1
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
2
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
3
|
Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: A review. Int J Biol Macromol 2024; 266:131281. [PMID: 38641503 DOI: 10.1016/j.ijbiomac.2024.131281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
As an emerging new manufacturing technology, Three-dimensional (3D) bioprinting provides the potential for the biomimetic construction of multifaceted and intricate architectures of functional integument, particularly functional biomimetic dermal structures inclusive of cutaneous appendages. Although the tissue-engineered skin with complete biological activity and physiological functions is still cannot be manufactured, it is believed that with the advances in matrix materials, molding process, and biotechnology, a new generation of physiologically active skin will be born in the future. In pursuit of furnishing readers and researchers involved in relevant research to have a systematic and comprehensive understanding of 3D printed tissue-engineered skin, this paper furnishes an exegesis on the prevailing research landscape, formidable obstacles, and forthcoming trajectories within the sphere of tissue-engineered skin, including: (1) the prevalent biomaterials (collagen, chitosan, agarose, alginate, etc.) routinely employed in tissue-engineered skin, and a discerning analysis and comparison of their respective merits, demerits, and inherent characteristics; (2) the underlying principles and distinguishing attributes of various current printing methodologies utilized in tissue-engineered skin fabrication; (3) the present research status and progression in the realm of tissue-engineered biomimetic skin; (4) meticulous scrutiny and summation of the extant research underpinning tissue-engineered skin inform the identification of prevailing challenges and issues.
Collapse
Affiliation(s)
- Qinghua Wei
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China.
| | - Yalong An
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Zhao
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingyang Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
5
|
Sun D, Chang Q, Lu F. Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels. J Tissue Eng 2024; 15:20417314241265202. [PMID: 39071896 PMCID: PMC11283672 DOI: 10.1177/20417314241265202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhang T, Xiang Z, Liu L, Ma Z, Panteleev M, Ataullakhanov FI, Shi Q. Bioinspired Platelet-Anchored Electrospun Meshes for Tight Inflammation Manipulation and Chronic Diabetic Wound Healing. Macromol Biosci 2023; 23:e2300036. [PMID: 37259884 DOI: 10.1002/mabi.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Indexed: 06/02/2023]
Abstract
Tight manipulation of the initial leukocytes infiltration and macrophages plasticity toward the M2 phenotype remain a challenge for diabetic wound healing. Inspired by the platelet function and platelet-macrophage interaction, a platelet-anchored polylactic acid-b-polyethylene glycol-b-polylactic acid (PLA-PEG-PLA) electrospun dressing is developed for inflammatory modulation and diabetic wounds healing acceleration. PLA-PEG-PLA electrospun meshes encapsulated with thymosin β4 (Tβ4) and CaCl2 is fabricated with electrospinning, followed by immersion of electrospun mesh in platelet-rich plasma to firmly anchor the platelets. It is demonstrated that the anchored platelets on electrospun mesh can enhance the initial macrophage recruitment and control the Tβ4 release from electrospun meshes to facilitate the macrophages polarization to the M2 phenotype. The inflammatory regulation promotes the expression of vascular endothelial growth factor and the migration of vascular endothelial cells for angiogenesis, resulting in accelerated diabetic wounds healing. Therefore, this work paved a new way to design platelet-inspired electrospun meshes for inflammation manipulation and diabetic wound healing.
Collapse
Affiliation(s)
- Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Mikhail Panteleev
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Fazly I Ataullakhanov
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Chu D, Chen J, Liu X, Liao A, Song X, Li Y, Yang L, Chen Z, Yu Z, Guo J. A tetramethylpyrazine-loaded hyaluronic acid-based hydrogel modulates macrophage polarization for promoting wound recovery in diabetic mice. Int J Biol Macromol 2023; 245:125495. [PMID: 37353128 DOI: 10.1016/j.ijbiomac.2023.125495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/15/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
The failure of wound healing often causes lower limb disability and amputation of diabetic patients. Current strategies for diabetic wound management often fail to achieve the expected outcomes, and emerging alternatives are urgently needed. Recent advances in the identification of active compounds from traditional herbal medicines provide promising therapeutics for tissue repair and regeneration. In this study, the pro-healing effects of tetramethylpyrazine (TMP, a natural alkaloid found in Ligusticum chuanxiong Hort) for diabetic wounds were for the first time demonstrated. The cutaneous healing was mainly achieved by TMP-mediated macrophage polarization from pro-inflammatory to pro-healing phenotype. In addition, the topical administration of TMP was facilitated by the hyaluronic acid (HA) hydrogel for promoting the full-thickness wounds in the experimental diabetic mice. Consequently, TMP-loaded HA hydrogel (TMP-HA) profoundly accelerated the wound closure in comparison with TMP-loaded INTRASITE Gel (it is a commercial hydrogel), which was evident with the inflammation mitigation, the angiogenesis enhancement, and the collagen deposition. Our work reveals the macrophage-modulatory function of TMP for diabetic wound healing and demonstrates great potential of TMP-HA for clinical application.
