1
|
Liu H, Liu C, Ye L, Ma D, He X, Tang Q, Zhao X, Zou H, Chen X, Liu P. Nanoassemblies with Effective Serum Tolerance Capability Achieving Robust Gene Silencing Efficacy for Breast Cancer Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003523. [PMID: 33354783 DOI: 10.1002/adma.202003523] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
The transfection efficiency of siRNA mediated by cationic polymers is limited due to the instability of polymers/siRNA complexes in the presence of serum. Poly(ethylene glycol) (PEG) is usually applied to modify cationic polymers, so as to reduce protein and cell adsorption and then to improve siRNA transfection efficiency. However, the polymers' modification with PEG mostly consumes the free amino of the polymers, which can, in turn, reduce the charge density and limit their siRNA transfection efficacy. Here, a new PEG modification strategy that need not consume the surface aminos of polymers is proposed. Catechol-PEG polymers are coated on the surface of phenylboronic acid (PBA)-modified Generation 5 (G5) poly(amidoamine) dendrimers (G5PBA) via reversible boronate esters to establish PEG-modified dendrimer/siRNA nanoassemblies for efficient siRNA delivery. The PEG/G5PBA/siRNA nanoassemblies have positive charge and show excellent gene silencing efficacy in the absence of serum in vitro. More importantly, the PEG/G5PBA/siRNA nanoassemblies also exhibit excellent serum resistance and gene silencing efficacy in serum-containing medium. Furthermore, the effective antiserum and gene silencing efficacy elicited by these nanoassemblies lead to excellent antitumor effects in vivo. This proposed strategy constitutes an important approach to reach an excellent gene silencing efficacy in the presence of serum.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Li Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ding Ma
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaozhen He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Xue Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Hanbing Zou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| |
Collapse
|
3
|
Vancoillie G, Hoogenboom R. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery. SENSORS 2016; 16:s16101736. [PMID: 27775572 PMCID: PMC5087521 DOI: 10.3390/s16101736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023]
Abstract
Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials.
Collapse
Affiliation(s)
- Gertjan Vancoillie
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent 9000, Belgium.
| |
Collapse
|
4
|
Zhao D, Xu JQ, Yi XQ, Zhang Q, Cheng SX, Zhuo RX, Li F. pH-Activated Targeting Drug Delivery System Based on the Selective Binding of Phenylboronic Acid. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14845-14854. [PMID: 27229625 DOI: 10.1021/acsami.6b04737] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phenylboronic acid (PBA) is a tumor-targeting molecule, but its nonspecific interaction with normal cells or other components containing cis-diol residues undoubtedly limits its potential application in tumor-targeting drug delivery. Herein, we developed fructose-coated mixed micelles via PBA-terminated polyethylene glycol monostearate (PBA-PEG-C18) and Pluronic P123 (PEG20-PPG70-PEG20) to solve this problem, as the stability of borate formed by PBA and fructose was dramatically dependent on pH. The fluorescence spectroscopic results indicated that the borate formed by PBA and fructose decomposed at a decreased pH, and better binding between PBA and sialic acid (SA) was observed at a low pH. These results implied that the fructose groups decorated on the surface of the micelles could be out-competed by SA at a low pH. In vitro uptake and cytotoxicity studies demonstrated that the fructose coating on the mixed micelles improved the endocytosis and enhanced the cytotoxicity of drug-loaded mixed micelles in HepG2 cells but reduced the cytotoxicity in normal cells. These results demonstrate that a simple decorating strategy may facilitate PBA-targeted nanoparticles for tumor-specific drug delivery.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Jia-Qi Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Xiao-Qing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Quan Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| | - Feng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and College of Chemistry and Molecular Science, Wuhan University , Wuhan 430072, China
| |
Collapse
|
5
|
Gosecki M, Gadzinowski M, Gosecka M, Basinska T, Slomkowski S. Polyglycidol, Its Derivatives, and Polyglycidol-Containing Copolymers-Synthesis and Medical Applications. Polymers (Basel) 2016; 8:E227. [PMID: 30979324 PMCID: PMC6432134 DOI: 10.3390/polym8060227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Polyglycidol (or polyglycerol) is a biocompatible polymer with a main chain structure similar to that of poly(ethylene oxide) but with a ⁻CH₂OH reactive side group in every structural unit. The hydroxyl groups in polyglycidol not only increase the hydrophilicity of this polymer but also allow for its modification, leading to polymers with carboxyl, amine, and vinyl groups, as well as to polymers with bonded aliphatic chains, sugar moieties, and covalently immobilized bioactive compounds in particular proteins. The paper describes the current state of knowledge on the synthesis of polyglycidols with various topology (linear, branched, and star-like) and with various molar masses. We provide information on polyglycidol-rich surfaces with protein-repelling properties. We also describe methods for the synthesis of polyglycidol-containing copolymers and the preparation of nano- and microparticles that could be derived from these copolymers. The paper summarizes recent advances in the application of polyglycidol and polyglycidol-containing polymers as drug carriers, reagents for diagnostic systems, and elements of biosensors.
Collapse
Affiliation(s)
- Mateusz Gosecki
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Mariusz Gadzinowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Monika Gosecka
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Teresa Basinska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Stanislaw Slomkowski
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
6
|
Gasparini G, Bang EK, Montenegro J, Matile S. Cellular uptake: lessons from supramolecular organic chemistry. Chem Commun (Camb) 2016; 51:10389-402. [PMID: 26030211 DOI: 10.1039/c5cc03472h] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.
Collapse
Affiliation(s)
- Giulio Gasparini
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
9
|
Fu C, Zheng D, Shi H, Tian H, Zhu X, Chen X. Hydrophobic poly (amino acid)-modified PEI-mediated delivery of single-chain antibody scFv1C9 inhibits HepG2 cell cycle process and xenograft growth in nude mice. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:872-80. [PMID: 24754301 DOI: 10.1080/09205063.2014.910153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The safe and effective gene delivery vector remains the key step for gene therapy. Hydrophobic-modified Phe-PEI (PP80) was exhibited in advantage with biocompatibility and gene delivery with smaller size and easier penetration into cells and tissues. PP80 delivery of rev-casp-3 gene was demonstrated effectively to inhibit HeLa xenograft growth in our previous work. However, it was necessary to evaluate its applicability in other cells or tissues as gene carrier. Here, we quantitatively optimized the complex ratio of PP80 and plasmid DNA (pDNA) and evaluated the potential pyrogenicity by rabbit pyrogen test. In addition, PP80-mediated expression of scFv1C9 gene blocked HepG2 cell cycle progress in vitro. Subsequently, PP80-scFv1C9 was injected into HepG2 xenograft and significantly inhibited the xenograft growth in nude mice. Further investigation indicated that PP80 was an effective gene carrier and possible for entering hepatic xenograft. These features of PP80 made it attractive as a potential gene carrier for cancer therapy.
Collapse
Affiliation(s)
- Chunling Fu
- a Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Cytology and Genetics , Northeast Normal University , Changchun , China
| | | | | | | | | | | |
Collapse
|