1
|
Luo J, Bian C, Liu M, Fang Y, Jin L, Yu R, Huang H. Research on gene editing and immunosuppressants in kidney xenotransplantation. Transpl Immunol 2025; 89:102184. [PMID: 39900229 DOI: 10.1016/j.trim.2025.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Gene-edited pig organ transplantation can solve the serious shortage of human donor organs. Currently, xenotransplantation is rapidly developing and has made significant breakthroughs. The use of GTKO (Gal knockout) pigs is an important step forward. The subsequent knockout of three genes combined with the transfer of immune-related genes effectively prolonged the survival time of non-human primate (NHP) transplantation in xenotransplantation. Due to the success of allogeneic kidney transplantation on NHP, this gene editing protocol was recently applied to clinical patients. Two patients underwent allogeneic kidney transplantation and survived for 51 days and 47 days. Exceeding the hyperacute rejection period proves that appropriate gene editing strategies and the combination of immunosuppressive agents contribute to the success of xenotransplantation. To further enhance the feasibility of pig kidney xenograft, this article mainly explores the effects of the NHP xenograft gene editing scheme and immunosuppressants on prolonging transplant survival time.
Collapse
Affiliation(s)
- JiaJiao Luo
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - CongWen Bian
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Min Liu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Fang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Jin
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Yu
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - HanFei Huang
- Department of Organ Transplantation Department, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Liu W, Jiang D, Schulz M, Figueiredo C, Dondossola D, Meister FA, Tihanyi DK, Mehrabi A, Tolba RH, Czigany Z, Ernst L. Machine perfusion of the liver and in vivo animal models: A systematic review of the preclinical research landscape. PLoS One 2024; 19:e0297942. [PMID: 38329986 PMCID: PMC10852327 DOI: 10.1371/journal.pone.0297942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Machine perfusion (MP) is often referred to as one of the most promising advancements in liver transplantation research of the last few decades, with various techniques and modalities being evaluated in preclinical studies using animal models. However, low scientific rigor and subpar reporting standards lead to limited reproducibility and translational potential, hindering progress. This pre-registered systematic review (PROSPERO: CRD42021234667) aimed to provide a thematic overview of the preclinical research landscape on MP in liver transplantation using in vivo transplantation models and to explore methodological and reporting standards, using the ARRIVE (Animal Research: Reporting of In Vivo Experiments) score. In total 56 articles were included. Studies were evenly distributed across Asia, Europe, and the Americas. Porcine models were used in 57.1% of the studies, followed by rats (39.3%) and dogs (3.6%). In terms of graft type, 55.4% of the studies used donation after cardiac death grafts, while donation after brain death grafts accounted for 37.5%. Regarding MP modalities, the distribution was as follows: 41.5% of articles utilized hypothermic MP, 21.5% normothermic MP, 13.8% subnormothermic MP, and 16.9% utilized hypothermic oxygenated MP. The stringent documentation of ARRIVE elements concerning precise experimental execution, group size and selection, the choice of statistical methods, as well as adherence to the principles of the 3Rs, was notably lacking in the majority of publications, with less than 30% providing comprehensive details. Postoperative analgesia and antibiotics treatment were not documented in 82.1% of all included studies. None of the analyzed studies fully adhered to the ARRIVE Guidelines. In conclusion, the present study emphasizes the importance of adhering to reporting standards to promote reproducibility and adequate animal welfare in preclinical studies in machine perfusion. At the same time, it highlights a clear deficiency in this field, underscoring the need for further investigations into animal welfare-related topics.
