1
|
Wang Z, Song W, Sheng R, Guo X, Hao L, Zhang X. Controlled preparation of cholesterol-bearing polycations with pendent l-lysine for efficient gene delivery. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2058943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Wenli Song
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Ruilong Sheng
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing, China
| |
Collapse
|
2
|
Wang Z, Sun J, Li M, Luo T, Shen Y, Cao A, Sheng R. Natural steroid-based cationic copolymers cholesterol/diosgenin- r-PDMAEMAs and their pDNA nanoplexes: impact of steroid structures and hydrophobic/hydrophilic ratios on pDNA delivery. RSC Adv 2021; 11:19450-19460. [PMID: 35479247 PMCID: PMC9033666 DOI: 10.1039/d1ra00223f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Using natural-based lipids to construct biocompatible, controllable and efficient nanocarriers and elucidating their structure-function relationships, was regarded as an important area for creating sustainable biomaterials. Herein, we utilized two natural steroids: cholesterol and diosgenin (bearing different hydrophobic tails) as the building blocks, to synthesize a series of natural steroid-based cationic random copolymers PMA6Chol-r-PDMAEMA and PMA6Dios-r-PDMAEMA via RAFT polymerization. The results demonstrated that the steroid-r-PDMAEMA copolymers could efficiently bind pDNA (N/P < 3.0) and then form near-spherical shape (142-449 nm) and positively-charged (+11.5 to +19.6 mV) nanoparticles. The in vitro cytotoxicity and gene transfection efficiency greatly depend on the steroid hydrophobic tail structures and steroid/PDMAEMA block ratios. Optimum transfection efficiency of the (Chol-P1/pDNA and Dios-P3/pDNA) nanoplexes could reach to 18.1-31.2% of the PEI-25K/pDNA complex. Moreover, all of the steroid-r-PDMAEMA/Cy3-pDNA nanoplexes have an obvious "lysosome localization" effect, indicating the steroid structures do not remarkably influence the intracellular localization behaviors of these nanoplexes.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jingjing Sun
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mingrui Li
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yulin Shen
- School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ruilong Sheng
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira Campus da Penteada Funchal Madeira 9000-390 Portugal
| |
Collapse
|
3
|
Kanto R, Yonenuma R, Yamamoto M, Furusawa H, Yano S, Haruki M, Mori H. Mixed Polyplex Micelles with Thermoresponsive and Lysine-Based Zwitterionic Shells Derived from Two Poly(vinyl amine)-Based Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3001-3014. [PMID: 33650430 DOI: 10.1021/acs.langmuir.0c02197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two series of poly(vinyl amine) (PVAm)-based block copolymers with zwitterionic and thermoresponsive segments were synthesized by the reversible addition-fragmentation chain transfer polymerization. A mixture of the two copolymers, poly(N-acryloyl-l-lysine) (PALysOH) and poly(N-isopropylacrylamide) (PNIPAM), which have the same cationic PVAm chain but different shell-forming segments, were used to prepare mixed polyplex micelles with DNA. Both PVAm-b-PALysOH and PVAm-b-PNIPAM showed low cytotoxicity, with characteristic assembled structures and stimuli-responsive properties. The cationic PVAm segment in both block copolymers showed site-specific interactions with DNA, which were evaluated by dynamic light scattering, zeta potential, circular dichroism, agarose gel electrophoresis, atomic force microscopy, and transmission electron microscopy measurements. The PVAm-b-PNIPAM/DNA polyplexes showed the characteristic temperature-induced formation of assembled structures in which the polyplex size, surface charge, chiroptical property of DNA, and polymer-DNA binding were governed by the nitrogen/phosphate (N/P) ratio. The DNA binding strength and colloidal stability of the PVAm-b-PALysOH/DNA polyplexes could be tuned by introducing an appropriate amount of zwitterionic PALysOH functionality, while maintaining the polyplex size, surface charge, and chiroptical property, regardless of the N/P ratio. The mixed polyplex micelles showed temperature-induced stability originating from the hydrophobic (dehydrated) PNIPAM chains upon heating, and remarkable stability under salty conditions owing to the presence of the zwitterionic PALysOH chain on the polyplex surface.
