1
|
He W, Deng J, Ma B, Tao K, Zhang Z, Ramakrishna S, Yuan W, Ye T. Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs. ACS APPLIED BIO MATERIALS 2024; 7:17-43. [PMID: 38091514 DOI: 10.1021/acsabm.3c00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
3D bioprinting is recognized as a promising biomanufacturing technology that enables the reproducible and high-throughput production of tissues and organs through the deposition of different bioinks. Especially, bioinks based on loaded cells allow for immediate cellularity upon printing, providing opportunities for enhanced cell differentiation for organ manufacturing and regeneration. Thus, extensive applications have been found in the field of tissue engineering. The performance of the bioinks determines the functionality of the entire printed construct throughout the bioprinting process. It is generally expected that bioinks should support the encapsulated cells to achieve their respective cellular functions and withstand normal physiological pressure exerted on the printed constructs. The bioinks should also exhibit a suitable printability for precise deposition of the constructs. These characteristics are essential for the functional development of tissues and organs in bioprinting and are often achieved through the combination of different biomaterials. In this review, we have discussed the cutting-edge outstanding performance of different bioinks for printing various human tissues and organs in recent years. We have also examined the current status of 3D bioprinting and discussed its future prospects in relieving or curing human health problems.
Collapse
Affiliation(s)
- Wen He
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jinjun Deng
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Binghe Ma
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhi Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, National University of Singapore, Singapore 117576, Singapore
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
3
|
Sun M, Peng S, Nie L, Zou Y, Yang L, Gao L, Dou X, Zhao C, Feng C. Three-Dimensional Chiral Supramolecular Microenvironment Strategy for Enhanced Biocatalysis. ACS NANO 2021; 15:14972-14984. [PMID: 34491712 DOI: 10.1021/acsnano.1c05212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
How the three-dimensional (3D) chiral environment affects the biocatalysis remains an important issue, thereby inspiring the development of a microenvironment that highly mimics the natural features of enzyme to guarantee enhanced biocatalysis. In this study, two gelators bearing d/l-phenylalanine as chiral centers are designed to construct the 3D chiral catalytic microenvironment for enhancing the biocatalysis of lipase. Such a microenvironment is programmed through chiral transmission of chirality from molecular chirality to achiral polymers. It shows that the chirality of the microenvironment evidently influences the catalytic efficiency of immobilized lipase inside the system, and the 3D microenvironment constructed by right-handed helical nanostructures can enhance the catalytic activity of lipase inside as high as 10-fold for catalyzing 4-nitrophenyl palmitate (NPP) to 4-nitrophenol (NP) and 1.4-fold for catalyzing lipids to triglycerides (TGs) in 3T3-L1 cells than that of the achiral microenvironment. Moreover, the 3D chiral microenvironment has the merits of good catalytic efficiency, high storage stability, and efficient recyclability. This strategy of designing a 3D chiral microenvironment suitable for biocatalysis will overcome the present limitations of enzymatic immobilization in traditional materials and enhance the understanding of biocatalysis.
Collapse
Affiliation(s)
- Meng Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yunqing Zou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Stanković T, Ranđelović T, Dragoj M, Stojković Burić S, Fernández L, Ochoa I, Pérez-García VM, Pešić M. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resist Updat 2021; 55:100753. [PMID: 33667959 DOI: 10.1016/j.drup.2021.100753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
The poor response of glioblastoma to current treatment protocols is a consequence of its intrinsic drug resistance. Resistance to chemotherapy is primarily associated with considerable cellular heterogeneity, and plasticity of glioblastoma cells, alterations in gene expression, presence of specific tumor microenvironment conditions and blood-brain barrier. In an attempt to successfully overcome chemoresistance and better understand the biological behavior of glioblastoma, numerous tri-dimensional (3D) biomimetic models were developed in the past decade. These novel advanced models are able to better recapitulate the spatial organization of glioblastoma in a real time, therefore providing more realistic and reliable evidence to the response of glioblastoma to therapy. Moreover, these models enable the fine-tuning of different tumor microenvironment conditions and facilitate studies on the effects of the tumor microenvironment on glioblastoma chemoresistance. This review outlines current knowledge on the essence of glioblastoma chemoresistance and describes the progress achieved by 3D biomimetic models. Moreover, comprehensive literature assessment regarding the influence of 3D culturing and microenvironment mimicking on glioblastoma gene expression and biological behavior is also provided. The contribution of the blood-brain barrier as well as the blood-tumor barrier to glioblastoma chemoresistance is also reviewed from the perspective of 3D biomimetic models. Finally, the role of mathematical models in predicting 3D glioblastoma behavior and drug response is elaborated. In the future, technological innovations along with mathematical simulations should create reliable 3D biomimetic systems for glioblastoma research that should facilitate the identification and possibly application in preclinical drug testing and precision medicine.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Teodora Ranđelović