Collapse
Affiliation(s)
- Wenjia Liu
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH, Aachen International University, Aachen, Germany
| | - Decan Jiang
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Mareike Schulz
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH, Aachen International University, Aachen, Germany
| | - Constança Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franziska Alexandra Meister
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Rene Hany Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH, Aachen International University, Aachen, Germany
| | - Zoltan Czigany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lisa Ernst
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH, Aachen International University, Aachen, Germany
| |
Collapse
|
3
|
Parente A, Tirotta F, Pini A, Eden J, Dondossola D, Manzia TM, Dutkowski P, Schlegel A. Machine perfusion techniques for liver transplantation - A meta-analysis of the first seven randomized-controlled trials. J Hepatol 2023; 79:1201-1213. [PMID: 37302578 DOI: 10.1016/j.jhep.2023.05.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS Machine perfusion is increasingly being tested in clinical transplantation. Despite this, the number of large prospective clinical trials remains limited. The aim of this study was to compare the impact of machine perfusion vs. static cold storage (SCS) on outcomes after liver transplantation. METHODS A systematic search of MEDLINE, EMBASE, CINAHL and the Cochrane Central Register of Controlled Trials (CENTRAL) was conducted to identify randomized-controlled trials (RCTs) comparing "post-transplant" outcomes following machine perfusion vs. SCS. Data were pooled using random effect models. Risk ratios (RRs) were calculated for relevant outcomes. The quality of evidence was rated using the GRADE-framework. RESULTS Seven RCTs were identified (four on hypothermic oxygenated [HOPE] and three on normothermic machine perfusion [NMP]), including a total number of 1,017 patients. Both techniques were associated with significantly lower rates of early allograft dysfunction (NMP: n = 41/282, SCS: n = 74/253, RR 0.50, 95% CI 0.30-0.86, p = 0.01, I2 = 39%; HOPE: n = 45/241, SCS: n = 97/241, RR 0.48, 95% CI 0.35-0.65, p < 0.00001, I2 = 5%). The HOPE approach led to a significant reduction in major complications (Clavien Grade ≥IIIb; HOPE: n = 90/241; SCS: n = 117/241, RR 0.76, 95% CI 0.63-0.93, p = 0.006, I2 = 0%), "re-transplantation" (HOPE: n = 1/163; SCS: n = 11/163; RR 0.21, 95% CI 0.04-0.96, p = 0.04; I2 = 0%) and graft loss (HOPE: n = 7/163; SCS: n = 19/163; RR 0.40, 95% CI 0.17-0.95, p = 0.04; I2 = 0%). Both perfusion techniques were found to 'likely' reduce overall biliary complications and non-anastomotic strictures. CONCLUSIONS Although this study provides the highest current evidence on the role of machine perfusion, outcomes remain limited to a 1-year follow-up after liver transplantation. Comparative RCTs and large real-world cohort studies with longer follow-up are required to enhance the robustness of the data further, thereby supporting the introduction of perfusion technologies into routine clinical practice. PROSPERO-REGISTRATION CRD42022355252. IMPACT AND IMPLICATIONS For a decade, two dynamic perfusion concepts have increasingly been tested in several transplant centres worldwide. We undertook the first systematic review and meta-analysis and identified seven published RCTs, including 1,017 patients, evaluating the effect of machine perfusion (hypothermic and normothermic perfusion techniques) compared to static cold storage in liver transplantation. Both perfusion techniques were associated with lower rates of early allograft dysfunction in the first week after liver transplantation. Hypothermic oxygenated perfusion led to a reduction in major complications, lower "re-transplantation" rates and better graft survival. Both perfusion strategies were found to 'likely' reduce overall biliary complications and non-anastomotic biliary strictures. This study provides the highest current evidence on the role of machine perfusion. Outcomes remain limited to a 1-year post-transplant follow-up. Larger cohort studies with longer follow-up and clinical trials comparing the perfusion techniques are required. This is especially relevant to provide clarity and optimise implementation processes further to support the commissioning of this technology worldwide.