Collapse
Affiliation(s)
- Ryosuke Kanto
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Ryo Yonenuma
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Mizuki Yamamoto
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
| | - Hiroyuki Furusawa
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Mitsuru Haruki
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642, Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
4
|
Tuning with Phosphorylcholine Grafts Improves the Physicochemical Properties of PLL/pDNA Nanoparticles at Neutral pH. Macromol Res 2019. [DOI: 10.1007/s13233-020-8019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Chen Y, Sun J, Huang Y, Liu Y, Liang L, Yang D, Lu B, Li S. Targeted codelivery of doxorubicin and IL-36γ expression plasmid for an optimal chemo-gene combination therapy against cancer lung metastasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 15:129-141. [PMID: 30308300 DOI: 10.1016/j.nano.2018.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Cancer metastasis is the main cause for the high mortality in breast cancer patients. In this work we developed a polymer POEG-st-Pmor for targeted co-delivery of IL-36γ expression plasmid and doxorubicin (Dox) to lung metastasis of breast cancer. The polymer readily formed micelles that were effective in loading Dox and simultaneously forming complexes with IL-36γ plasmid. Interestingly, particles co-loaded with Dox and plasmid was significantly smaller and more stable than the particles loaded with Dox only. Gene transfection in both lungs and s.c. tumors was significantly higher with our polymer compared to PEI. In addition, the Dox + IL-36γ/POEG-st-Pmor not only could bring improved anti-metastatic effect but synergistically enhance the type I immune response by increasing the IFN-γ positive CD4+ and CD8+ T cells and simultaneously decreasing the immunosuppressive myeloid-derived suppressor cells in the lung. POEG-st-Pmor may represent a simple and effective delivery system for an optimal chemo-gene combination therapy.
Collapse
Affiliation(s)
- Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Lei Liang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Li Z, Sun J, Huang Y, Liu Y, Xu J, Chen Y, Liang L, Li J, Liao Q, Li S, Zhou K. A Nanomicellar Prodrug Carrier Based on Ibuprofen-Conjugated Polymer for Co-delivery of Doxorubicin. Front Pharmacol 2018; 9:781. [PMID: 30154714 PMCID: PMC6102750 DOI: 10.3389/fphar.2018.00781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug (NSAID), which is widely used to reduce fever and treat inflammation and acute pain. Recently, its application in cancer treatment is also being explored. In this work, we synthesized a well-defined IBU-based amphiphilic diblock copolymer via reversible addition fragmentation transfer (RAFT) polymerization of IBU-based vinyl monomer. The amphiphilic copolymer POEG-b-PVBIBU (denoted as POVI) was composed of a hydrophilic poly(oligo(ethylene glycol)) block and a hydrophobic IBU-bearing prodrug block, which was able to self-assemble into prodrug nanomicelles. In addition, it could serve as a carrier to co-load other drugs including doxorubicin (DOX), paclitaxel (PTX), and docetaxel (DTX). By using DOX as a model anti-cancer drug, the delivery function of POVI carrier, including the drug release, in vitro cytotoxicity, cellular uptake, and in vivo antitumor activity, was evaluated. DOX-loaded POVI micelles exhibited sustained release of DOX. Besides, DOX/POVI micelles were effectively taken up by tumor cells with an efficiency comparable to that of free DOX. Moreover, in vivo studies showed that POVI carrier itself had modest antitumor activity. After loading DOX, the antitumor activity was significantly increased, which was significantly higher than that of free DOX. Our results suggest that POVI polymer represents a simple and effective dual-functional carrier for co-delivery of IBU and DOX to improve the anticancer activity.