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Miodrag Dragoj
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia
| | - Luis Fernández
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragon 50018, Spain; Centro Investigación Biomédica en Red. Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Aragon 50018, Spain; Institute for Health Research Aragon (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Victor M Pérez-García
- Departamento de Matemáticas, E.T.S.I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
5
|
Xie Z, Gao M, Lobo AO, Webster TJ. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers (Basel) 2020; 12:E1717. [PMID: 32751797 PMCID: PMC7464247 DOI: 10.3390/polym12081717] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) printing, as one of the most popular recent additive manufacturing processes, has shown strong potential for the fabrication of biostructures in the field of tissue engineering, most notably for bones, orthopedic tissues, and associated organs. Desirable biological, structural, and mechanical properties can be achieved for 3D-printed constructs with a proper selection of biomaterials and compatible bioprinting methods, possibly even while combining additive and conventional manufacturing (AM and CM) procedures. However, challenges remain in the need for improved printing resolution (especially at the nanometer level), speed, and biomaterial compatibilities, and a broader range of suitable 3D-printed materials. This review provides an overview of recent advances in the development of 3D bioprinting techniques, particularly new hybrid 3D bioprinting technologies for combining the strengths of both AM and CM, along with a comprehensive set of material selection principles, promising medical applications, and limitations and future prospects.
Collapse
Affiliation(s)
- Zelong Xie
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| | - Ming Gao
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| | - Anderson O. Lobo
- LIMAV–Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI–Federal University of Piauí, Teresina 64049-550, Brazil;
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| |
Collapse
|
6
|
Thippabhotla S, Zhong C, He M. 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep 2019; 9:13012. [PMID: 31506601 PMCID: PMC6736862 DOI: 10.1038/s41598-019-49671-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
For studying cellular communications ex-vivo, a two-dimensional (2D) cell culture model is currently used as the “gold standard”. 2D culture models are also widely used in the study of RNA expression profiles from tumor cells secreted extracellular vesicles (EVs) for tumor biomarker discovery. Although the 2D culture system is simple and easily accessible, the culture environment is unable to represent in vivo extracellular matrix (ECM) microenvironment. Our study observed that 2D- culture derived EVs showed significantly different profiles in terms of secretion dynamics and essential signaling molecular contents (RNAs and DNAs), when compared to the three-dimensional (3D) culture derived EVs. By performing small RNA next-generation sequencing (NGS) analysis of cervical cancer cells and their EVs compared with cervical cancer patient plasma EV-derived small RNAs, we observed that 3D- culture derived EV small RNAs differ from their parent cell small RNA profile which may indicate a specific sorting process. Most importantly, the 3D- culture derived EV small RNA profile exhibited a much higher similarity (~96%) to in vivo circulating EVs derived from cervical cancer patient plasma. However, 2D- culture derived EV small RNA profile correlated better with only their parent cells cultured in 2D. On the other hand, DNA sequencing analysis suggests that culture and growth conditions do not affect the genomic information carried by EV secretion. This work also suggests that tackling EV molecular alterations secreted into interstitial fluids can provide an alternative, non-invasive approach for investigating 3D tissue behaviors at the molecular precision. This work could serve as a foundation for building precise models employed in mimicking in vivo tissue system with EVs as the molecular indicators or transporters. Such models could be used for investigating tumor biomarkers, drug screening, and understanding tumor progression and metastasis.
Collapse
Affiliation(s)
- Sirisha Thippabhotla
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas, 66045, USA.,Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Mei He
- Bioengineering Research Center, University of Kansas, Lawrence, Kansas, 66045, USA. .,Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, 66045, USA. .,Department of Chemistry, University of Kansas, Lawrence, Kansas, 66045, USA.
