1
|
Chen C, Wang Q, Yang Z, Zuo S, Cao K, Li H. MULTIPLE MACHINE LEARNING METHODS AND COMPARATIVE TRANSCRIPTOMICS IDENTIFY PIVOTAL GENES FOR ISCHEMIA-REPERFUSION INJURY IN HUMAN DONOR TISSUE UNDERGOING ORTHOTOPIC LIVER TRANSPLANTATION. Shock 2024; 61:229-239. [PMID: 37878485 DOI: 10.1097/shk.0000000000002250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Background: Hepatic ischemia-reperfusion injury (HIRI) is a major complication affecting patient prognosis during the period after orthotopic liver transplantation (OLT). Although an increasing number of scientists have investigated the molecular biology of ischemia-reperfusion injury (IRI) during OLT in animal and cellular models in recent years, studies using comprehensive and high-quality sequencing results from human specimens to screen for key molecules are still lacking. Aims: The objective of this study is to explore the molecular biological pathways and key molecules associated with HIRI during OLT through RNA sequencing and related bioinformatics analysis techniques. Methods: The study was done by performing mRNA sequencing on liver tissue samples obtained from 15 cases of in situ liver transplantation patients who experienced ischemia and reperfusion injury within 1 year at Guizhou Medical University, and combined with bioinformatics analysis and machine learning methods, we identified the genes and transcription factors that are closely associated with IRI during in situ liver transplantation surgery. Results: There were 877 differentially expressed genes (DEGs) identified in the included liver samples, of which 817 DEGs were upregulated and 60 were downregulated. Functional enrichment analysis revealed significant enrichment of immune-related terms, such as inflammation, defense responses, responses to cytokines, immune system processes, and cellular activation. In addition, core gene enrichment analysis after cytoHubba screening suggested that liver reperfusion injury might be associated with translation-related elements as a pathway together with protein translation processes. Machine learning with the weighted correlation network analysis screening method identified PTGS2, IRF1, and CDKN1A as key genes in the reperfusion injury process. Conclusions: This study demonstrated that the pathways and genomes whose expression is altered throughout the reperfusion process might be critical for the progression of HIRI during OLT.
Collapse
Affiliation(s)
| | | | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, 550001 Guiyang, Guizhou, China
| | - Kun Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, 550001 Guiyang, Guizhou, China
| | - Haiyang Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, 550001 Guiyang, Guizhou, China
| |
Collapse
|
2
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
3
|
Lu Y, Pan X, Cao C, Fan S, Tan H, Cui S, Liu Y, Cui D. MnO 2 Coated Mesoporous PdPt Nanoprobes for Scavenging Reactive Oxygen Species and Solving Acetaminophen-Induced Liver Injury. Adv Healthc Mater 2023; 12:e2300163. [PMID: 37184887 DOI: 10.1002/adhm.202300163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/23/2023] [Indexed: 05/16/2023]
Abstract
As one of the most widely used drugs, acetaminophen, is the leading cause of acute liver injury. In addition, acetaminophen-induced liver injury (AILI) has a strong relationship with the overproduced reactive oxygen species, which can be effectively eliminated by nanozymes. To address these challenges, mesoporous PdPt@MnO2 nanoprobes (PPM NPs) mimicking peroxide, catalase, and superoxide dismutase-like properties are synthesized. They demonstrate nontoxicity, high colloidal stability, and exceptional reactive oxygen species (ROS)-scavenging ability. By scavenging excessive ROS, decreasing inflammatory cytokines, and inhibiting the recruitment and activation of monocyte/macrophage cells and neutrophils, the pathology mechanism of PPM NPs in AILI is confirmed. Moreover, PPM NPs' therapeutic effect and good biocompatibility may facilitate the clinical treatment of AILI.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shanshan Fan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Shengsheng Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Lu Y, Cao C, Pan X, Liu Y, Cui D. Structure design mechanisms and inflammatory disease applications of nanozymes. NANOSCALE 2022; 15:14-40. [PMID: 36472125 DOI: 10.1039/d2nr05276h] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanozymes are artificial enzymes with high catalytic activity, low cost, and good biocompatibility, and have received ever-increasing attention in recent years. Various inorganic and organic nanoparticles have been found to exhibit enzyme-like activities and are used as nanozymes for diverse biomedical applications ranging from tumor imaging and therapeutics to detection. However, their further clinical applications are hindered by the potential toxicity and long-term retention of nanomaterials in vivo. Clarifying the catalytic mechanism of nanozymes and identifying the key factors responsible for their behavior can guide the design of nanozyme structure, enlighten the ways to improve their enzyme-like activities, and minimize the dosage of nanozymes, leading to reduced toxicity to the human body for a real biomedical application prospect. In particular, inflammation occurring in numerous diseases is closely related to reactive oxygen species, and the active oxygen scavenging ability of nanozymes potentially exerts excellent therapeutic effects on inflammatory diseases. In this review, we systematically summarize the structure-activity relationship of nanozymes, including regulation strategies for size and morphology, surface structure, and composition. Based on the structure-activity mechanisms, a series of chemically designed nanozymes developed to target various inflammatory diseases are briefly summarized.