Collapse
Affiliation(s)
- Alessandro Parente
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Tirotta
- Department of Surgery, Queen Elizabeth Hospital Birmingham, University Hospital Birmingham NHS Trust, Birmingham, United Kingdom
| | - Alessia Pini
- Department of Statistical Sciences, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Daniele Dondossola
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, General and Liver Transplant Surgery Unit, Milan, 20122, Italy; Department of Pathophysiology and Transplantation Università degli Studi di Milano, Italy
| | - Tommaso M Manzia
- HPB and Transplant Unit, Department of Surgical Science, University of Rome Tor Vergata, Rome, Italy
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, General and Liver Transplant Surgery Unit, Milan, 20122, Italy; Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Dery KJ, Yao S, Cheng B, Kupiec-Weglinski JW. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev Clin Immunol 2023; 19:1205-1224. [PMID: 37489289 PMCID: PMC10529400 DOI: 10.1080/1744666x.2023.2240516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Siyuan Yao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Risbey CWG, Pulitano C. Normothermic Ex Vivo Machine Perfusion for Liver Transplantation: A Systematic Review of Progress in Humans. J Clin Med 2023; 12:jcm12113718. [PMID: 37297913 DOI: 10.3390/jcm12113718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Liver transplantation is a lifesaving procedure for patients with end-stage liver disease (ESLD). However, many patients never receive a transplant due to insufficient donor supply. Historically, organs have been preserved using static cold storage (SCS). However, recently, ex vivo normothermic machine perfusion (NMP) has emerged as an alternative technique. This paper aims to investigate the clinical progress of NMP in humans. METHODS Papers evaluating the clinical outcomes of NMP for liver transplantation in humans were included. Lab-based studies, case reports, and papers utilizing animal models were excluded. Literature searches of MEDLINE and SCOPUS were conducted. The revised Cochrane risk-of-bias tool for randomised trials (RoB 2) and the risk of bias in nonrandomised studies for interventions (ROBINS-I) tools were used. Due to the heterogeneity of the included papers, a meta-analysis was unable to be completed. RESULTS In total, 606 records were identified, with 25 meeting the inclusion criteria; 16 papers evaluated early allograft dysfunction (EAD) with some evidence for lower rates using NMP compared to SCS; 19 papers evaluated patient or graft survival, with no evidence to suggest superior outcomes with either NMP or SCS; 10 papers evaluated utilization of marginal and donor after circulatory death (DCD) grafts, with good evidence to suggest NMP is superior to SCS. CONCLUSIONS There is good evidence to suggest that NMP is safe and that it likely affords clinical advantages to SCS. The weight of evidence supporting NMP is growing, and this review found the strongest evidence in support of NMP to be its capacity to increase the utilization rates of marginal and DCD allografts.
Collapse
Affiliation(s)
- Charles W G Risbey
- Department of Surgery, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Centre for Organ Assessment, Repair & Optimization (COARO), Sydney 2050, Australia
- Central Clinical School, The University of Sydney, Sydney 2006, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment, Repair & Optimization (COARO), Sydney 2050, Australia
- Central Clinical School, The University of Sydney, Sydney 2006, Australia
- Department of Transplant Surgery, Royal Prince Alfred Hospital, Sydney 2050, Australia
| |
Collapse
|
6
|
Patrono D, De Carlis R, Gambella A, Farnesi F, Podestà A, Lauterio A, Tandoi F, De Carlis L, Romagnoli R. Viability assessment and transplantation of fatty liver grafts using end-ischemic normothermic machine perfusion. Liver Transpl 2023; 29:508-520. [PMID: 36117430 PMCID: PMC10106107 DOI: 10.1002/lt.26574] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
End-ischemic viability testing by normothermic machine perfusion (NMP) represents an effective strategy to recover liver grafts having initially been discarded for liver transplantation (LT). However, its results in the setting of significant (≥30%) macrovesicular steatosis (MaS) have not been specifically assessed. Prospectively maintained databases at two high-volume LT centers in Northern Italy were searched to identify cases of end-ischemic NMP performed to test the viability of livers with MaS ≥ 30% in the period from January 2019 to January 2022. A total of 14 cases were retrieved, representing 57.9% of NMP and 5.7% of all machine perfusion procedures. Of those patients, 10 (71%) received transplants. Two patients developed primary nonfunction (PNF) and required urgent re-LT, and both were characterized by incomplete or suboptimal lactate clearance during NMP. PNF cases were also characterized by higher perfusate transaminases, lower hepatic artery and portal vein flows at 2 h, and a lack of glucose metabolism in one case. The remaining eight patients showed good liver function (Liver Graft Assessment Following Transplantation risk score, -1.9 [risk, 13.6%]; Early Allograft Failure Simplified Estimation score, -3.7 [risk, 2.6%]) and had a favorable postoperative course. Overall, NMP allowed successful transplantation of 57% of livers with moderate-to-severe MaS. Our findings suggest that prolonged observation (≥6 h) might be required for steatotic livers and that stable lactate clearance is a fundamental prerequisite for their use.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U–Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Riccardo De Carlis
- Department of General Surgery and Transplantation, Azienda Socio‐Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandro Gambella
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Farnesi
- General Surgery 2U–Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Alice Podestà
- Department of General Surgery and Transplantation, Azienda Socio‐Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, University of Milano‐Bicocca, Milan, Italy
