1
|
Xu H, Li S, Liu YS. Nanoparticles in the diagnosis and treatment of vascular aging and related diseases. Signal Transduct Target Ther 2022; 7:231. [PMID: 35817770 PMCID: PMC9272665 DOI: 10.1038/s41392-022-01082-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 11/09/2022] Open
Abstract
Aging-induced alternations of vasculature structures, phenotypes, and functions are key in the occurrence and development of vascular aging-related diseases. Multiple molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, vascular inflammation, cellular senescence, and epigenetic alterations are highly associated with vascular aging physiopathology. Advances in nanoparticles and nanotechnology, which can realize sensitive diagnostic modalities, efficient medical treatment, and better prognosis as well as less adverse effects on non-target tissues, provide an amazing window in the field of vascular aging and related diseases. Throughout this review, we presented current knowledge on classification of nanoparticles and the relationship between vascular aging and related diseases. Importantly, we comprehensively summarized the potential of nanoparticles-based diagnostic and therapeutic techniques in vascular aging and related diseases, including cardiovascular diseases, cerebrovascular diseases, as well as chronic kidney diseases, and discussed the advantages and limitations of their clinical applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China.,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China. .,Institute of Aging and Age-related Disease Research, Central South University, 410011, Changsha, Hunan, China.
| |
Collapse
|
2
|
Cell immunocapture microfluidic chip based on high-affinity recombinant protein binders. Biosens Bioelectron 2021; 172:112784. [PMID: 33161292 DOI: 10.1016/j.bios.2020.112784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Cell immunocapture microfluidic devices represent a rapidly developing field with many potential applications in medical diagnostics. The core of such approach lies in the cell binding to antibody coated surfaces through their surface receptors. Here we show, that the small recombinant protein binders (PBs) can be used for this purpose as well, with the advantage of their constructional flexibility, possibility of fusion with range of tags and cheap mass production. For this purpose, two different PBs derived from Albumin Binding Domain (ABDwt) of streptococcal protein G, so called REX and ARS ligands with proved high affinity and selectivity to the human interleukin-23 (IL-23R) and IL-17 receptor A were used. Four PBs variants recognizing two different epitopes on two different receptors and two PBs variants binding to the same epitope on one receptor but having different peptide spacer with Avitag sequence necessary for their immobilization on sensor surface were tested for cell-capture efficiency. The glass microfluidic Y-system with planar immunocapture channel working in so-called stop-flow dynamic regime was designed. Up to 60-74% immunocapture efficiency of model THP-1 cells on REX/ARS surfaces and practically no cell binding on control ABDwt surfaces was achieved. Moreover, the specific immunocapture of THP-1 cells from mixture with IL-17RA negative DU-145 cells was demonstrated. We discuss the role of the epitope, affinity and immobilization spacer of PBs as well as the influence of stop-flow dynamic regime on the effectivity of THP-1 cell immunocapture. Results can be further exploited in design of microfluidic devices for rare cells immunocapture.
Collapse
|
3
|
Vidal L, Ben Aissa A, Salabert J, Jara JJ, Vallribera A, Pividori MI, Sebastián RM. Biotinylated Phosphorus Dendrimers as Control Line in Nucleic Acid Lateral Flow Tests. Biomacromolecules 2020; 21:1315-1323. [PMID: 32067443 DOI: 10.1021/acs.biomac.0c00161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lateral flow assays (LFA) are an affordable, easy-to-use, qualitative rapid test for clinical diagnosis in nonlaboratory environments and low-resource facilities. The control line of these tests is very important to provide a valid result, confirming that the platform operates correctly. A clear, nondiffused line is desirable. The number of colored nanoparticles that reach the control line in a positive test can be very small, and they should all be trapped efficiently by the molecules adsorbed there. In this work, we proposed the use of robust biotinylated dendrimers of two different generations as signal amplifiers in control lines of LFA, able to react with streptavidin-modified gold nanoparticles. Besides the synthesis and characterization, the analytical performance as control lines will be studied, and their response will be compared with other commercially available biotinylated molecules. Finally, the utility of the dendrimer implemented in a NALF (Nucleic Acid Lateral Flow) strip was also demonstrated for detection of the amplicons obtained by double-tagging PCR (polymerase chain reaction) for the detection of E. coli as a model of foodborne pathogen.