Collapse
Affiliation(s)
- Zuojun Li
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
- State Key Laboratory of Powder Metallurgy, Department of Pharmaceutical Sciences, School of Pharmacy, Central South University, Changsha, China
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lei Liang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jiang Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kechao Zhou
- State Key Laboratory of Powder Metallurgy, Department of Pharmaceutical Sciences, School of Pharmacy, Central South University, Changsha, China
| |
Collapse
|
7
|
Sun J, Sun L, Li J, Xu J, Wan Z, Ouyang Z, Liang L, Li S, Zeng D. A multi-functional polymeric carrier for simultaneous positron emission tomography imaging and combination therapy. Acta Biomater 2018; 75:312-322. [PMID: 29885530 PMCID: PMC6119490 DOI: 10.1016/j.actbio.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 01/06/2023]
Abstract
Multifunctional nanoplatforms offering simultaneous imaging and therapeutic functions have been recognized as a highly promising strategy for personalized nanomedicine. In this work, we synthesized a farnesylthiosalicylate (FTS, a nontoxic Ras antagonist) based triblock copolymer POEG-b-PVBA-b-PFTS (POVF) composed of a poly(oligo(ethylene glycol) methacrylate) (POEG) hydrophilic block, a poly(FTS) hydrophobic block, and a poly(4-vinylbenzyl azide) (PVBA) middle block. The POVF polymer itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it could serve as a carrier to effectively encapsulate paclitaxel (PTX) to form stable PTX/POVF mixed micelles with a diameter around 100 nm. Meanwhile, POVF polymer provides the active azide group for incorporating a positron emission tomography (PET) imaging modality via a facile strategy based on metal-free click chemistry. This nanocarrier system could not only be used for co-delivery of PTX and FTS, but also for PET imaging guided drug delivery. In the 4T1.2 tumor bearing mice, PET imaging showed rapid uptake and slow clearance of radiolabeled PTX/POVF nanomicelles in the tumor tissues. In addition, the FTS-based multi-functional nanocarrier was able to inhibit tumor growth effectively, and the co-delivery of PTX by the carrier further improved the therapeutic effect. STATEMENT OF SIGNIFICANCE Due to the intrinsic heterogeneity of cancer and variability in individual patient response, personalized nanomedicine based on multi-functional carriers that integrate the functionalities of combination therapy and imaging guidance is highly demanded. Here we developed a multi-functional nanocarrier based on triblock copolymer POEG-b-PVBA-b-PFTS (POVF), which could not only be used for co-delivery of anticancer drugs PTX and Ras inhibitor FTS, but also for PET imaging guided drug delivery. The POVF carrier itself was active in inhibiting the tumor growth in vitro and in vivo. Besides, it was effective in formulating PTX with high drug loading capacity, which further enhanced the tumor inhibition effect. Meanwhile, we developed a simple and universal approach to incorporate a PET radioisotope (Zr-89 and Cu-64) into the azide-containing PTX/POVF micelles via metal-free click chemistry in aqueous solution. The radiolabeled PTX/POVF micelles exhibited excellent serum stability, rapid tumor uptake and slow clearance, which validated the feasibility of the PET image-guided delivery of PTX/POVF micelles.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Lingyi Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jianchun Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Zubin Ouyang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lei Liang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - Dexing Zeng
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
8
|
Sun J, Liu Y, Chen Y, Zhao W, Zhai Q, Rathod S, Huang Y, Tang S, Kwon YT, Fernandez C, Venkataramanan R, Li S. Doxorubicin delivered by a redox-responsive dasatinib-containing polymeric prodrug carrier for combination therapy. J Control Release 2017; 258:43-55. [PMID: 28501705 PMCID: PMC5525542 DOI: 10.1016/j.jconrel.2017.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
Abstract