| | - Andrea Lauterio
- Department of General Surgery and Transplantation, Azienda Socio‐Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, University of Milano‐Bicocca, Milan, Italy
| | - Francesco Tandoi
- General Surgery 2U–Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Luciano De Carlis
- Department of General Surgery and Transplantation, Azienda Socio‐Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milan, Italy
- School of Medicine and Surgery, University of Milano‐Bicocca, Milan, Italy
| | - Renato Romagnoli
- General Surgery 2U–Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Lu J, Lin Z, Xiong Y, Pang H, Zhang Y, Xin Z, Li Y, Shen Z, Chen W, Zhang W. Performance assessment of medical service for organ transplant department based on diagnosis-related groups: A programme incorporating ischemia-free liver transplantation in China. Front Public Health 2023; 11:1092182. [PMID: 37089494 PMCID: PMC10116067 DOI: 10.3389/fpubh.2023.1092182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Background In July 2017, the first affiliated hospital of Sun Yat-sen university carried out the world's first case of ischemia-free liver transplantation (IFLT). This study aimed to evaluate the performance of medical services pre- and post-IFLT implementation in the organ transplant department of this hospital based on diagnosis-related groups, so as to provide a data basis for the clinical practice of the organ transplant specialty. Methods The first pages of medical records of inpatients in the organ transplant department from 2016 to 2019 were collected. The China version Diagnosis-related groups (DRGs) were used as a risk adjustment tool to compare the income structure, service availability, service efficiency and service safety of the organ transplant department between the pre- and post-IFLT implementation periods. Results Income structure of the organ transplant department was more optimized in the post-IFLT period compared with that in the pre-IFLT period. Medical service performance parameters of the organ transplant department in the post-IFLT period were better than those in the pre-IFLT period. Specifically, case mix index values were 2.65 and 2.89 in the pre- and post-IFLT periods, respectively (p = 0.173). Proportions of organ transplantation cases were 14.16 and 18.27%, respectively (p < 0.001). Compared with that in the pre-IFLT period, the average postoperative hospital stay of liver transplants decreased by 11.40% (30.17 vs. 26.73 days, p = 0.006), and the average postoperative hospital stay of renal transplants decreased by 7.61% (25.23 vs.23.31 days, p = 0.092). Cost efficiency index decreased significantly compared with that in the pre-IFLT period (p < 0.001), while time efficiency index fluctuated around 0.83 in the pre- and post-IFLT periods (p = 0.725). Moreover, the average postoperative hospital stay of IFLT cases was significantly shorter than that of conventional liver transplant cases (p = 0.001). Conclusion The application of IFLT technology could contribute to improving the medical service performance of the organ transplant department. Meanwhile, the DRGs tool may help transplant departments to coordinate the future delivery planning of medical service.
Collapse
Affiliation(s)
- Jianjun Lu
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuochen Lin
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Xiong
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Pang
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Zhang
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyi Xin
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuelin Li
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiqing Shen
- Center for Information Technology and Statistics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Wei Chen,
| | - Wujun Zhang
- Department of Quality Control and Evaluation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wujun Zhang,
| |
Collapse
|
8
|
Liu J, Martins PN, Bhat M, Pang L, Yeung OWH, Ng KTP, Spiro M, Raptis DA, Man K, Mas VR. Biomarkers and predictive models of early allograft dysfunction in liver transplantation - A systematic review of the literature, meta-analysis, and expert panel recommendations. Clin Transplant 2022; 36:e14635. [PMID: 35291044 DOI: 10.1111/ctr.14635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Prompt identification of early allograft dysfunction (EAD) is critical to reduce morbidity and mortality in liver transplant (LT) recipients. OBJECTIVES Evaluate the evidence supporting biomarkers that can provide diagnostic and predictive value for EAD. DATA SOURCES Ovid MEDLINE, Embase, Scopus, Google Scholar, and Cochrane Central. METHODS Systematic review following PRISMA guidelines and recommendations using the GRADE approach was derived from an international expert panel. Studies that investigated biomarkers or models for predicting EAD in adult LT recipients were included for in-depth evaluation and meta-analysis. Olthoff's criteria were used as the standard reference for the diagnostic accuracy evaluation. PROSPERO ID CRD42021293838 RESULTS: Ten studies were included for the systematic review. Lactate, lactate clearance, uric acid, Factor V, HMGB-1, CRP to ALB ratio, phosphocholine, total cholesterol, and metabolomic predictive model were identified as potential early EAD predictive biomarkers. The sensitivity ranged between .39 and .92, while the specificity ranged from .63 to .90. Elevated lactate level was most indicative of EAD after adult LT (pooled diagnostic odds ratio of 7.15 (95%CI: 2.38-21.46)). The quality of evidence (QOE) for lactate as indicator was moderate according to the GRADE approach, whereas the QOE for other biomarkers was very low to low likely as consequence of study design characteristics such as single study, small sample size, and large ranges of sensitivity or specificity. CONCLUSIONS Lactate is an early indicator to predict EAD after LT (Quality of Evidence: Moderate | Grade of Recommendation: Strong). Further multicenter studies and the use of machine perfusion setting should be implemented for validation.