Collapse
Affiliation(s)
- Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Junjun Chen
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xingmei Liu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Xiaohuan Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yutong Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
8
|
Niu H, Guan Y, Zhong T, Ma L, Zayed M, Guan J. Thermosensitive and antioxidant wound dressings capable of adaptively regulating TGFβ pathways promote diabetic wound healing. NPJ Regen Med 2023; 8:32. [PMID: 37422462 PMCID: PMC10329719 DOI: 10.1038/s41536-023-00313-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023] Open
Abstract
Various therapies have been utilized for treating diabetic wounds, yet current regiments do not simultaneously address the key intrinsic causes of slow wound healing, i.e., abnormal skin cell functions (particularly migration), delayed angiogenesis, and chronic inflammation. To address this clinical gap, we develop a wound dressing that contains a peptide-based TGFβ receptor II inhibitor (PTβR2I), and a thermosensitive and reactive oxygen species (ROS)-scavenging hydrogel. The wound dressing can quickly solidify on the diabetic wounds following administration. The released PTβR2I inhibits the TGFβ1/p38 pathway, leading to improved cell migration and angiogenesis, and decreased inflammation. Meanwhile, the PTβR2I does not interfere with the TGFβ1/Smad2/3 pathway that is required to regulate myofibroblasts, a critical cell type for wound healing. The hydrogel's ability to scavenge ROS in diabetic wounds further decreases inflammation. Single-dose application of the wound dressing significantly accelerates wound healing with complete wound closure after 14 days. Overall, using wound dressings capable of adaptively modulating TGFβ pathways provides a new strategy for diabetic wound treatment.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Ting Zhong
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Liang Ma
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
9
|
Dzierżyńska M, Sawicka J, Deptuła M, Sosnowski P, Sass P, Peplińska B, Pietralik-Molińska Z, Fularczyk M, Kasprzykowski F, Zieliński J, Kozak M, Sachadyn P, Pikuła M, Rodziewicz-Motowidło S. Release systems based on self-assembling RADA16-I hydrogels with a signal sequence which improves wound healing processes. Sci Rep 2023; 13:6273. [PMID: 37072464 PMCID: PMC10113214 DOI: 10.1038/s41598-023-33464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR. The peptide hybrids were investigated for their structural aspects using circular dichroism, thioflavin T assay, transmission electron microscopy, and atomic force microscopy, as well as their rheological properties and stability in different fluids such as water or plasma, and their susceptibility to digestion by enzymes present in the wound environment. In addition, the morphology of the RADA-peptide hydrogels was examined with a unique technique called scanning electron cryomicroscopy. These experiments enabled us to verify if the designed peptides increased the bioactivity of the gel without disturbing its gelling processes. We demonstrate that the physicochemical properties of the designed hybrids were similar to those of the original RADA16-I. The materials behaved as expected, leaving the active motif free when treated with elastase. XTT and LDH tests on fibroblasts and keratinocytes were performed to assess the cytotoxicity of the RADA16-I hybrids, while the viability of cells treated with RADA16-I hybrids was evaluated in a model of human dermal fibroblasts. The hybrid peptides revealed no cytotoxicity; the cells grew and proliferated better than after treatment with RADA16-I alone. Improved wound healing following topical delivery of RADA-GHK and RADA-KGHK was demonstrated using a model of dorsal skin injury in mice and histological analyses. The presented results indicate further research is warranted into the engineered peptides as scaffolds for wound healing and tissue engineering.