Two novel prodrug polymers POEG-b-PSSDas (redox-sensitive) and POEG-b-PCCDas (redox-insensitive), which consist of poly(oligo(ethylene glycol) methacrylate) (POEG) hydrophilic blocks and dasatinib (DAS, an oncogenic tyrosine kinases inhibitor) conjugated hydrophobic blocks, were designed as dual-functional carriers for codelivery with doxorubicin (DOX). Both carriers retained antitumor activity of DAS and could form mixed micelles with DOX. Compared to POEG-b-PCCDas micelles, incorporation of disulfide linkage into POEG-b-PSSDas micelles facilitated efficient cleavage of DAS from prodrug micelles in tumor cells/tissues, leading to a higher level of anti-tumor activity in vitro and in vivo. In addition, DOX-loaded POEG-b-PSSDas micelles exhibited triggered DOX release under a redox environment (10mM glutathione, GSH), and demonstrated enhanced cytotoxicity against 4T1.2 and PC3 cell lines compared to DOX and DOX-loaded POEG-b-PCCDas micelles. More importantly, DOX-loaded POEG-b-PSSDas micelles were more effective in inhibiting the tumor growth and prolonging the survival rate in an aggressive murine breast cancer model (4T1.2) compared to DOX-loaded POEG-b-PCCDas micelles and a micellar formulation co-loaded with DOX and DAS. This redox-responsive prodrug micellar system provides an attractive strategy for effective combination of tumor targeted therapy and traditional chemotherapy, which warrants further investigation.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yichao Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Wenchen Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Qianyu Zhai
- Department of Pediatrics, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Sanjay Rathod
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Suoqin Tang
- Department of Pediatrics, The General Hospital of People's Liberation Army, Beijing 100853, China
| | - Yong Tae Kwon
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States; Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Christian Fernandez
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Raman Venkataramanan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
9
|
Sun JJ, Chen YC, Huang YX, Zhao WC, Liu YH, Venkataramanan R, Lu BF, Li S. Programmable co-delivery of the immune checkpoint inhibitor NLG919 and chemotherapeutic doxorubicin via a redox-responsive immunostimulatory polymeric prodrug carrier. Acta Pharmacol Sin 2017; 38:823-834. [PMID: 28504251 PMCID: PMC5520195 DOI: 10.1038/aps.2017.44] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 02/07/2023]
Abstract
To achieve synergistic therapeutic efficacy and prevent cancer relapse, chemotherapy and immunotherapy have been combined as a new modality for tumor treatment. In this work, we designed a redox-responsive immunostimulatory polymeric prodrug carrier, PSSN10, for programmable co-delivery of an immune checkpoint inhibitor NLG919 (NLG) and a chemotherapeutic doxorubicin (DOX). NLG-containing PSSN10 prodrug polymers were self-assembled into nano-sized micelles that served as a carrier to load DOX (DOX/PSSN10 micelles). DOX/PSSN10 micelles displayed spherical morphology with a size of ∼170 nm. DOX was effectively loaded into PSSN10 micelles with a loading efficiency of 84.0%. In vitro DOX release studies showed that rapid drug release could be achieved in the highly redox environment after intracellular uptake by tumor cells. In 4T1.2 tumor-bearing mice, DOX/PSSN10 micelles exhibited greater accumulation of DOX and NLG in the tumor tissues compared with other organs. The PSSN10 carrier dose-dependently enhanced T-cell immune responses in the lymphocyte-Panc02 co-culture experiments, and significantly inhibited tumor growth in vivo. DOX/PSSN10 micelles showed potent cytotoxicity in vitro against 4T1.2 mouse breast cancer cells and PC-3 human prostate cancer cells comparable to that of DOX. In 4T1.2 tumor-bearing mice, DOX/PSSN10 mixed micelles (5 mg DOX/kg, iv) was more effective than DOXIL (a clinical formulation of liposomal DOX) or free DOX in inhibiting the tumor growth and prolonging the survival of the treated mice. In addition, a more immunoactive tumor microenvironment was observed in the mice treated with PSSN10 or DOX/PSSN10 micelles compared with the other treatment groups. In conclusion, systemic delivery of DOX via PSSN10 nanocarrier results in synergistic anti-tumor activity.
