positively for relieving the late and early symptoms of airway and lung inflammation. It is not known if the increased TNF mRNA expression and dysfunction of cAMP generation observed in ALI can be influenced by LLLT. For in vivo studies, Balb/c mice (n = 5 for group) received LPS inhalation or TNF intra nasal instillation and 3 h after LPS or TNF-α, leukocytes in BALF were analyzed. LLLT administered perpendicularly to a point in the middle of the dissected bronchi with a wavelength of 660 nm and a dose of 4.5 J/cm(2). The mice were irradiated 15 min after ALI induction. In vitro AM from mice were cultured for analyses of TNF mRNA expression and protein and adenosine3':5'-cyclic monophosphate (cAMP) levels. One hour after LPS, the TNF and cAMP levels in AM were measured by ELISA. RT-PCR was used to measure TNF mRNA in AM. The LLLT was inefficient in potentiating the rolipram effect in presence of a TNF synthesis inhibitor. LLLT attenuated the neutrophil influx and TNF in BALF. In AM, the laser increased the cAMP and reduced the TNF-α mRNA. LLLT increases indirectly the cAMP in AM by a TNF-dependent mechanism.
Collapse
|
24
|
Mafra de Lima F, Villaverde AB, Salgado MA, Castro-Faria-Neto HC, Munin E, Albertini R, Aimbire F. Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:271-8. [PMID: 20728373 DOI: 10.1016/j.jphotobiol.2010.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 07/08/2010] [Accepted: 07/20/2010] [Indexed: 01/18/2023]
Abstract
It has been suggested that low intensity laser therapy (LILT) acts on pulmonary inflammation. Thus, we investigate in this work if LILT (650nm, 2.5mW, 31.2mW/cm(2), 1.3J/cm(2), laser spot size of 0.08cm(2) and irradiation time of 42s) can attenuate edema, neutrophil recruitment and inflammatory mediators in acute lung inflammation. Thirty-five male Wistar rats (n=7 per group) were distributed in the following experimental groups: control, laser, LPS, LPS+laser and dexamethasone+LPS. Airway inflammation was measured 4h post-LPS challenge. Pulmonary microvascular leakage was used for measuring pulmonary edema. Bronchoalveolar lavage fluid (BALF) cellularity and myeloperoxidase (MPO) were used for measuring neutrophil recruitment and activation. RT-PCR was performed in lung tissue to assess mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin (IL-10), cytokine-induced neutrophil chemoattractant-1 (CINC-1), macrophage inflammatory protein-2 (MIP-2) and intercellular adhesion molecule-1 (ICAM-1). Protein levels in both BALF and lung were determined by ELISA. LILT inhibited pulmonary edema and endothelial cytoskeleton damage, as well as neutrophil influx and activation. Similarly, the LILT reduced the TNF-α and IL-1β, in lung and BALF. LILT prevented lung ICAM-1 up-regulation. The rise of CINC-1 and MIP-2 protein levels in both lung and BALF, and the lung mRNA expressions for IL-10, were unaffected. Data suggest that the LILT effect is due to the inhibition of ICAM-1 via the inhibition of TNF-α and IL-1β.
Collapse
Affiliation(s)
- F Mafra de Lima
- Institute of Research and Development, Av. Shishima Hifumi, Urbanova, São José dos Campos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Low-level laser therapy (LLLT) attenuates RhoA mRNA expression in the rat bronchi smooth muscle exposed to tumor necrosis factor-α. Lasers Med Sci 2010; 25:661-8. [DOI: 10.1007/s10103-010-0766-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Indexed: 10/24/2022]
|
26
|
Mafra de Lima F, Costa MS, Albertini R, Silva JA, Aimbire F. Low level laser therapy (LLLT): attenuation of cholinergic hyperreactivity, beta(2)-adrenergic hyporesponsiveness and TNF-alpha mRNA expression in rat bronchi segments in E. coli lipopolysaccharide-induced airway inflammation by a NF-kappaB dependent mechanism. Lasers Surg Med 2009; 41:68-74. [PMID: 19143014 DOI: 10.1002/lsm.20735] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVES It is unknown if the decreased ability to relax airways smooth muscles in asthma and other inflammatory disorders, such as acute respiratory distress syndrome (ARDS), can be influenced by low level laser therapy (LLLT) irradiation. In this context, the present work was developed in order to investigate if LLLT could reduce dysfunction in inflamed bronchi smooth muscles (BSM) in rats. STUDY DESIGN/MATERIALS AND METHODS A controlled ex vivo study was developed where bronchi from Wistar rat were dissected and mounted in an organ bath apparatus with or without a TNF-alpha. RESULTS LLLT administered perpendicularly to a point in the middle of the dissected bronchi with a wavelength of 655 nm and a dose of 2.6 J/cm(2), partially decreased BSM hyperreactivity to cholinergic agonist, restored BSM relaxation to isoproterenol and reduced the TNF-alpha mRNA expression. An NF-kappaB antagonist (BMS205820) blocked the LLLT effect on dysfunction in inflamed BSM. CONCLUSION The results obtained in this work indicate that the LLLT effect on alterations in responsiveness of airway smooth muscles observed in TNF-alpha-induced experimental acute lung inflammation seems to be dependent of NF-kappaB activation.