Collapse
Affiliation(s)
- Jiang Liu
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.,Department of Surgery & HKU-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network and Division of Gastroenterology & Hepatology, University of Toronto, Toronto, Canada
| | - Li Pang
- Department of Surgery & HKU-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oscar W H Yeung
- Department of Surgery & HKU-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin T P Ng
- Department of Surgery & HKU-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michael Spiro
- Department of Anesthesia and Intensive Care Medicine, Royal Free Hospital, London, UK.,Division of Surgery & Interventional Science, University College London, London, UK
| | - Dimitri Aristotle Raptis
- Division of Surgery & Interventional Science, University College London, London, UK.,Clinical Service of HPB Surgery and Liver Transplantation, Royal Free Hospital, London, UK
| | - Kwan Man
- Department of Surgery & HKU-Shenzhen Hospital, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Valeria R Mas
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, USA
| | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Organ transplantation is one of the miracles in medicine in the 20th century. However, in the current practice, all the donor organs suffer from ischemia/reperfusion injury (IRI), which compromise transplant outcomes and limits organ availability. Continuous efforts have been made in organ machine perfusion to ameliorate IRI. In 2017, ischemia-free organ transplantation (IFOT) was first proposed with the aim of complete avoidance of IRI in organ transplantation. The purpose of this review is to highlight the latest progresses in IFOT. RECENT FINDINGS The feasibility of IFOT has been validated in liver, kidney, and heart transplantation. The results of the first nonrandomized controlled study demonstrate that ischemia-free liver transplantation (IFLT) may improve transplant outcomes and increase organ availability. Furthermore, laboratory results, including the absence of the characteristic pathological changes, gene transcription and metabolic reprogramming, as well as sterile inflammation activation in IFLT grafts, suggest the virtual avoidance of graft IRI in IFLT. SUMMARY IFOT might change the current practice by abrogating graft IRI. IFOT also provides a unique model to investigate the interaction between allograft IRI and rejection. The next steps will be to simplify the technique, make long-distance transportation possible and evaluate cost-effectiveness.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Tao Luo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Runbing Mo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology
- Guangdong Provincial International Cooperation Base of Science and Technology, Guangzhou, China
| |
Collapse
|
10
|
Guo Z, Xu J, Huang S, Yin M, Zhao Q, Ju W, Wang D, Gao N, Huang C, Yang L, Chen M, Zhang Z, Zhu Z, Wang L, Zhu C, Zhang Y, Tang Y, Chen H, Liu K, Lu Y, Ma Y, Hu A, Chen Y, Zhu X, He X. Abrogation of graft ischemia-reperfusion injury in ischemia-free liver transplantation. Clin Transl Med 2022; 12:e546. [PMID: 35474299 PMCID: PMC9042797 DOI: 10.1002/ctm2.546] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Background Ischemia‐reperfusion injury (IRI) is considered an inherent component of organ transplantation that compromises transplant outcomes and organ availability. The ischemia‐free liver transplantation (IFLT) procedure has been developed to avoid interruption of blood supply to liver grafts. It is unknown how IFLT might change the characteristics of graft IRI. Methods Serum and liver biopsy samples were collected from IFLT and conventional liver transplantation (CLT) recipients. Pathological, metabolomics, transcriptomics, and proteomics analyses were performed to identify the characteristic changes in graft IRI in IFLT. Results Peak aspartate aminotransferase (539.59 ± 661.76 U/L versus 2622.28 ± 3291.57 U/L) and alanine aminotransferase (297.64 ± 549.50 U/L versus 1184.16 ± 1502.76 U/L) levels within the first 7 days and total bilirubin levels by day 7 (3.27 ± 2.82 mg/dl versus 8.33 ± 8.76 mg/dl) were lower in the IFLT versus CLT group (all p values < 0.001). The pathological characteristics of IRI were more obvious in CLT grafts. The antioxidant pentose phosphate pathway remained active throughout the procedure in IFLT grafts and was suppressed during preservation and overactivated postrevascularization in CLT grafts. Gene transcriptional reprogramming was almost absent during IFLT but was profound during CLT. Proteomics analysis showed that “metabolism of RNA” was the major differentially expressed process between the two groups. Several proinflammatory pathways were not activated post‐IFLT as they were post‐CLT. The activities of natural killer cells, macrophages, and neutrophils were lower in IFLT grafts than in CLT grafts. The serum levels of 14 cytokines were increased in CLT versus IFLT recipients. Conclusions IFLT can largely avoid the biological consequences of graft IRI, thus has the potential to improve transplant outcome while increasing organ utilization.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jinghong Xu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Shanzhou Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Meixian Yin