Collapse
Affiliation(s)
- Jing-jing Sun
- Center for Pharmacogenetics
- Department of Pharmaceutical Sciences, School of Pharmacy
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yi-chao Chen
- Center for Pharmacogenetics
- Department of Pharmaceutical Sciences, School of Pharmacy
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yi-xian Huang
- Center for Pharmacogenetics
- Department of Pharmaceutical Sciences, School of Pharmacy
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen-chen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy
| | - Yan-hua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | | | - Bin-feng Lu
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics
- Department of Pharmaceutical Sciences, School of Pharmacy
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
10
|
Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers. Colloids Surf B Biointerfaces 2016; 148:73-84. [DOI: 10.1016/j.colsurfb.2016.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 11/20/2022]
|
11
|
Sun J, Sheng R, Luo T, Wang Z, Li H, Cao A. Synthesis of diblock/statistical cationic glycopolymers with pendant galactose and lysine moieties: gene delivery application and intracellular behaviors. J Mater Chem B 2016; 4:4696-4706. [PMID: 32263242 DOI: 10.1039/c6tb00969g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new series of cationic block copolymers PHML-b-PMAGal and statistical copolymers P(HML-st-MAGal) with pendant natural galactose and (l-)-lysine moieties were prepared via RAFT (reversible addition-fragmentation chain-transfer) polymerization. The block/statistical copolymers showed a high plasmid DNA binding affinity (N/P < 2) and the as-formed polyplexes were spherical nanoparticles with the average size of 100-300 nm and surface zeta potentials of +30.2 to +46.3 mV. The cytotoxicity and gene transfection efficacy of the PHML-b-PMAGal and P(HML-st-MAGal) vectors strongly depend on the polymer architectures (block/statistical) and the galactose content. Notably, the statistical copolymer P(HML40-st-MAGal4) with 4.8% galactose content showed the highest gene transfection efficiency among the synthesized cationic polymers, 6.8-fold higher than that of the "gold standard" bPEI-25k in the presence of 10% FBS (fetal bovine serum) in various cell lines. An intracellular uptake mechanism (with 10% FBS) study demonstrated that the P(HML40-st-MAGal4)/pDNA polyplexes entered H1299 cells mainly through caveolae-mediated endocytosis and microtubule-dependent endocytosis pathways. Moreover, the fluorescence imaging study showed that the P(HML40-st-MAGal4)/pDNA polyplexes possessed an obvious "lysosomal escaping" effect that led to efficient pDNA release, which might interpret the fact of the significant increase of the related gene transfection efficiency. Moreover, it could be anticipated that the P(HML40-st-MAGal4) cationic glycopolymer might be employed as a low toxic, highly efficient and serum-compatible gene carrier for practical applications.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, CAS. Lingling Road 345, Shanghai, 200032, China.
| | | | | | | | | | | |
Collapse
|
12
|
Sun J, Luo T, Sheng R, Li H, Wang Z, Cao A. Intracellular plasmid DNA delivery by self-assembled nanoparticles of amphiphilic PHML-b-PLLA-b-PHML copolymers and the endocytosis pathway analysis. J Biomater Appl 2016; 31:606-621. [PMID: 27059498 DOI: 10.1177/0885328216642665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This work presents a new series of polycationic nanoparticles of (l-)-lysine conjugated amphiphilic triblock copolymer poly(hydroxyletheyl methacrylate-L-lysine)-b-poly(L-lactide)-b-poly(hydroxyletheyl methacrylate-L-lysine)s (PHML-b-PLLA-b-PHML) as potent low cytotoxic vectors for intracellular plasmid DNA delivery. First, the triblock PHML-b-PLLA-b-PHML copolymers were prepared via a combination of metal-free controlled ring opening polymerization and successive atom transfer radical polymerization. Then the cationic PHML-b-PLLA-b-PHML nanoparticles were further prepared by solution self-assembly. The particle size, zeta potential and morphology of as-prepared PHML-b-PLLA-b-PHML nanoparticles were characterized by dynamic light scattering and atomic force microscopy, respectively. The plasmid DNA binding affinities and polyplex stabilities were separately explored by agarose gel retardation and DNase I degradation assays. Then in vitro cytotoxicity and gene transfection efficiency of the PHML-b-PLLA-b-PHML nanoparticles vectors as well as relevant polyplex endocytosis pathway were investigated with H1299 cells. It was revealed that the PHML-b-PLLA-b-PHML nanoparticles exhibited low cytotoxicity, strong plasmid DNA binding affinity, high polyplex stability and efficient plasmid DNA transfection even under serum conditions (10% FBS). Moreover, the endocytosis analysis results disclosed that the PHML30-b-PLLA-b-PHML30 nanoparticle/plasmid DNA polyplexes were predominantly involved in lipid-raft-mediated endocytosis pathway, similar to that of SV40 virus-based vectors.