Collapse
Affiliation(s)
- Laura Vidal
- Department of Chemistry, Universitat Autònoma de Barcelona, Campus de Bellaterra s/n, 08193 Cerdanyola del Vallès, Barcelona Spain
| | | | - Jordi Salabert
- Department of Chemistry, Universitat Autònoma de Barcelona, Campus de Bellaterra s/n, 08193 Cerdanyola del Vallès, Barcelona Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus UAB, Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - José Juan Jara
- Department of Chemistry, Universitat Autònoma de Barcelona, Campus de Bellaterra s/n, 08193 Cerdanyola del Vallès, Barcelona Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus UAB, Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry, Universitat Autònoma de Barcelona, Campus de Bellaterra s/n, 08193 Cerdanyola del Vallès, Barcelona Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus UAB, Cerdanyola del Vallès, 08193-Barcelona, Spain
| | - María Isabel Pividori
- Department of Chemistry, Universitat Autònoma de Barcelona, Campus de Bellaterra s/n, 08193 Cerdanyola del Vallès, Barcelona Spain
| | - Rosa María Sebastián
- Department of Chemistry, Universitat Autònoma de Barcelona, Campus de Bellaterra s/n, 08193 Cerdanyola del Vallès, Barcelona Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Campus UAB, Cerdanyola del Vallès, 08193-Barcelona, Spain
| |
Collapse
|
4
|
Sandoval-Yañez C, Castro Rodriguez C. Dendrimers: Amazing Platforms for Bioactive Molecule Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E570. [PMID: 31991703 PMCID: PMC7040653 DOI: 10.3390/ma13030570] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Today, dendrimers are the main nanoparticle applied to drug delivery systems. The physicochemical characteristics of dendrimers and their versatility structural modification make them attractive to applied as a platform to bioactive molecules transport. Nanoformulations based on dendrimers enhance low solubility drugs, arrival to the target tissue, drugs bioavailability, and controlled release. This review describes the latter approaches on the transport of bioactive molecules based on dendrimers. The review focus is on the last therapeutic strategies addressed by dendrimers conjugated with bioactive molecules. A brief review of the latest studies in therapies against cancer and cardiovascular diseases, as well as future projections in the area, are addressed.
Collapse
Affiliation(s)
- Claudia Sandoval-Yañez
- Institute of Applied Chemical Sciences, Faculty of Engineering, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, San Miguel 8910060, Santiago-Chile, Chile
| | - Cristian Castro Rodriguez
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avenida General Velásquez 1775, Arica-Chile 1000007, Chile;
| |
Collapse
|
5
|
Herma R, Wrobel D, Liegertová M, Müllerová M, Strašák T, Maly M, Semerádtová A, Štofik M, Appelhans D, Maly J. Carbosilane dendrimers with phosphonium terminal groups are low toxic non-viral transfection vectors for siRNA cell delivery. Int J Pharm 2019; 562:51-65. [PMID: 30877030 DOI: 10.1016/j.ijpharm.2019.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
Abstract
Non-viral gene delivery vectors studied in the gene therapy applications are often designed with the cationic nitrogen containing groups necessary for binding and cell release of nucleic acids. Disadvantage is a relatively high toxicity which restricts the in vivo use of such nanoparticles. Here we show, that the 3rd generation carbosilane dendrimers possessing (trimethyl)phosphonium (PMe3) groups on their periphery were able to effectively deliver the functional siRNA into the cells (B14, Cricetulus griseus), release it into the cytosol and finally to achieve up to 40% gene silencing of targeted gene (glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) with the comparable or, in some cases, even better effectivity as their ammonium counterparts. Moreover, such cationic dendrimers show relatively low in vivo toxicity as compared to their ammonium analogues when analyzed by standard fish embryo test (FET) on Danio rerio in vivo model, with LD50 = 6.26 µM after 48 h of incubation. This is more than 10-fold improvement as compared to published values for various other types of cationic dendrimers. We discuss the potential of further increase of the transfection efficiency, endosomal escape and decrease of toxicity of such non-viral vectors, based on the systematic screening of different types of substituents on central phosphonium atom.
Collapse
Affiliation(s)
- Regina Herma
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic
| | - Dominika Wrobel
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic
| | - Michaela Liegertová
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic
| | - Monika Müllerová
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic; Institute of Chemical Process Fundamentals of the CAS, v.v.i., Prague, Czech Republic
| | - Tomáš Strašák
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic; Institute of Chemical Process Fundamentals of the CAS, v.v.i., Prague, Czech Republic
| | - Marek Maly
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic
| | - Alena Semerádtová
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic
| | - Marcel Štofik
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Jan Maly
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, 40096 Ústí nad Labem, Czech Republic.
| |
Collapse
|
6
|
Liegertová M, Wrobel D, Herma R, Müllerová M, Šťastná LČ, Cuřínová P, Strašák T, Malý M, Čermák J, Smejkal J, Štofik M, Maly J. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology 2018; 12:797-818. [DOI: 10.1080/17435390.2018.1475582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michaela Liegertová
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Dominika Wrobel
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Regina Herma
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Monika Müllerová
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | | | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Marek Malý
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Jan Čermák
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
- Institute of Chemical Process Fundamentals of the CAS, Prague, Czech Republic
| | - Jiří Smejkal
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Marcel Štofik
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Jan Maly
- Faculty of Science, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| |
Collapse
|
7
|
Semerádtová A, Štofik M, Neděla O, Staněk O, Slepička P, Kolská Z, Malý J. A simple approach for fabrication of optical affinity-based bioanalytical microsystem on polymeric PEN foils. Colloids Surf B Biointerfaces 2018; 165:28-36. [DOI: 10.1016/j.colsurfb.2018.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
|
8
|
Strašák T, Malý J, Wróbel D, Malý M, Herma R, Čermák J, Müllerová M, Št′astná LČ, Cuřínová P. Phosphonium carbosilane dendrimers for biomedical applications – synthesis, characterization and cytotoxicity evaluation. RSC Adv 2017. [DOI: 10.1039/c7ra01845b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphonium carbosilane dendrimers could represent an alternative to ammonium ones in gene therapy applications with high potential of mitochondrial targeting.