Collapse
Affiliation(s)
- Maria Dzierżyńska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Justyna Sawicka
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | | | | | - Martyna Fularczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Jacek Zieliński
- Department of Surgical Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
10
|
Musaie K, Abbaszadeh S, Nosrati-Siahmazgi V, Qahremani M, Wang S, Eskandari MR, Niknezhad SV, Haghi F, Li Y, Xiao B, Shahbazi MA. Metal-coordination synthesis of a natural injectable photoactive hydrogel with antibacterial and blood-aggregating functions for cancer thermotherapy and mild-heating wound repair. Biomater Sci 2023; 11:2486-2503. [PMID: 36779258 DOI: 10.1039/d2bm01965e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photothermal therapy (PTT) is a promising approach for treating cancer. However, it suffers from the formation of local lesions and subsequent bacterial infection in the damaged area. To overcome these challenges, the strategy of mild PTT following the high-temperature ablation of tumors is studied to achieve combined tumor suppression, wound healing, and bacterial eradication using a hydrogel. Herein, Bi2S3 nanorods (NRs) are employed as a photothermal agent and coated with hyaluronic acid to obtain BiH NRs with high colloidal stability. These NRs and allantoin are loaded into an injectable Fe3+-coordinated hydrogel composed of sodium alginate (Alg) and Farsi gum (FG), which is extracted from Amygdalus scoparia Spach. The hydrogel can be used for localized cancer therapy by high-temperature PTT, followed by wound repair through the combination of mild hyperthermia and allantoin-mediated induction of cell proliferation. In addition, an outstanding blood clotting effect is observed due to the water-absorbing ability and negative charge of FG and Alg as well as the porous structure of hydrogels. The hydrogels also eradicate infection owing to the local heat generation and intrinsic antimicrobial activity of the NRs. Lastly, in vivo studies reveal an efficient photothermal-based tumor eradication and accelerated wound healing by the hydrogel.
Collapse
Affiliation(s)
- Kiyan Musaie
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Mostafa Qahremani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Shige Wang
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P.R. China
| | - Mohammad Reza Eskandari
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Seyyed Vahid Niknezhad
- Program in Craniofacial Biology, Department of Cell and Tissue Biology, University of California, San Francisco, CA 1, USA
| | - Fakhri Haghi
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715 China.
| | - Mohammad-Ali Shahbazi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
11
|
Huang C, Dong L, Zhao B, Lu Y, Huang S, Yuan Z, Luo G, Xu Y, Qian W. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med 2022; 12:e1094. [PMID: 36354147 PMCID: PMC9647861 DOI: 10.1002/ctm2.1094] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Hydrogels are promising and widely utilized in the biomedical field. In recent years, the anti-inflammatory function of hydrogel dressings has been significantly improved, addressing many clinical challenges presented in ongoing endeavours to promote wound healing. Wound healing is a cascaded and highly complex process, especially in chronic wounds, such as diabetic and severe burn wounds, in which adverse endogenous or exogenous factors can interfere with inflammatory regulation, leading to the disruption of the healing process. Although insufficient wound inflammation is uncommon, excessive inflammatory infiltration is an almost universal feature of chronic wounds, which impedes a histological repair of the wound in a predictable biological step and chronological order. Therefore, resolving excessive inflammation in wound healing is essential. In the past 5 years, extensive research has been conducted on hydrogel dressings to address excessive inflammation in wound healing, specifically by efficiently scavenging excessive free radicals, sequestering chemokines and promoting M1 -to-M2 polarization of macrophages, thereby regulating inflammation and promoting wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and demonstrated innovative methods for their preparation and application to achieve enhanced healing. In addition, we summarize the most important properties required for wound healing and discuss our analysis of potential challenges yet to be addressed.
Collapse
Affiliation(s)
- Can Huang
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Lanlan Dong
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Baohua Zhao
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yifei Lu
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Shurun Huang
- Department of Burns and Plastic Surgerythe 910th Hospital of Joint Logistic Force of Chinese People's Liberation ArmyQuanzhouFujianChina
| | - Zhiqiang Yuan
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Gaoxing Luo
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| | - Yong Xu
- Orthopedic InstituteSuzhou Medical CollegeSoochow UniversitySuzhouChina
- B CUBE Center for Molecular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Wei Qian
- Institute of Burn ResearchSouthwest HospitalState Key Laboratory of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsArmy Medical UniversityChongqingChina
| |
Collapse
|
12
|
Zhou Z, Zhang X, Xu L, Lu H, Chen Y, Wu C, Hu P. A self-healing hydrogel based on crosslinked hyaluronic acid and chitosan to facilitate diabetic wound healing. Int J Biol Macromol 2022; 220:326-336. [PMID: 35981678 DOI: 10.1016/j.ijbiomac.2022.08.076] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Traditional wound dressings are not able to provide ideal environment for diabetic wounds surface thus hampered the regrowth of fresh tissues. In this study, we designed a novel in situ forming hydrogel and used it as wound dressing material. Carboxymethyl chitosan (CMCS) and oxidized hyaluronic acid (OHA) were selected to construct a pH-responsive and self-healing hydrogel system via Schiff base reaction. Taurine (Tau) with anti-inflammatory property was loaded in the hydrogel through the aforementioned reaction. Under the slightly acidic environment of the diabetic wound site, a responsive release of taurine molecules speeded up the transfer of the taurine into the wound. The physiochemical properties of the prepared CMCS-OHA-Tau hydrogel were characterized. The CMCS-OHA-Tau hydrogel showed good biocompatibility, enhancement of cell migration and inhibited production of inflammatory cytokines.Subsequently, the hydrogel was applied on the wounds of diabetic rats and its boosted efficacy for wound recovery was confirmed.