Collapse
Affiliation(s)
- Yi Lu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Cheng Cao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China.
- National Engineering Center for Nanotechnology, Shanghai 200240, People's Republic of China.
| |
Collapse
|
5
|
Wang C, Yu H, Lu S, Ke S, Xu Y, Feng Z, Qian B, Bai M, Yin B, Li X, Hua Y, Dong L, Li Y, Zhang B, Li Z, Chen D, Chen B, Zhou Y, Pan S, Fu Y, Jiang H, Wang D, Ma Y. LncRNA Hnf4αos exacerbates liver ischemia/reperfusion injury in mice via Hnf4αos/Hnf4α duplex-mediated PGC1α suppression. Redox Biol 2022; 57:102498. [PMID: 36242914 PMCID: PMC9576992 DOI: 10.1016/j.redox.2022.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
LncRNAs are involved in the pathophysiologic processes of multiple diseases, but little is known about their functions in hepatic ischemia/reperfusion injury (HIRI). As a novel lncRNA, the pathogenetic significance of hepatic nuclear factor 4 alpha, opposite strand (Hnf4αos) in hepatic I/R injury remains unclear. Here, differentially expressed Hnf4αos and Hnf4α antisense RNA 1 (Hnf4α-as1) were identified in liver tissues from mouse ischemia/reperfusion models and patients who underwent liver resection surgery. Hnf4αos deficiency in Hnf4αos-KO mice led to improved liver function, alleviated the inflammatory response and reduced cell death. Mechanistically, we found a regulatory role of Hnf4αos-KO in ROS metabolism through PGC1α upregulation. Hnf4αos also promoted the stability of Hnf4α mRNA through an RNA/RNA duplex, leading to the transcriptional activation of miR-23a and miR-23a depletion was required for PGC1α function in hepatoprotective effects on HIRI. Together, our findings reveal that Hnf4αos elevation in HIRI leads to severe liver damage via Hnf4αos/Hnf4α/miR-23a axis-mediated PGC1α inhibition.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Hongjun Yu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Shounan Lu
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Shanjia Ke
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; The First Department of General Surgery, The Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Baolin Qian
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Miaoyu Bai
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Bing Yin
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Xinglong Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqian Dong
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yao Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bao Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Zhongyu Li
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bangliang Chen
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China; Department of Anorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, China.