Collapse
Affiliation(s)
- Jingjing Sun
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ting Luo
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ruilong Sheng
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China Department of Chemistry, Université de Montréal, Succursale Centre-ville, Montréal, Quebéc, Canada
| | - Hui Li
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhao Wang
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Amin Cao
- Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Sheng R, Luo T, Li H, Sun J, Wang Z, Cao A. 'Click' synthesized sterol-based cationic lipids as gene carriers, and the effect of skeletons and headgroups on gene delivery. Bioorg Med Chem 2013; 21:6366-77. [PMID: 24063908 DOI: 10.1016/j.bmc.2013.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/15/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
In this work, we have successfully prepared a series of new sterol-based cationic lipids (1-4) via an efficient 'Click' chemistry approach. The pDNA binding affinity of these lipids was examined by EB displacement and agarose-gel retardant assay. The average particle sizes and surface charges of the sterol-based cationic lipids/pDNA lipoplexes were analyzed by dynamic laser light scattering instrument (DLS), and the morphologies of the lipoplexes were observed by atomic force microscopy (AFM). The cytotoxicity of the lipids were examined by MTT and LDH assay, and the gene transfection efficiencies of these lipid carriers were investigated by luciferase gene transfection assay in various cell lines. In addition, the intracellular uptake and trafficking/localization behavior of the Cy3-DNA loaded lipoplexes were preliminarily studied by fluorescence microscopy. The results demonstrated that the pDNA loading capacity, lipoplex particle size, zeta potential and morphology of the sterol lipids/pDNA lipoplexes depended largely on the molecular structure factors including sterol-skeletons and headgroups. Furthermore, the sterol-based lipids showed quite different cytotoxicity and gene transfection efficacy in A549 and HeLa cells. Interestingly, it was found that the cholesterol-bearing lipids 1 and 2 showed 7-10(4) times higher transfection capability than their lithocholate-bearing counterparts 3 and 4 in A549 and HeLa cell lines, suggested that the gene transfection capacity strongly relied on the structure of sterol skeletons. Moreover, the study on the structure-activity relationships of these sterol-based cationic lipid gene carriers provided a possible approach for developing low cytotoxic and high efficient lipid gene carriers by selecting suitable sterol hydrophobes and cationic headgroups.
Collapse
Affiliation(s)
- Ruilong Sheng
- Laboratory for Polymer Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
14
|
Li H, Luo T, Sheng R, Sun J, Wang Z, Cao A. Endoplasmic reticulum localization of poly(ω-aminohexyl methacrylamide)s conjugated with (L-)-arginines in plasmid DNA delivery. Biomaterials 2013; 34:7923-38. [PMID: 23880337 DOI: 10.1016/j.biomaterials.2013.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023]
Abstract
In this work, we first synthesized a ω-amino group Boc-protected poly(ω-aminohexyl methacrylamide) PAHMAA-Boc precursor via controlled reversible addition-fragmentation chain transfer (RAFT) polymerization of the Boc-AHMAA monomer in THF solution, and poly(ω-aminohexyl methacrylamide) (PAHMAA) was then prepared via Boc deprotection, and was further conjugated with (L-)-arginines at the ω-amino group sites to give a series of new (L-)-arginine conjugated PAHMAA-R7, PAHMAA-R16 and PAHMAA-R22. Employing these PAHMAA and PAHMAA-Rs as functional gene vectors, their plasmid DNA binding affinities were examined by agarose gel retardant assay. By means of dynamic light scattering (DLS), mean particle sizes and zeta potentials of the polyplexes were analyzed. Moreover, cytotoxicities of the PAHMAA and PAHMAA-Rs were evaluated by MTT and lactate dehydrogenase (LDH) release assays with COS-7 cells, and luciferase and EGFP gene transfection efficacies by these vectors were assayed in COS-7 and HeLa cells. Furthermore, intracellular uptake of the vector/Cy3-labeled pDNA polyplexes was studied with a flow cytometer (FACS), and the most efficient PAHMAA-R16 vector was employed to investigate the endocytic gateways with various inhibitors. In addition, colocalization of the Cy3-labeled pDNA and Oregon Green labeled PAHMAA-R16 vector in the intracellular organelles of COS-7 cells was visualized on a fluorescence microscopy. As a result, it was revealed that the PAHMAA-R vectors showed lower cytotoxicities and transfection efficacies significantly higher than those of the PAHMAA, strongly depending on their percentage of arginine conjugation, and that the results of endocytic inhabitation and fluorescence colocalization in endoplasmic reticulum may suggest a caveolae-mediated efficient intracellular trafficking route for the synthesized PAHMAA-R vectors.
Collapse
Affiliation(s)
- Hui Li
- Laboratory for Polymer Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|