1
|
Shi Z, Li S, Chen W, Yan H. The effect of blue and green light on human umbilical cord mesenchymal stem cells for promoting proliferation and wound healing. Sci Rep 2025; 15:14787. [PMID: 40295587 PMCID: PMC12037727 DOI: 10.1038/s41598-025-99083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Photobiomodulation (PBM) has been widely utilized in regenerative medicine, including dermatology, dentistry, and neurology. However, the optimal energy density of PBM for human umbilical cord mesenchymal stem cells (hUC-MSCs) remains underexplored, hindering its development and potential clinical application. This study aims to identify the optimal wavelength and irradiation fluence for promoting the proliferation of hUC-MSCs by comparing the effects of different wavelengths and irradiation fluences. Our results show that green light enhances the anti-inflammatory properties of hUC-MSCs, with the 76s being the most effective in inhibiting IL-6 and GM-CSF. Blue light with 38 s is more effective in promoting angiogenesis, significantly increasing the mRNA and protein secretion of VEGF, HGF, and FGF2 compared to the non-irradiated group. The peak secretion times varied, with VEGF and FGF2 peaking at 72 h and HGF at 24 h. RNA-Seq confirms the significant roles of blue and green light in inhibiting epithelial-mesenchymal transition and inflammation. In vitro co-culture models and conditioned media experiments validate these anti-inflammatory effects. These findings have important implications for accelerating the clinical application of stem cell therapies and provide new references for PBM use in hUC-MSCs.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Hong Yan
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Plastic, Aesthetic, Reparative and Reconstructive Surgery/Wound Repair Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Yang L, Wang L, Zhang Z, Zhang S, He Y, Wang Y, Li B, Zhou J, Hong L. Homogeneous synthesis of cationic celluloses with broad-spectrum antibacterial activities for the treatment of vaginitis in mice. Carbohydr Polym 2025; 349:122950. [PMID: 39643416 DOI: 10.1016/j.carbpol.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Microbial infection is a significant health issue for humans. Despite the development of numerous antibiotics, the continuous rise of drug-resistant bacteria highlights the urgent need for new materials to combat these problems. In this study, four water-soluble quaternized cellulose (QC) derivatives with degrees of substitution (DS) ranging from 0.23 to 0.45 were synthesized homogeneously from cellulose carbamate (CC) in NaOH/ZnO aqueous solution. The QC derivatives exhibited broad-spectrum antibacterial activity against gram-negative/positive bacteria, fungi and drug-resistance bacteria. Models of bacterial vaginitis (BV) and vulvovaginal candidiasis (VVC) were used to evaluate the application of QC derivatives visually. Secretion smears and tissue section staining revealed that treatment with QC derivatives led to a reduction in mycelia and spores in the vagina and secretions in the VVC model, along with improved inflammation. In the BV model, vaginal secretions were reduced, clue cells in smears significantly decreased, and inflammation markedly improved. Additionally, cell experiments and staining of mouse organ tissue sections demonstrated that QC derivatives exhibited good biocompatibility. Therefore, using QC derivatives in flushing douches represents a novel approach for treating vaginitis and could serve as a benchmark for addressing other infectious diseases.
Collapse
Affiliation(s)
- Lian Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, 423000, China
| | - Lujie Wang
- Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zihui Zhang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Gynecology and Obstetrics, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443003, China
| | - Shufei Zhang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yong He
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ying Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bingshu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China.
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
3
|
Tu Y, Pan C, Huang Y, Ye Y, Zheng Y, Cao D, Lv Y. Red and blue LED light increases the survival rate of random skin flaps in rats after MRSA infection. Lasers Med Sci 2025; 40:34. [PMID: 39847197 DOI: 10.1007/s10103-025-04294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats. Forty male SD rats were divided into control and light-emitting diode-red and blue light-treated (LED-RBL) groups at a ratio of 1:1 and a McFarland flap procedure was performed, which was subsequently infected with MRSA strains. After 7 days, the appearance and survival of the flaps were evaluated. The microvascular density was determined by hematoxylin and eosin (HE) staining. The expression levels of vascular endothelial growth factor (VEGF), hypoxia inducible factor 1α (HIF-1α), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (normally expressed as AKT) were detected by immunohistochemistry. The flap survival rate and microvascular density in the LED-RBL group were significantly higher than those in the control group (P < 0.05). In addition, the VEGF, HIF1-α, PI3K, and AKT levels were significantly higher in the LED-RBL group compared to the control group (P < 0.05). Red and blue light increased the survival area of the infected flap in rats by promoting angiogenesis, relieving oxidative stress, and reducing bacterial loads, indicating that PBM therapy is a convenient, simple, analgesic, and safe treatment intervention in promoting the survival rate of transplanted flaps after wound repair surgery.