| |
Collapse
|
7
|
Motealleh A, Dorri P, Kehr NS. Self-assembled monolayers of chiral periodic mesoporous organosilica as a stimuli responsive local drug delivery system. J Mater Chem B 2019; 7:2362-2371. [DOI: 10.1039/c8tb02507j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
pH responsive PMOs deliver higher dosages of drugs to malignant cells while delivering less of the drugs to healthy cells.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Pooya Dorri
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
- California NanoSystems Institute (CNSI)
| |
Collapse
|
8
|
Zhu S, Ehnert S, Rouß M, Häussling V, Aspera-Werz RH, Chen T, Nussler AK. From the Clinical Problem to the Basic Research-Co-Culture Models of Osteoblasts and Osteoclasts. Int J Mol Sci 2018; 19:2284. [PMID: 30081523 PMCID: PMC6121694 DOI: 10.3390/ijms19082284] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Bone tissue undergoes constant remodeling and healing when fracture happens, in order to ensure its structural integrity. In order to better understand open biological and clinical questions linked to various bone diseases, bone cell co-culture technology is believed to shed some light into the dark. Osteoblasts/osteocytes and osteoclasts dominate the metabolism of bone by a multitude of connections. Therefore, it is widely accepted that a constant improvement of co-culture models with both cell types cultured on a 3D scaffold, is aimed to mimic an in vivo environment as closely as possible. Although in recent years a considerable knowledge of bone co-culture models has been accumulated, there are still many open questions. We here try to summarize the actual knowledge and address open questions.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Marc Rouß
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Victor Häussling
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Tao Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
9
|
Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 2018; 107:261-275. [DOI: 10.1016/j.ijbiomac.2017.08.171] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
|
10
|
Motealleh A, Hermes H, Jose J, Kehr NS. Chirality-dependent cell adhesion and enrichment in Janus nanocomposite hydrogels. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:247-256. [DOI: 10.1016/j.nano.2017.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/05/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023]
|
11
|
Kehr N. Janus enantiomorphous nanomaterial assembly on substrate surfaces for chirality-dependent cell adhesion. Colloids Surf B Biointerfaces 2017; 159:125-130. [DOI: 10.1016/j.colsurfb.2017.07.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/05/2017] [Accepted: 07/25/2017] [Indexed: 01/23/2023]
|
12
|
Motealleh A, Seda Kehr N. Janus Nanocomposite Hydrogels for Chirality-Dependent Cell Adhesion and Migration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33674-33682. [PMID: 28880531 DOI: 10.1021/acsami.7b10871] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recently, there has been much interest in the chirality-dependent cell affinity to enantiomorphous nanomaterials (NMs), since, at the nanoscale level, enantiomers of (bio)molecules have different effects on cell behaviors. In this respect, this study used enantiomorphous NMs with which to generate the Janus nanocomposite (NC) hydrogels as multifunctional biomaterials for studying chirality-dependent cell adhesion and cell migration. These Janus NC hydrogels possess two enantiomorphous NC hydrogels, in which the different halves of the hydrogel contain the opposite enantiomers of a biopolymer functionalized nanomaterials. Thus, the enantiomers contact each other only at the midline of the hydrogel but are otherwise separated, yet they are present in the same system. This advanced system allows us to simultaneously study the impact that each enantiomer of a biopolymer has on cell behavior under the same reaction conditions, at the same time, and using only a single biomaterial. Our results show that cells have higher affinity for and migrate toward the part of the Janus NC hydrogel containing the biopolymer enantiomer that the cells prefer.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11, D-48149 Münster, Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and CeNTech, Westfälische Wilhelms-Universität Münster , Heisenbergstraße 11, D-48149 Münster, Germany
| |
Collapse
|
13
|
Gade M, Chaudhary PM, Thulasiram HV, Kikkeri R. Engineering Cell Surface Glycans with Carbohydrate Enantiomers to Alter Bacterial Binding and Adhesion. ChemistrySelect 2017. [DOI: 10.1002/slct.201701875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Madhuri Gade
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune- 411008 India
| | - Preeti Madhukar Chaudhary
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune- 411008 India
| | - Hirekodathakallu V. Thulasiram
- Chemical Biology Unit; Division of Organic Chemistry; CSIR-National chemical Laboratory; Dr. Homi Bhabha Road Pune- 411008 India
| | - Raghavendra Kikkeri
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune- 411008 India
| |
Collapse
|
14
|
Mhanna R, Becher J, Schnabelrauch M, Reis RL, Pashkuleva I. Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior. ACTA ACUST UNITED AC 2017; 1:e1700043. [DOI: 10.1002/adbi.201700043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/15/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rami Mhanna
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
- Biomedical Engineering and Chemical Engineering Program; American University of Beirut; Beirut 1107 2020 Lebanon
| | - Jana Becher
- INNOVENT e.V.; Biomaterials Department; Prüssingstraße 27 B D-07745 Jena Germany
| | | | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Iva Pashkuleva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
15
|