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Dongping Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Ningxin Gao
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Changjun Huang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Lu Yang
- Department of Anaesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maogen Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhiheng Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zebin Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Linhe Wang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Caihui Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yixi Zhang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yunhua Tang
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Haitian Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Kunpeng Liu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yuting Lu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yi Ma
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Anbin Hu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yinghua Chen
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaofeng Zhu
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
11
|
Tang Y, Wang T, Ju W, Li F, Zhang Q, Chen Z, Gong J, Zhao Q, Wang D, Chen M, Guo Z, He X. Ischemic-Free Liver Transplantation Reduces the Recurrence of Hepatocellular Carcinoma After Liver Transplantation. Front Oncol 2021; 11:773535. [PMID: 34966679 PMCID: PMC8711268 DOI: 10.3389/fonc.2021.773535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is an adverse factor for hepatocellular carcinoma (HCC) recurrence after liver transplantation. Ischemic-free liver transplantation (IFLT) is a novel transplant procedure that can largely reduce or even prevent IRI, but the clinical relevance of IFLT and the recurrence of HCC after liver transplantation are still unknown. This retrospective study compared survival outcomes, HCC recurrence, perioperative data and IRI severity following liver transplantation (LT). 30 patients received IFLT and 196 patients received conventional liver transplantation (CLT) were chosen for the entire cohort between June 2017 and August 2020. A 1:3 propensity score matching was performed, 30 IFLT recipients and 85 matched CLT patients were enrolled in propensity-matched cohorts. An univariate and multivariate Cox regression analysis was performed, and showed surgical procedure (CLT vs IFLT) was an independent prognostic factor (HR 3.728, 95% CI 1.172-11.861, P=0.026) for recurrence free survival (RFS) in HCC patients following liver transplantation. In the Kaplan–Meier analysis, the RFS rates at 1 and 3 years after LT in recipients with HCC in the IFLT group were significantly higher than those in the CLT group both in the entire cohort and propensity-matched cohort (P=0.006 and P=0.048, respectively). In addition, patients in the IFLT group had a lower serum lactate level, lower serum ALT level and serum AST level on postoperative Day 1. LT recipients with HCC in the IFLT group had a lower incidence of early allograft dysfunction than LT recipients with HCC in the CLT group. Histological analysis showed no obvious hepatocyte necrosis or apoptosis in IFLT group. In conclusion, IFLT can significantly reduce IRI damage and has the potential to be a useful strategy to reduce HCC recurrence after liver transplantation.
Collapse
Affiliation(s)
- Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Tielong Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Fangcong Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhitao Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jinlong Gong
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
12
|
Boteon YL, Martins PN, Muiesan P, Schlegel A. Machine perfusion of the liver: Putting the puzzle pieces together. World J Gastroenterol 2021; 27:5727-5736. [PMID: 34629797 PMCID: PMC8473597 DOI: 10.3748/wjg.v27.i34.5727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
The realm of extended criteria liver transplantation created the 'adjacent possible' for dynamic organ preservation. Machine perfusion of the liver greatly expanded donor organ preservation possibilities, reaching before unattainable goals, including the mitigation of ischemia-reperfusion injury, viability assessment, and organ reconditioning prior to transplantation. However, current scientific evidence lacks uniformity between studies, perfusion protocols, and acceptance criteria. Construction of collaborative research networks for sharing knowledge should, therefore, enable the development of high-level evidence and guidelines for machine perfusion utilization, including donor acceptance criteria. Finally, this approach shall guarantee conditions for further progress to occur.