| |
Collapse
|
6
|
Zhou J, Guo L, Ma T, Qiu T, Wang S, Tian S, Zhang L, Hu F, Li W, Liu Z, Hu Y, Wang T, Kong C, Yang J, Zhou J, Li H. N-acetylgalactosaminyltransferase-4 protects against hepatic ischemia/reperfusion injury by blocking apoptosis signal-regulating kinase 1 N-terminal dimerization. Hepatology 2022; 75:1446-1460. [PMID: 34662438 DOI: 10.1002/hep.32202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Ischemia-reperfusion (I/R) injury is an inevitable complication of liver transplantation (LT) and compromises its prognosis. Glycosyltransferases have been recognized as promising targets for disease therapy, but their roles remain open for study in hepatic I/R (HIR) injury. Here, we aim to demonstrate the exact function and molecular mechanism of a glycosyltransferase, N-acetylgalactosaminyltransferase-4 (GALNT4), in HIR injury. APPROACH AND RESULTS By an RNA-sequencing data-based correlation analysis, we found a close correlation between GALNT4 expression and HIR-related molecular events in a murine model. mRNA and protein expression of GALNT4 were markedly up-regulated upon reperfusion surgery in both clinical samples from subjects who underwent LT and in a mouse model. We found that GALNT4 deficiency significantly exacerbated I/R-induced liver damage, inflammation, and cell death, whereas GALNT4 overexpression led to the opposite phenotypes. Our in-depth mechanistic exploration clarified that GALNT4 directly binds to apoptosis signal-regulating kinase 1 (ASK1) to inhibit its N-terminal dimerization and subsequent phosphorylation, leading to a robust inactivation of downstream c-Jun N-terminal kinase (JNK)/p38 and NF-κB signaling. Intriguingly, the inhibitory capacity of GALNT4 on ASK1 activation is independent of its glycosyltransferase activity. CONCLUSIONS GALNT4 represents a promising therapeutic target for liver I/R injury and improves liver surgery prognosis by inactivating the ASK1-JNK/p38 signaling pathway.
Collapse
Affiliation(s)
- Jiangqiao Zhou
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Lina Guo
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
| | - Tengfei Ma
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of NeurologyHuanggang Central HospitalHuanggangChina
- Huanggang Institute of Translational MedicineHuanggangChina
| | - Tao Qiu
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Sichen Wang
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
| | - Song Tian
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Li Zhang
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fengjiao Hu
- Institute of Model AnimalWuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wei Li
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhen Liu
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yufeng Hu
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Tianyu Wang
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Chenyang Kong
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
| | - Juan Yang
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Junjie Zhou
- Institute of Model AnimalWuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Hongliang Li
- Department of Organ TransplantationRenmin HospitalSchool of Basic Medical SciencesWuhan UniversityWuhanChina
- Institute of Model AnimalWuhan UniversityWuhanChina
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Medical Science Research CenterZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
7
|
Chen Q, Song Y, Yang N, Ai X, Pu L, Kong L. Aging deteriorated liver Ischemia and reperfusion injury by suppressing Tribble's proteins 1 mediated macrophage polarization. Bioengineered 2022; 13:14519-14533. [PMID: 36694470 PMCID: PMC9995131 DOI: 10.1080/21655979.2022.2090218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aggravated liver injury has been reported in aged ischemia/reperfusion-stressed livers; however, the mechanism of aged macrophage inflammatory regulation is not well understood. Here, we found that the adaptor protein TRIB1 plays a critical role in the differentiation of macrophages and the inflammatory response in the liver after ischemia/reperfusion injury. In the present study, we determined that aging promoted macrophage-mediated liver injury and that inflammation was mainly responsible for lower M2 polarization in liver transplantation-exposed humans post I/R. Young and aged mice were subjected to hepatic I/R modeling and showed that aging aggravated liver injury and suppressed macrophage TRIB1 protein expression and anti-inflammatory function in I/R-stressed livers. Restoration of TRIB1 is mediated by lentiviral infection-induced macrophage anti-inflammatory M2 polarization and alleviated hepatic I/R injury. Moreover, TRIB1 overexpression in macrophages facilitates M2 polarization and anti-inflammation by activating MEK1-ERK1/2 signaling under IL-4 stimulation. Taken together, our results demonstrated that aging promoted hepatic I/R injury by suppressing TRIB1-mediated MEK1-induced macrophage M2 polarization and anti-inflammatory function.