Collapse
Affiliation(s)
- F Mafra de Lima
- Institute of Research and Development (IP&D), São Paulo, Brazil
| | | | | | | | | |
Collapse
|
27
|
Yamasaki A, Tamamura K, Sakurai Y, Okuyama N, Yusa J, Ito H. Remodeling of the rat gingiva induced by CO2 laser coagulation mode. Lasers Surg Med 2009; 40:695-703. [PMID: 19065560 DOI: 10.1002/lsm.20712] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES This study was conducted to clarify the morphologic characteristics and subsequent repair process of coagulation necrosis produced by pulsed CO(2) laser irradiation with relatively low fluence, and thereby to evaluate the clinical efficacy of this irradiation mode. STUDY DESIGN/MATERIALS AND METHODS Wounding of rat gingiva to produce coagulation necrosis was done with a CO(2) laser with a fluence of 326 J/cm(2). The structural characteristics of the wound and subsequent repair process were examined by means of histology, immunohistochemistry, and electron microscopy. RESULTS At 6 hours after irradiation, the cells in the laser wound appeared histologically intact but had lost the immunoreactivity to antibodies against Hsp47 and exhibited various ultrastructural signs of cell death. This wound area was lined by Hsp70-positive cells. At 1-day post-irradiation, the uptake of BrdU rapidly increased in the adjacent epithelium and connective tissue. The re-epithelization commenced at 1 day and was completed by 7 days. The necrotic tissue gradually became integrated within the newly formed connective tissue and the original contour of the gingiva was retained during the repair process. The repair process of the laser-induced wound progressed more rapidly than that of a scalpel-made wound. CONCLUSIONS The present study suggests that the coagulation necrosis produced by the low fluence pulsed CO(2) laser does not disturb the repair process but promotes its steady progress and subsequent tissue remodeling. This laser mode will pave the way for more conservative and minimally invasive surgery for treating a wide variety of oral soft tissue disorders.