Collapse
Affiliation(s)
- Yiqian Tu
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Chenyu Pan
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Ye Huang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Yujie Ye
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Yunfeng Zheng
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Dongsheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
| | - Yang Lv
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
| |
Collapse
|
4
|
Kim S, Park J, Choi Y, Jeon H, Lim N. Investigating the Relevance of Cyclic Adenosine Monophosphate Response Element-Binding Protein to the Wound Healing Process: An In Vivo Study Using Photobiomodulation Treatment. Int J Mol Sci 2024; 25:4838. [PMID: 38732058 PMCID: PMC11084265 DOI: 10.3390/ijms25094838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Monitoring inflammatory cytokines is crucial for assessing healing process and photobiomodulation (PBM) enhances wound healing. Meanwhile, cAMP response element-binding protein (CREB) is a regulator of cellular metabolism and proliferation. This study explored potential links between inflammatory cytokines and the activity of CREB in PBM-treated wounds. A total of 48 seven-week-old male SD rats were divided into four groups (wound location, skin or oral; treatment method, natural healing or PBM treatment). Wounds with a 6 mm diameter round shape were treated five times with an 808 nm laser every other day (total 60 J). The wound area was measured with a caliper and calculated using the elliptical formula. Histological analysis assessed the epidermal regeneration and collagen expression of skin and oral tissue with H&E and Masson's trichrome staining. Pro-inflammatory (TNF-α) and anti-inflammatory (TGF-β) cytokines were quantified by RT-PCR. The ratio of phosphorylated CREB (p-CREB) to unphosphorylated CREB was identified through Western blot. PBM treatment significantly reduced the size of the wounds on day 3 and day 7, particularly in the skin wound group (p < 0.05 on day 3, p < 0.001 on day 7). The density of collagen expression was significantly higher in the PBM treatment group (in skin wound, p < 0.05 on day 3, p < 0.001 on day 7, and p < 0.05 on day 14; in oral wound, p < 0.01 on day 7). The TGF-β/TNF-α ratio and the p-CREB/CREB ratio showed a parallel trend during wound healing. Our findings suggested that the CREB has potential as a meaningful marker to track the wound healing process.
Collapse
Affiliation(s)
- Sungyeon Kim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
| | - Jion Park
- Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Chungnam, Republic of Korea;
| | - Younghoon Choi
- Institute of Medical Science, Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea;
| | - Hongbae Jeon
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
- Dankook Physician Scientist Research Center (DPSRC), Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea
| | - Namkyu Lim
- Department of Plastic and Reconstructive Surgery, Dankook University College of Medicine, Cheonan 31116, Chungnam, Republic of Korea; (S.K.); (H.J.)
- Dankook Physician Scientist Research Center (DPSRC), Dankook University Hospital, Cheonan 31116, Chungnam, Republic of Korea
| |
Collapse
|
5
|
Shen H, Zhang Q, Peng L, Ma W, Guo J. Cutaneous Mycobacterium Abscessus Infection Following Plastic Surgery: Three Case Reports. Clin Cosmet Investig Dermatol 2024; 17:637-647. [PMID: 38505806 PMCID: PMC10949168 DOI: 10.2147/ccid.s445175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Aim Mycobacterium abscessus is ubiquitous in the environment and seldom causes infections in immunocompetent individuals. However, skin and soft tissue infections caused by M. abscessus have been reported in recent years. Additionally, the cutaneous infections or outbreaks post cosmetic surgery caused by M. abscessus have been increasing due to the popularity of plastic surgery. The main modes of transmission are through contaminated saline, disinfectants, or surgery equipment, as well as close contact between patients. This article describes three patients who were admitted to our hospital between November 2019 and October 2020. They presented with long-term non-healing wounds caused by M. abscessus infection after undergoing plastic surgery. Symptoms presented by the three patients included swelling, ulceration, secretion, and pain. After identification of M. abscessus with Ziehl-Neelsen staining and MALDI-TOF MS system, the patients were treated with surgical debridement and clarithromycin. Conclusion It is important to note that a long-term wound that does not heal, especially after plastic surgery, should raise suspicion for M. abscessus infection. The infection mechanism in these three patients may have been due to exposure to surgical equipment that was not properly sterilized or due to poor sterile technique by the plastic surgeon. To prevent such infections, it is important to ensure proper sterilization of surgical equipment and saline.
Collapse
Affiliation(s)
- Hongwei Shen
- Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People’s Republic of China
| | - Qiaomin Zhang
- Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People’s Republic of China
| | - Liang Peng
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People’s Republic of China
| | - Wen Ma
- Clinical Laboratory, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People’s Republic of China
| | - Jingdong Guo
- Department of Burns and Plastic Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
6
|
Hung WK, Tseng YH, Lin CC, Chen SA, Hsu CH, Li CF, Chen YJ, Tseng ZL. Anion-Exchange Blue Perovskite Quantum Dots for Efficient Light-Emitting Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3957. [PMID: 36432243 PMCID: PMC9693500 DOI: 10.3390/nano12223957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
In this study, blue perovskite quantum dots (PQDs) were prepared using didodecyldimethylammonium bromide (DDAB), which can passivate surface defects caused by the loss of surface ligands and reduce particle size distribution. After the passivation of DDAB, blue CsPbClxBr3-x PQDs dispersed in n-octane produced a more compact and uniform PQD thin film than the non-passivated ones. The resulting device showed a stabile lifetime, and an EL peak of 470 nm and a maximum EQE of 1.63% were obtained at an operating voltage of 2.6 V and a current density of 0.34 mA/cm2. This work aims to provide a simple method to prepare blue-emitting PQDs and high-performance PQD-based light-emitting devices.
Collapse
Affiliation(s)
- Wei-Kuan Hung
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yi-Hsun Tseng
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chun-Cheng Lin
- Department of Mathematic and Physical Sciences, General Education, R.O.C. Air Force Academy, Kaohsiung 820009, Taiwan
| | - Sih-An Chen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
- Department of Mathematic and Physical Sciences, General Education, R.O.C. Air Force Academy, Kaohsiung 820009, Taiwan
| | | | - Chen-Feng Li
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Yen-Ju Chen
- Department of Electronic Engineering, Ming Chi University of Technology, New Taipei 243303, Taiwan
| | - Zong-Liang Tseng
- Department of Electronic Engineering, Ming Chi University of Technology, New Taipei 243303, Taiwan
| |
Collapse
|