Collapse
Affiliation(s)
- Qi Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yating Song
- Department of Bariatric and Metabolic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningli Yang
- Department of Bariatric and Metabolic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Ai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Hepatic interferon regulatory factor 8 expression mediates liver ischemia/reperfusion injury in mice. Biochem Pharmacol 2021; 192:114728. [PMID: 34400126 DOI: 10.1016/j.bcp.2021.114728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inevitable complication of hepatic surgery occasioned by liver transplantation and resection. The progression from liver ischemia to reperfusion injury is accompanied by abnormal metabolism, Kupffer cell activation, neutrophil recruitment and the release of cytokines. Activation of several interferon regulatory factors (IRFs) has been reported to either enhance or restrict I/R progression, but the role of IRF8 in the regulation of I/R injury progression is still unknown. In this study, we explore the IRF8 function in the I/R-mediated liver injury using overexpressed hepatic IRF8 and knockout mice. According to our results, IRF8 knockout mice had significantly lower inflammatory cells infiltration, inflammatory cytokines release and serum aspartate aminotransferase/alanine aminotransferase levels that improved the necrotic injury after I/R, unlike the control mice. Conversely, the overexpression of IRF8 in WT mice markedly aggravated the liver structure damage and its abnormal function. We further showed that IRF8-mediated inflammatory cells infiltration were partly dependent on early autophagy and NF-κΒ signal pathway during I/R. AAV8-IRF8-I/R mice pretreated with autophagy inhibitor hydroxychloroquine and NF-κΒ signal pathway inhibitor secukinumab could drastically reverse the IRF8-mediated increase of neutrophil infiltration and chemokine release at different degrees. This work uncovered a critical role of IRF8 in the modulation of the hepatic microenvironment and as a potential target in the initial treatment of I/R injury.
Collapse
|
9
|
Pan J, Chen S, Guo W, Cao S, Shi X, Zhang J, Zhang H, Zhang S. Alpinetin protects against hepatic ischemia/reperfusion injury in mice by inhibiting the NF-κB/MAPK signaling pathways. Int Immunopharmacol 2021; 95:107527. [PMID: 33743314 DOI: 10.1016/j.intimp.2021.107527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/22/2022]
Abstract
Liver damage induced by ischemia/reperfusion (I/R) remains a primary issue in liver transplantation and resection. Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, is widely used to treat various inflammatory diseases. However, the effects of alpinetin on hepatic I/R injury remain unclear. The present study investigated the protective effects of alpinetin pretreatment on hepatic I/R injury in mice. C57BL/6 mice were subjected to 1 h of partial hepatic ischemia followed by 6 h of reperfusion. Alpinetin (50 mg/kg) was given by intraperitoneal injection 1 h before liver ischemia. The blood and liver tissues were collected to assess biochemical indicators, hepatocyte damage, and levels of proteins related to signaling pathways. Furthermore, a hepatocytes hypoxia/reoxygenation (H/R) model was established for in vitro experiments. In vivo, we observed that alpinetin significantly attenuated the increases in alanine aminotransferase, aspartate transaminase, proinflammatory cytokines, hepatocyte damage, and apoptosis caused by hepatic I/R. Moreover, the hepatic I/R-induced nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinase (MAPK) pathways were suppressed by alpinetin. In vitro, we also observed that alpinetin inhibited the inflammatory response, apoptosis, and activation of the NF-κB/MAPK pathways in hepatocytes after H/R treatment. Our data indicate that alpinetin ameliorated the inflammatory response and apoptosis induced by hepatic I/R injury in mice. The protective effects of alpinetin on hepatic I/R injury may be due to its ability to inhibit the NF-κB/MAPK signaling pathways. These results suggest that alpinetin is a promising potential therapeutic reagent for hepatic I/R injury.
Collapse
Affiliation(s)
- Jie Pan
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China
| | - Sanyang Chen
- Department of Emergency Surgery, the First Affiliated Hospital of Zhengzhou University, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China
| | - Huapeng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, China.