Collapse
Affiliation(s)
- Akira Yamasaki
- Department of Oral Medical Sciences, Division of Oral Pathology, Ohu University School of Dentistry, Koriyama, Fukushima 963-8611, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Aimbire F, de Lima FM, Costa MS, Albertini R, Correa JC, Iversen VV, Bjordal JM. Effect of low level laser therapy on bronchial hyper-responsiveness. Lasers Med Sci 2008; 24:567-76. [PMID: 19005736 DOI: 10.1007/s10103-008-0612-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 08/28/2008] [Indexed: 02/03/2023]
Abstract
The objective of this study was to investigate whether low level laser therapy (LLLT) could reduce bronchial hyper-responsiveness (BHR) induced by tumour necrosis factor-alpha (TNF-alpha) modulating the metabolism of inositol phosphate (IP) in bronchial smooth muscle cells (BSMCs). The study was on 28 Wistar rats, randomly divided into four groups. Irradiation (1.3 J/cm(2)) was administered 5 min and 4 h after bronchial smooth muscle (BSM) had been suspended in TNF-alpha baths, and the contractile response-induced calcium ion (Ca(2+)) sensitization was measured. The BSMCs were isolated, and the IP accumulation was measured before and after TNF-alpha immersion in the groups that had been irradiated or not irradiated. BSM segments significantly increased contraction 24 h after TNF-alpha immersion when exposed to carbachol (CCh) as Ca(2+), but it was significantly reduced by 64% and 30%, respectively, after laser treatment. The increase in IP accumulation induced by CCh after TNF-alpha immersion was reduced in the BSMCs by LLLT. The dose of 2.6 J/cm(2) reduced BHR and IP accumulation in the rats' inflammatory BSMCs.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bronchial Hyperreactivity/chemically induced
- Bronchial Hyperreactivity/physiopathology
- Bronchial Hyperreactivity/radiotherapy
- Calcium/metabolism
- Carbachol/pharmacology
- DNA Primers/genetics
- Gene Expression/radiation effects
- In Vitro Techniques
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol Phosphates/metabolism
- Low-Level Light Therapy
- Macrocyclic Compounds/pharmacology
- Male
- Muscle Contraction/drug effects
- Muscle Contraction/radiation effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Myocytes, Smooth Muscle/radiation effects
- Oxazoles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Flávio Aimbire
- Institute of Research and Development, University of Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
30
|
Shi X, Zheng Y, Liu Z, Yang W. A model of calcium signaling and degranulation dynamics induced by laser irradiation in mast cells. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0255-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Aimbire F, Ligeiro de Oliveira AP, Albertini R, Corrêa JC, Ladeira de Campos CB, Lyon JP, Silva JA, Costa MS. Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1beta levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation 2008; 31:189-97. [PMID: 18421573 DOI: 10.1007/s10753-008-9064-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 02/20/2008] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Low level laser therapy (LLLT) is a known anti-inflammatory therapy. Herein we studied the effect of LLLT on lung permeability and the IL-1beta level in LPS-induced pulmonary inflammation. STUDY DESIGN/METHODOLOGY: Rats were divided into 12 groups (n = 7 for each group). Lung permeability was measured by quantifying extravasated albumin concentration in lung homogenate, inflammatory cells influx was determined by myeloperoxidase activity, IL-1beta in BAL was determined by ELISA and IL-1beta mRNA expression in trachea was evaluated by RT-PCR. The rats were irradiated on the skin over the upper bronchus at the site of tracheotomy after LPS. RESULTS LLLT attenuated lung permeability. In addition, there was reduced neutrophil influx, myeloperoxidase activity and both IL-1beta in BAL and IL-1beta mRNA expression in trachea obtained from animals subjected to LPS-induced inflammation. CONCLUSION LLLT reduced the lung permeability by a mechanism in which the IL-1beta seems to have an important role.
Collapse
Affiliation(s)
- F Aimbire
- Instituto de Pesquisa & Desenvolvimento-IP&D, Universidade do Vale do Paraíba-UNIVAP, Av. Shishima Hifumi, 2911, CEP: 12244-000, São José dos Campos, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Albertini R, Villaverde AB, Aimbire F, Bjordal J, Brugnera A, Mittmann J, Silva JA, Costa M. Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Photomed Laser Surg 2008; 26:19-24. [PMID: 18248157 DOI: 10.1089/pho.2007.2119] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The objective of this work was to investigate the anti-inflammatory effects of low-level laser therapy, applied at different wavelengths (660 and 684 nm), on cytokine mRNA expression after carrageenan-induced acute inflammation in rat paw. BACKGROUND DATA Low-level laser therapy (LLLT) has been observed to reduce pain in inflammatory disorders. However, little is known about the mechanisms behind this effect or whether it is wavelength-specific. MATERIALS AND METHODS The test sample consisted of 32 rats divided into four groups: A(1) (control-saline), A(2) (carrageenan-only), A(3) (carrageenan + 660 nm laser therapy), and A(4) (carrageenan + 684 nm laser therapy). The animals from groups A(3) and A(4) were irradiated 1 h after induction of inflammation by carrageenan injection. Continuous-wave red lasers with wavelengths of 660 and 684 nm and dose of 7.5 J/cm(2) were used. RESULTS Both the 660 nm and 684 nm laser groups had 30%-40% lower mRNA expression for cytokines TNF-alpha, IL-1beta, and IL-6 in the paw muscle tissue than the carrageenan-only control group. Cytokine measurements were made 3 h after laser irradiation of the paw muscle, and all cytokine differences between the carrageenan-only control group and the LLLT groups were statistically significant (p < 0.001). CONCLUSIONS LLLT at the 660-nm and 684-nm wavelengths administered to inflamed rat paw tissue at a dose of 7.5 J/cm(2) reduce cytokine mRNA expression levels within 3 h in the laser-irradiated tissue.