Collapse
Affiliation(s)
- Ziqiang Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Lijun Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Huangjie Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Yuying Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| |
Collapse
|
13
|
Ding YW, Wang ZY, Ren ZW, Zhang XW, Wei DX. Advances in modified hyaluronic acid-based hydrogels for skin wound healing. Biomater Sci 2022; 10:3393-3409. [PMID: 35575243 DOI: 10.1039/d2bm00397j] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Hyaluronic acid (HA) is a natural linear anionic polysaccharide with many unique characteristics such as excellent biocompatibility and biodegradability, native biofunctionality, hydrophilicity, and non-immunoreactivity. HA plays crucial roles in numerous biological processes, including the inflammatory response, cell adhesion, migration, proliferation, differentiation, angiogenesis, and tissue regeneration. All these properties and biological functions of HA make it an appealing material for the synthesis of biomedical hydrogels for skin wound healing. Since HA is not able to be gelate alone, it must be processed and functionalized through chemical modifications and crosslinking to generate versatile HA-based hydrogels. In recent years, different physical and chemical crosslinking strategies for HA-based hydrogels have been developed and designed, such as radical polymerization, Schiff-base crosslinking, enzymatic crosslinking, and dynamic covalent crosslinking, and they have broad and promising applications in skin wound healing and tissue engineering. In this review, we focus on chemical modification and crosslinking strategies for HA-based hydrogels, aiming to provide an overview of the latest advances in the development of HA-based hydrogels for skin wound healing. We summarize and propose feasible measures for the application of HA-based hydrogels for skin treatment, and discuss future application trends, which may ultimately promote HA-based hydrogels as a promising biomaterial for clinical applications.
Collapse
Affiliation(s)
- Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Xu-Wei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of life sciences and medicine, Northwest University, Xi'an, China.
| |
Collapse
|
14
|
Wang L, Xia K, Han L, Zhang M, Fan J, Song L, Liao A, Wang W, Guo J. Local Administration of Ginkgolide B Using a Hyaluronan-Based Hydrogel Improves Wound Healing in Diabetic Mice. Front Bioeng Biotechnol 2022; 10:898231. [PMID: 35694224 PMCID: PMC9174682 DOI: 10.3389/fbioe.2022.898231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
The delayed and incomplete healing of diabetic wounds remains a major concern of global healthcare. The complex biological processes within the diabetic wound, such as chronic inflammation, impaired blood vessel growth and immature collagen remodeling, dramatically cause the failure of current treatments. Thus, emerging therapeutic strategies are highly desirable. Ginkgolide B (GB, a natural product extracted from the leaves of Ginkgo biloba L.) has been applied in the treatment of cerebrovascular and cardiovascular disorders, which is mainly due to the anti-oxidative, anti-inflammatory and proliferative effects. In this study, the role of GB in facilitating the anti-inflammatory and pro-healing effects on diabetic wounds was for the first time confirmed using in vitro, ex vivo and in vivo experimental methods. As a consequence, GB was able to significantly achieve the activities of anti-inflammation, re-epithelialization, and pro-angiogenesis. Previously, a hydrogel has been developed using the high molecular weight hyaluronan (hyaluronic acid, HA) in our laboratory. In this study, this hydrogel was utilized in vivo for local administration of GB to the full-thickness wounds of diabetic mice. The resultant hydrogel formulation (HA-GB) resulted in the reduction of inflammation, the enhancement of re-epithelialization and angiogenesis, and the modulation of collagens from type III to type I, significantly promoting the healing outcome as compared with a commercially available wound dressing product (INTRASITE Gel). This study confirms a great therapeutic promise of HA-GB for the chronic wounds of diabetic patients.