| |
Collapse
|
10
|
Ye L, He S, Mao X, Zhang Y, Cai Y, Li S. Effect of Hepatic Macrophage Polarization and Apoptosis on Liver Ischemia and Reperfusion Injury During Liver Transplantation. Front Immunol 2020; 11:1193. [PMID: 32676077 PMCID: PMC7333353 DOI: 10.3389/fimmu.2020.01193] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury is injury caused by a limited blood supply and subsequent blood supply recovery during liver transplantation. Serious ischemia-reperfusion injury is the main cause of transplant failure. Hepatic I/R is characterized by tissue hypoxia due to a limited blood supply and reperfusion inducing oxidative stress and an immune response. Studies have confirmed that Kupffer cells (KCs), resident macrophages in the liver, play a key role in aseptic inflammation induced by I/R. In liver macrophage polarization, M1 macrophages activated by interferon-γ (IFN-γ) and lipopolysaccharide (LPS) exert a pro-inflammatory effect and release a variety of inflammatory cytokines. M2 macrophages activated by IL-4 have an anti-inflammatory response. M1-type KCs are the dominant players in I/R as they secrete various pro-inflammatory cytokines that exacerbate the injury and recruit other types of immune cells via the circulation. In contrast, M2-type KCs can ameliorate I/R through unregulated anti-inflammatory factors. A new notion has been proposed that KC apoptosis may influence I/R in yet another manner as well. Management of KCs is expected to help improve I/R. This review summarizes the effects of hepatic macrophage polarization and apoptosis on liver I/R.
Collapse
Affiliation(s)
- Liping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Saiqin He
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Endoscopy Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yue Cai
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shaowei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
11
|
CXCL16 silencing alleviates hepatic ischemia reperfusion injury during liver transplantation by inhibiting p38 phosphorylation. Pathol Res Pract 2020; 216:152913. [PMID: 32171552 DOI: 10.1016/j.prp.2020.152913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
|
12
|
Bone marrow mesenchymal stem cells combine with normothermic machine perfusion to improve rat donor liver quality-the important role of hepatic microcirculation in donation after circulatory death. Cell Tissue Res 2020; 381:239-254. [PMID: 32347385 PMCID: PMC7369267 DOI: 10.1007/s00441-020-03202-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
Donation after circulatory death (DCD) can expand the donor pool effectively. A gap remains in outcome between DCD livers and living donor livers, warranting improved DCD liver quality and urgent resolution. Bone marrow mesenchymal stem cells (BMMSCs) can regulate immunity, participate in the anti-inflammatory response, and secrete cytokines. We investigated the effect of BMMSCs combined with normothermic machine perfusion (NMP) on DCD liver quality, and the role of microcirculation therein. Rat thoracic aortas were clipped to obtain DCD livers, and a rat NMP system was established. The DCD livers were grouped by preservation method: normal, static cold storage (SCS), NMP (P), and BMMSCs plus NMP (BP); storage time was up to 8 h. Liver function in outflow perfusate was detected by biochemical methods; liver tissue histopathology was observed by hematoxylin–eosin staining; hepatocyte ultrastructure was observed by transmission electron microscopy; hepatocyte apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling; liver microcirculation–related indicators were detected by immunofluorescence, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay. Compared with SCS, P and BP significantly improved liver function and liver histological damage, reduced hepatocyte apoptosis, and repaired hepatocyte mitochondrial damage after 6 h in vitro. BP also significantly inhibited intrahepatic macrophage activation and intercellular adhesion, improved endothelial damage, and significantly improved endothelin 1–nitric oxide balance and microcirculation perfusion. In conclusion, BP can improve DCD liver microcirculation and quality. The mechanism may be the improvement of improve hepatic sinusoidal endothelial injury and microcirculation perfusion by inhibiting macrophage activation and intercellular adhesion.