Collapse
Affiliation(s)
- Regiane Albertini
- Instituto de Pesquisa and Desenvolvimento (IP&D), Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol 2008; 8:603-5. [PMID: 18328453 DOI: 10.1016/j.intimp.2007.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-level laser therapy (LLLT) is a known modulator of inflammatory process. Herein we studied the effect of 660 nm diode laser on mRNA levels of neutrophils anti-apoptotic factors in lipopolysaccharide (LPS)-induced lung inflammation. STUDY DESIGN/METHODOLOGY: Mice were divided into 8 groups (n=7 for each group) and irradiated with energy dosage of 7.5 J/cm(2). The Bcl-xL and A1 mRNA levels in neutrophils were evaluated by Real Time-PCR (RT-PCR). The animals were irradiated after exposure time of LPS. RESULTS LLLT and an inhibitor of NF-kappaB nuclear translocation (BMS 205820) attenuated the mRNA levels of Bcl-xL and A1 mRNA in lung neutrophils obtained from mice subjected to LPS-induced inflammation. CONCLUSION LLLT reduced the levels of anti-apoptotic factors in LPS inflamed mice lung neutrophils by an action mechanism in which the NF-kappaB seems to be involved.
Collapse
|
34
|
Bibliography. Current world literature. Laryngology and bronchoesophagology. Curr Opin Otolaryngol Head Neck Surg 2007; 15:417-24. [PMID: 17986882 DOI: 10.1097/moo.0b013e3282f3532f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Correa F, Lopes Martins RAB, Correa JC, Iversen VV, Joenson J, Bjordal JM. Low-Level Laser Therapy (GaAs λ = 904 nm) Reduces Inflammatory Cell Migration in Mice with Lipopolysaccharide-Induced Peritonitis. Photomed Laser Surg 2007; 25:245-9. [PMID: 17803379 DOI: 10.1089/pho.2007.2079] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study was designed to study the effect of an infrared low-level laser (GaAs lambda = 904 nm, 4 mW) on inflammatory cell migration in lipopolysaccharide (LPS)-induced peritonitis in mice. BACKGROUND DATA It has been suggested that red wavelengths of low-level laser therapy (LLLT) can exert anti-inflammatory effects, but little is known about the anti-inflammatory effects of infrared lasers. Peritonitis is a potentially life-threatening inflammatory condition that may be suitable for studying anti-inflammatory effects of infrared lasers. METHODS Sixty male mice were randomly divided into five groups, and one group was given an intraperitoneal sterile saline injection. In the remaining four groups, peritonitis was induced by an intraperitoneal LPS injection. Animals in three of the LPS groups were irradiated at a single point over the peritoneum with doses of 3 J/cm(2), 7.5 J/cm(2), and 15 J/cm(2), respectively. The fourth group injected with LPS was an LPS-control group. RESULTS At 6 hours after injection the groups irradiated with doses of 3 J/cm(2) and 7.5 J/cm(2) had a reduced number of neutrophil cells in the peritoneal cavity compared with the LPS-control group, and there were significant differences between the number of neutrophils in the peritoneal cavity between the LPS-control group and groups irradiated with doses of 3 J/cm(2) (-42%) and 7.5 J/cm(2) (-70%). In the group irradiated with 15 J/cm(2), neutrophil cell counts were lower than, but not significantly different from, LPS controls (-38%; p = 0.07). At 24 hours after injection, both neutrophil and total leukocyte cell counts were lower in all the irradiated groups than in the LPS controls. The 3-J/cm(2) exposure group showed the best results at 24 hours, with reductions of 77% in neutrophil and 49% in leukocyte counts. CONCLUSION Low-level laser therapy (904 nm) can reduce inflammatory cell migration in mice with LPS-induced peritonitis in a dose-dependent manner.
Collapse
|