Collapse
Affiliation(s)
- Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo 05652-900, Brazil
| | - Paulo N Martins
- Department of Surgery, Transplant Division, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - Paolo Muiesan
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence 50134, Italy
| | - Andrea Schlegel
- Hepatobiliary Unit, Careggi University Hospital, University of Florence, Florence 50134, Italy
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, Swiss HPB and Transplant Center, Zurich 8091, Switzerland
| |
Collapse
|
13
|
Chen C, Chen M, Lin X, Guo Y, Ma Y, Chen Z, Ju W, He X. En bloc procurement of porcine abdominal multiple organ block for ex situ normothermic machine perfusion: a technique for avoiding initial cold preservation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1116. [PMID: 34430557 PMCID: PMC8350716 DOI: 10.21037/atm-21-1308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Background Normothermic machine perfusion (NMP) is a technique that maintains organs ex situ with normal metabolism, and organ function can be better preserved. The study of multiple-organ NMP is rarely reported. Multiple organ block (MOB) is a self-perfusing system for maintaining multiple organs ex situ, and porcine MOBs have been successfully preserved for 18 to 37 h. Due to the above context, we conceived to maintain abdominal multiple organ block (AMOB) ex situ utilizing NMP technology. Methods AMOBs were procured from Ba-Ma miniature pigs through en bloc procurement surgery. The process of cold preservation was eliminated between the procurement and machine perfusion, and a few minutes of warm ischemia emerged. Autologous whole blood was collected during procurement surgery as a perfusate component in the beginning. Results The median time of procurement surgery was approximately 220 min, and the median time of warm ischemia was 300 sec. Cases 1 and 2 suffered from repeated hypotension during the procurement surgery, and case 2 exhibited hemorrhage. After improved and optimized procurement processes, the vital signs of cases 3 to 5 remained stable during procurement. In the NMP phase, the flow increased slowly in cases 1 and 2 and did not remain stable even after continuous infusion of a high-dose vasodilator. The lactic acid level rapidly increased, and the levels of ALT and AST were obviously higher than those in cases 3 to 5. In contrast, the flow rate increased smoothly in cases 3 to 5. The lactic acid level remained stable during the first 10 h of perfusion. Conclusions AMOB procurement from heart-beating pigs for NMP without initial cold preservation is technically feasible.
Collapse
Affiliation(s)
- Chuanbao Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Maogen Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaohong Lin
- Division of General Surgery, The Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiwen Guo
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Yihao Ma
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Zhitao Chen
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Weiqiang Ju
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Xiaoshun He
- Organ Transplant Center, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, China.,Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| |
Collapse
|
14
|
Heylen L, Pirenne J, Naesens M, Sprangers B, Jochmans I. "Time is tissue"-A minireview on the importance of donor nephrectomy, donor hepatectomy, and implantation times in kidney and liver transplantation. Am J Transplant 2021; 21:2653-2661. [PMID: 33759371 DOI: 10.1111/ajt.16580] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 01/25/2023]
Abstract
Donor organs are exposed to sequential temperature changes during the transplantation process. The role of donor warm ischemia and cold ischemia times on post-transplant outcomes has been extensively studied. Much less attention has been paid to the transient ischemia occurring during donor organ removal and implantation. Recently, it has become clear that prolonged donor nephrectomy and implantation time are independently associated with delayed graft function after kidney transplantation. In addition, implantation time correlates with post-transplant kidney graft function, histology, and survival. Similar detrimental associations of donor hepatectomy and implantation time with early allograft dysfunction, ischemic cholangiopathy, and graft and patient survival after liver transplantation have been demonstrated. This review details kidney and liver temperature changes occurring during procurement and transplantation. It summarizes the effects of the ischemia the kidney and liver sustain during these phases on short- and long-term post-transplant outcomes, advocating the standardized reporting of donor hepatectomy, donor nephrectomy, and implantation times in (inter)national registries. The review also explores strategies to protect the graft from this ischemic injury.