Collapse
|
13
|
Luo D, Zhang JB, Peng YX, Liu JB, Han DX, Wang Y, Zhang Z, Yuan B, Gao Y, Chen CZ, Jiang H. Imperatorin improves in vitro porcine embryo development by reducing oxidative stress and autophagy. Theriogenology 2019; 146:145-151. [PMID: 31831188 DOI: 10.1016/j.theriogenology.2019.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
Imperatorin (IMP), a furanocoumarin derivative with many biological properties and pharmacological activities, is widely used as an antibacterial, anti-inflammatory, antiviral, anticancer, cardiovascular and neuroprotective agent. The purpose of this study was to explore the effects of IMP on early embryo development in pigs as well as the potential mechanisms. Our results showed that IMP can enhance the developmental competence of porcine early embryos. Supplementation of in vitro culture medium with 40 μM IMP significantly increased the blastocyst rate and total cell number. At the same time, apoptosis of blastocysts was also significantly decreased in the supplemented group compared with the control group, in accordance with the subsequent results of FAS and CASP3 gene expression analysis. Furthermore, IMP attenuated intracellular reactive oxygen species (ROS) generation, increased fluorescein diacetate (FDA) and glutathione (GSH) levels. Importantly, IMP not only improved the activity of mitochondria but also inhibited the occurrence of autophagy. In addition, pluripotency-related genes (OCT4, NANOG, and SOX2) and a growth and metabolism regulatory gene (mTOR) were upregulated after IMP supplementation on Day 7. These results demonstrate that IMP exerts a beneficial effect on preimplantation embryo development by reducing oxidative stress and autophagy.
Collapse
Affiliation(s)
- Dan Luo
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Jia-Bao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yan-Xia Peng
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Jian-Bo Liu
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Dong-Xu Han
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Ying Wang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Zhe Zhang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Cheng-Zhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
14
|
Yuan G, Yu Y, Ji L, Jie X, Yue L, Kang Y, Jianping G, Zuojin L. Down-Regulated Receptor Interacting Protein 140 Is Involved in Lipopolysaccharide-Preconditioning-Induced Inactivation of Kupffer Cells and Attenuation of Hepatic Ischemia Reperfusion Injury. PLoS One 2016; 11:e0164217. [PMID: 27723769 PMCID: PMC5056758 DOI: 10.1371/journal.pone.0164217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023] Open
Abstract
Background Lipopolysaccharide (LPS) preconditioning is known to attenuate hepatic ischemia/reperfusion injury (I/RI); however, the precise mechanism remains unclear. This study investigated the role of receptor-interacting protein 140 (RIP140) on the protective effect of LPS preconditioning in hepatic I/RI involving Kupffer cells (KCs). Methods Sprague—Dawley rats underwent 70% hepatic ischemia for 90 minutes. LPS (100 μg/kg) was injected intraperitoneally 24 hours before ischemia. Hepatic injury was observed using serum and liver samples. The LPS/NF-κB (nuclear factor-κB) pathway and hepatic RIP140 expression in isolated KCs were investigated. Results LPS preconditioning significantly inhibited hepatic RIP140 expression, NF-κB activation, and serum proinflammatory cytokine expression after I/RI, with an observation of remarkably reduced serum enzyme levels and histopathologic scores. Our experiments showed that protection effects could be effectively induced in KCs by LPS preconditioning, but couldn’t when RIP140 was overexpressed in KCs. Conversely, even without LPS preconditioning, protective effects were found in KCs if RIP140 expression was suppressed with siRNA. Conclusions Down-regulated RIP140 is involved in LPS-induced inactivation of KCs and hepatic I/RI attenuation.
Collapse
Affiliation(s)
- Guo Yuan
- Department of Infection, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - You Yu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Ji
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xu Jie
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Li Yue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yang Kang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Gong Jianping
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liu Zuojin
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- * E-mail:
| |
Collapse
|
15
|
Abstract
Toll-like receptor 4 (TLR4), one of pattern recognition receptors (PRRs) which can recognize pathogen-associated molecular patterns (PAMPs) and danger associated molecular patterns (DAMPs), regulates the innate immune system at early phase by presenting danger signals to the host. Because of its role in immune response, inflammation regulation and tumorigenesis, a growing number of oncology studies, including those on hepatocellular carcinoma (HCC), have started to focus on TLR4; however, there are very few studies on the specific mechanism of TLR4 in HCC. Pathogenesis of HCC involves cell damage and eventual cell malignant transformation caused by chronic inflammation, and this process involves many molecular pathways. Therefore, clarifying the role of TLR4 in the occurrence, development, metastasis and treatment of HCC has important biological significance and clinical value. This review reviews the role of TLR4 in HCC.