Collapse
Affiliation(s)
- Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS
- CZ-165 02 Prague 6 - Suchdol
- Czech Republic
| | - Jan Malý
- Department of Biology
- J.E. Purkyně University
- 40096 Usti nad Labem
- Czech Republic
| | - Dominika Wróbel
- Department of Biology
- J.E. Purkyně University
- 40096 Usti nad Labem
- Czech Republic
| | - Marek Malý
- Department of Physics
- J. E. Purkyně University
- 40096 Usti nad Labem
- Czech Republic
| | - Regina Herma
- Department of Biology
- J.E. Purkyně University
- 40096 Usti nad Labem
- Czech Republic
| | - Jan Čermák
- Institute of Chemical Process Fundamentals of the CAS
- CZ-165 02 Prague 6 - Suchdol
- Czech Republic
- Department of Chemistry
- J.E. Purkyně University
| | - Monika Müllerová
- Institute of Chemical Process Fundamentals of the CAS
- CZ-165 02 Prague 6 - Suchdol
- Czech Republic
| | | | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS
- CZ-165 02 Prague 6 - Suchdol
- Czech Republic
| |
Collapse
|
9
|
Yang H, Yao W, Wang Y, Shi L, Su R, Wan D, Xu N, Lian W, Chen C, Liu S. High-throughput screening of triplex DNA binders from complicated samples by 96-well pate format in conjunction with peak area-fading UHPLC-Orbitrap MS. Analyst 2017; 142:670-675. [DOI: 10.1039/c6an01974a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Screening triplex DNA binders from complicated samples in a high-throughput fashion with good reproducibility without the requirement of an extra releasing step.
Collapse
Affiliation(s)
- Hongmei Yang
- Changchun University of Chinese Medicine
- Changchun 130117
- China
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| | - Wenbin Yao
- Changchun University of Chinese Medicine
- Changchun 130117
- China
| | - Yihan Wang
- Changchun University of Chinese Medicine
- Changchun 130117
- China
| | - Lei Shi
- High Temperature Reactor Holdings Co
- Ltd
- China Nuclear Engineering Group Co
- Beijing 100037
- China
| | - Rui Su
- Changchun University of Chinese Medicine
- Changchun 130117
- China
| | - Debin Wan
- Department of Entomology and Comprehensive Cancer Center
- University of California
- Davis
- USA
| | - Niusheng Xu
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Wenhui Lian
- Changchun University of Chinese Medicine
- Changchun 130117
- China
| | - Changbao Chen
- Changchun University of Chinese Medicine
- Changchun 130117
- China
| | - Shuying Liu
- Changchun University of Chinese Medicine
- Changchun 130117
- China
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
10
|
Ennen F, Fenner P, Stoychev G, Boye S, Lederer A, Voit B, Appelhans D. Coil-like Enzymatic Biohybrid Structures Fabricated by Rational Design: Controlling Size and Enzyme Activity over Sequential Nanoparticle Bioconjugation and Filtration Steps. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6261-8. [PMID: 26905671 DOI: 10.1021/acsami.5b07305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Well-defined enzymatic biohybrid structures (BHS) composed of avidin, biotinylated poly(propyleneimine) glycodendrimers, and biotinylated horseradish peroxidase were fabricated by a sequential polyassociation reaction to adopt directed enzyme prodrug therapy to protein-glycopolymer BHS for potential biomedical applications. To tailor and gain fundamental insight into pivotal properties such as size and molar mass of these BHS, the dependence on the fabrication sequence was probed and thoroughly investigated by several complementary methods (e.g., UV/vis, DLS, cryoTEM, AF4-LS). Subsequent purification by hollow fiber filtration allowed us to obtain highly pure and well-defined BHS. Overall, by rational design and control of preparation parameters, e.g., fabrication sequence, ligand-receptor stoichiometry, and degree of biotinylation, well-defined BHS with stable and even strongly enhanced enzymatic activities can be achieved. Open coil-like structures of BHS with few branches are available by the sequential bioconjugation approach between synthetic and biological macromolecules possessing similar size dimensions.
Collapse
Affiliation(s)
- Franka Ennen
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Philipp Fenner
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Georgi Stoychev
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
- Organische Chemie der Polymere, Technische Universität Dresden , 01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|