Collapse
Affiliation(s)
- Line Heylen
- Nephrology and Renal Transplantation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Nephrology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Jacques Pirenne
- Transplantation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium.,Immunity and Inflammation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium
| | - Ina Jochmans
- Transplantation Research Group, Department of Immunology, Microbiology, and Transplantation, K.U. Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Lembach Jahnsen H, Mergental H, Perera MTPR, Mirza DF. Ex-situ liver preservation with machine preservation. Curr Opin Organ Transplant 2021; 26:121-132. [PMID: 33650995 DOI: 10.1097/mot.0000000000000864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW To summarize key studies in liver preservation published over the last 3 years and evaluate benefits and limitations of the different perfusion techniques. Selected experimental applications that may be translated to the clinical use will be also discussed. RECENT FINDINGS Normothermic machine perfusion (NMP) has transitioned into clinical practice. Viability assessment is a reliable tool for clinical decision-making, and safety of the back-to-base approach has facilitated adoption of the technology. Data supporting well tolerated use of declined livers after NMP and new protocols selecting complex recipients aim to improve access to suitable organs. Hypothermic machine perfusion (HMP) is showing promising clinical results by decreasing biliary complications in recipients' receiving organs donated after circulatory death (DCD) and improving early graft function in extended criteria organs. Long-term data of HMP on DCD livers shows improved graft survival over standard SCS. Novel approaches utilizing sequential HMP--NMP or ischaemia-free preservation aim to improve outcomes of extended criteria organs. SUMMARY Machine perfusion for organ transplantation has become an established technique but the field is rapidly evolving. Ongoing research focuses on evaluation of the intervention efficacy and finding optimal indications to use each perfusion strategy according to graft type and clinical scenario.
Collapse
Affiliation(s)
- Hanns Lembach Jahnsen
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
| | - Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| |
Collapse
|
16
|
Quintini C, Diago Uso T, Liu Q. Ischemia-Free Liver Transplantation: Will the Diamond With a Flaw Replace the Pebble Without? Liver Transpl 2020; 26:1391-1392. [PMID: 32935907 DOI: 10.1002/lt.25892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Qiang Liu
- Transplantation Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
17
|
Raigani S, De Vries RJ, Carroll C, Chen YW, Chang DC, Shroff SG, Uygun K, Yeh H. Viability testing of discarded livers with normothermic machine perfusion: Alleviating the organ shortage outweighs the cost. Clin Transplant 2020; 34:e14069. [PMID: 32860634 DOI: 10.1111/ctr.14069] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Accepted: 08/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Over 700 donor livers are discarded annually in the United States due to high risk of poor graft function. The objective of this study was to determine the impact of using normothermic machine perfusion to identify transplantable livers among those currently discarded. STUDY DESIGN A series of 21 discarded human livers underwent viability assessment during normothermic machine perfusion. Cross-sectional analysis of the Scientific Registry of Transplant Recipients database and cost analysis was performed to extrapolate the case series to national experience. RESULTS 21 discarded human livers were included in the perfusion cohort. 11 of 20 (55%) eligible grafts met viability criteria for transplantation. Grafts in the perfusion cohort had a similar donor risk index compared with discarded grafts (n = 1402) outside of New England in 2017 and 2018 (median [IQR]: 2.0 [1.5, 2.4] vs. 2.0 [1.7, 2.3], P = .40). 705 (IQR 677-741) livers were discarded annually in the United States since 2005, translating to the potential for 398 additional transplants nationally. The median cost to identify a transplantable graft with machine perfusion was $28,099 USD. CONCLUSIONS Normothermic machine perfusion of discarded livers could identify a significant number of transplantable grafts, significantly improving access to liver transplantation.
Collapse
Affiliation(s)
- Siavash Raigani
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA, USA
| | - Reinier J De Vries
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA, USA.,Department of Surgery, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cailah Carroll
- Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA, USA
| | - Ya-Wen Chen
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Codman Center for Clinical Effectiveness in Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David C Chang
- Codman Center for Clinical Effectiveness in Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Stuti G Shroff
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Center for Engineering in Medicine, Massachusetts General Hospital and Shriners Hospital for Children, Boston, MA, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|