Collapse
|
16
|
Li J, Wang F, Xia Y, Dai W, Chen K, Li S, Liu T, Zheng Y, Wang J, Lu W, Zhou Y, Yin Q, Lu J, Zhou Y, Guo C. Astaxanthin Pretreatment Attenuates Hepatic Ischemia Reperfusion-Induced Apoptosis and Autophagy via the ROS/MAPK Pathway in Mice. Mar Drugs 2015; 13:3368-3387. [PMID: 26023842 PMCID: PMC4483634 DOI: 10.3390/md13063368] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatic ischemia reperfusion (IR) is an important issue in complex liver resection and liver transplantation. The aim of the present study was to determine the protective effect of astaxanthin (ASX), an antioxidant, on hepatic IR injury via the reactive oxygen species/mitogen-activated protein kinase (ROS/MAPK) pathway. METHODS Mice were randomized into a sham, IR, ASX or IR + ASX group. The mice received ASX at different doses (30 mg/kg or 60 mg/kg) for 14 days. Serum and tissue samples at 2 h, 8 h and 24 h after abdominal surgery were collected to assess alanine aminotransferase (ALT), aspartate aminotransferase (AST), inflammation factors, ROS, and key proteins in the MAPK family. RESULTS ASX reduced the release of ROS and cytokines leading to inhibition of apoptosis and autophagy via down-regulation of the activated phosphorylation of related proteins in the MAPK family, such as P38 MAPK, JNK and ERK in this model of hepatic IR injury. CONCLUSION Apoptosis and autophagy caused by hepatic IR injury were inhibited by ASX following a reduction in the release of ROS and inflammatory cytokines, and the relationship between the two may be associated with the inactivation of the MAPK family.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jianrong Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China.
| | - Wenxia Lu
- The First Clinical Medical College of Nanjing Medical University, Nanjing 210029, China.
| | - Yuqing Zhou
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Qin Yin
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
17
|
Zhang AY, Liu YM, Gong JP. Kupffer cells and liver transplantation. Shijie Huaren Xiaohua Zazhi 2015; 23:1917-1923. [DOI: 10.11569/wcjd.v23.i12.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nowadays, liver transplantation is globally considered the most effective treatment for end-stage liver diseases. Ischemia-reperfusion (I/R) injury and immune rejection response (IRR) are the two major imperfections which severely affect the recipients' prognosis and survival rate without satisfactory clinical management strategies. Therefore, exploring effective methods to improve I/R injury and IRR have important clinical significance under circumstances of shortage of donor livers. Kupffer cells (KCs) are the largest population of antigen representing cells (APCs) which settle in the liver. As the first defensive line of the live, KCs exhibit various biological effects. However, the exact mechanisms responsible for the role of KCs in I/R injury and IRR remain elusive. We hereby review the current finding about the role of KCs in I/R injury and IRR.
Collapse
|
18
|
Mcdonald KA, Huang H, Tohme S, Loughran P, Ferrero K, Billiar T, Tsung A. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling. Mol Med 2015; 20:639-48. [PMID: 25375408 DOI: 10.2119/molmed.2014.00076] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/20/2014] [Indexed: 01/10/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts. Additionally, we found that eritoran is protective in liver I/R through inhibition of high-mobility group box protein B1 (HMGB1)-mediated inflammatory signaling. When eritoran was administered in conjunction with recombinant HMGB1 during liver I/R, there was significantly less injury, suggesting that eritoran blocks the HMGB1-TLR4 interaction. Not only does eritoran attenuate TLR4-dependent HMGB1 release in vivo, but this TLR4 antagonist also dampened HMGB1's release from hypoxic hepatocytes in vitro and thereby weakened HMGB1's activation of innate immune cells. HMGB1 signaling through TLR4 makes an important contribution to the inflammatory response seen after liver I/R. This study demonstrates that novel blockade of HMGB1 by the TLR4 antagonist eritoran leads to the amelioration of liver injury.
Collapse
Affiliation(s)
- Kerry-Ann Mcdonald
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Hai Huang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Patricia Loughran
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kimberly Ferrero
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|