Mir TA, Nakamura M. Three-Dimensional Bioprinting: Toward the Era of Manufacturing Human Organs as Spare Parts for Healthcare and Medicine. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:245-256. [DOI: 10.1089/ten.teb.2016.0398] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tanveer Ahmad Mir
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| | - Makoto Nakamura
- Division of Biomedical System Engineering, Graduate School of Science and Engineering for Education, University of Toyama, Toyama, Japan
- Toyama Nanotechnology Manufacturing Cluster, Toyama, Japan
| |
Collapse
|
16
|
do Nascimento MHM, Ferreira M, Malmonge SM, Lombello CB. Evaluation of cell interaction with polymeric biomaterials based on hyaluronic acid and chitosan. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:68. [PMID: 28357686 DOI: 10.1007/s10856-017-5875-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Tissue engineering involves the development of new materials or devices capable of specific interactions with biological tissues, searching the use of biocompatible materials as scaffolds for in vitro cell growth, and functional tissue development, that is subsequently implanted into patient. The aim of the current study was to evaluate the initial aspects of cell interaction with the polymeric biomaterials blends based on hyaluronic acid with chitosan. The hypothesis approach involves synthesis and analysis of swelling and thermal degradation (thermal gravimetric analysis) of the polymer blend; and Vero cell interaction with the biomaterial, through analysis of cytotoxicity, adhesion and cell morphology. The blend resulted in a biomaterial with a high swelling ratio that can allow nutrient distribution and absorption. The thermal gravimetric analysis results showed that the blend had two stages of degradation at temperatures very close to those observed for pure polymers, confirming that the physical mixing of hydrogels occurred, resulting in the presence of both hyaluronic acid and chitosan in the blend. The evaluation of indirect cytotoxicity showed that the blend was non cytotoxic for Vero cells, and the quantitative analysis performed with the MTT could verify a cell viability of 98%. The cells cultured on the blend showed adhesion, spreading and proliferation on this biomaterial, distinguished from the pattern of the control cells. These results showed that the blends produced from hyaluronic acid and chitosan hydrogels are promising for applications in tissue engineering, aiming at future cartilaginous tissue.
Collapse
Affiliation(s)
| | - Mariselma Ferreira
- Human and Natural Sciences Center, ABC Federal University, Santo André, São Paulo, Brazil
| | - Sônia Maria Malmonge
- Engineering, Modelling and Applied Social Sciences Center, ABC Federal University, Santo André, São Paulo, Brazil
| | | |
Collapse
|
17
|
Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016; 34:422-434. [PMID: 26724184 PMCID: PMC4879088 DOI: 10.1016/j.biotechadv.2015.12.011] [Citation(s) in RCA: 962] [Impact Index Per Article: 106.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.
Collapse
Affiliation(s)
- Christian Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Zongjie Wang
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Keekyoung Kim
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Kehr NS. Enantiomorphous Periodic Mesoporous Organosilica-Based Nanocomposite Hydrogel Scaffolds for Cell Adhesion and Cell Enrichment. Biomacromolecules 2016; 17:1117-22. [DOI: 10.1021/acs.biomac.5b01739] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nermin Seda Kehr
- Physikalisches Institut and
CeNTech, Westfälische Wilhelms-Universität Münster, Heisenbergstraße
11, D-48149 Münster, Germany
| |
Collapse
|
19
|
Conejero-Muriel M, Gavira JA, Pineda-Molina E, Belsom A, Bradley M, Moral M, García-López Durán JDD, Luque González A, Díaz-Mochón JJ, Contreras-Montoya R, Martínez-Peragón Á, Cuerva JM, Álvarez de Cienfuegos L. Influence of the chirality of short peptide supramolecular hydrogels in protein crystallogenesis. Chem Commun (Camb) 2015; 51:3862-5. [PMID: 25655841 DOI: 10.1039/c4cc09024a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time the influence of the chirality of the gel fibers in protein crystallogenesis has been studied. Enantiomeric hydrogels 1 and 2 were tested with model proteins lysozyme and glucose isomerase and a formamidase extracted from B. cereus. Crystallization behaviour and crystal quality of these proteins in both hydrogels are presented and compared.
Collapse
Affiliation(s)
- Mayte Conejero-Muriel
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kehr NS, Galla HJ, Riehemann K, Fuchs H. Self-assembled monolayers of enantiomerically functionalized periodic mesoporous organosilicas and the effect of surface chirality on cell adhesion behaviour. RSC Adv 2015. [DOI: 10.1039/c4ra11451e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enantioselective functionalization of fluorescent dye loaded periodic mesoporous organosilicas withd(l)-mannose and the preparation of their self-assembled monolayers are described. Stereoselective interactions of these monolayers with different cell types are demonstrated.
Collapse
Affiliation(s)
- N. S. Kehr
- Physikalishes Institut and CeNTech
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - H.-J. Galla
- Institut für Biochemie
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - K. Riehemann
- Physikalishes Institut and CeNTech
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - H. Fuchs
- Physikalishes Institut and CeNTech
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| |
Collapse
|
21
|
Wei W, Xu C, Gao N, Ren J, Qu X. Opposing enantiomers of tartaric acid anchored on a surface generate different insulin assemblies and hence contrasting cellular responses. Chem Sci 2014. [DOI: 10.1039/c4sc01386g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|