Collapse
Affiliation(s)
- Limei Wang
- Department of Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| | - Kedi Xia
- Department of Pharmacy, Jilin Province FAW General Hospital, Changchun, China
| | - Lu Han
- Department of Medical Administration, Jilin Province FAW General Hospital, Changchun, China
| | - Min Zhang
- Department of Ophthalmology and Otorhinolaryngology, Jilin Province FAW General Hospital, Changchun, China
| | - Jihuan Fan
- Department of Education and Science Services, Jilin Province FAW General Hospital, Changchun, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Anqi Liao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Wenyu Wang
- Department of Thoracic Surgery, Jilin Province FAW General Hospital, Changchun, China,*Correspondence: Wenyu Wang, ; Jianfeng Guo,
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, China,*Correspondence: Wenyu Wang, ; Jianfeng Guo,
| |
Collapse
|
15
|
A chlorogenic acid-loaded hyaluronic acid-based hydrogel facilitates anti-inflammatory and pro-healing effects for diabetic wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Wang M, Wang S, Pan Y, Yu R, Zhang ZR, Fu Y. In situ gel implant for postsurgical wound management and extended chemoimmunotherapy against breast cancer recurrence. Acta Biomater 2022; 138:168-181. [PMID: 34755605 DOI: 10.1016/j.actbio.2021.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Postsurgical recurrence of breast cancer is closely related to the inflammatory tumor microenvironment evoked by surgical wounds. Toll-like receptor 4 (TLR4) signaling contributes to NF-κB activation thus secreting various inflammatory cytokines. Herein, we developed an in situ photo-crosslinked hydrogel (D/T gel) concurrently loaded with doxorubicin (DOX) and a TLR4 antagonist, resatorvid (TAK-242). Its therapeutic effect against breast cancer postsurgical relapse was accomplished through remodeling the proinflammatory tumor microenvironment. The obtained gel network exhibited ideal biodegradability and biocompatibility, which motivated dermal wound healing in the full thickness wound model in mice. Despite the initial burst release of DOX, D/T gels exhibited extended-release of both DOX and TAK-242 for up to 21 days in vitro. TAK-242 was demonstrated to inhibit the lipopolysaccharide-induced NF-κB activation and downregulate TLR4 levels in both RAW264.7 and 4T1 cells. In a 4T1-Luc tumor postsurgical recurrence model, D/T gel significantly suppressed recurrent tumor growth by elevating the concentrations of DOX and TAK-242 at the tumor sites and remodeling the TLR4 activation-induced proinflammatory microenvironment. Overall, the D/T gel platform technology is proven to deliver therapeutics directly to the surgical wound bed, attenuating the dual inflammatory responses induced by DOX and surgical wounding thus greatly potentiating its efficacy in preventing postsurgical tumor recurrence. STATEMENT OF SIGNIFICANCE: Postsurgical recurrence of breast cancer is closely related to the inflammatory tumor microenvironment (TME) evoked by surgical wounds. Although chemotherapeutics lead to extensive residual tumor cell necrosis, multiple inflammatory cytokines are secreted simultaneously, which are conducive to tumor recurrence. In this work, a TLR4 antagonist, TAK-242, was combined with DOX to reverse the dual inflammatory TME induced by surgical wounding and chemotherapy. To elevate the concentration of therapeutics at the tumor site, a photocrosslinked hydrogel (D/T gel) implant coloaded with TAK-242 and DOX was developed and applied on the postsurgical bed. Consequently, D/T gel attenuated the dual inflammatory responses and greatly potentiated its efficacy in preventing postsurgical tumor recurrence.
Collapse
Affiliation(s)
- Mou Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shuying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Pan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Vriend L, Sinkunas V, Camargo CP, van der Lei B, Harmsen MC, van Dongen JA. Extracellular matrix-derived hydrogels to augment dermal wound healing: a systematic review. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1093-1108. [PMID: 34693732 DOI: 10.1089/ten.teb.2021.0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic, non-healing, dermal wounds form a worldwide medical problem with limited and inadequate treatment options and high societal burden and costs. With the advent of regenerative therapies exploiting extracellular matrix (ECM) components, its efficacy to augment wound healing is to be explored. This systematic review was performed to assess and compare the current therapeutic efficacy of ECM hydrogels on dermal wound healing. METHODS The electronic databases of (Embase, Medline Ovid, Cochrane Central) were searched for in vivo and clinical studies on the therapeutic effect of ECM-composed hydrogels on dermal wound healing (13th of April 2021). Two reviewers selected studies independently. Studies were assessed based on ECM content, ECM hydrogel composition, additives and wound healing outcomes such as wound size, angiogenesis and complications. RESULTS Of the 2102 publications, nine rodent-based studies were included while clinical studies were not published at the time of the search. Procedures to decellularize tissue or cultured cells and subsequently generate hydrogels were highly variable and in demand of standardization. ECM hydrogels with or without additives reduced wound size and also seem to enhance angiogenesis. Serious complications were not reported. CONCLUSION To date, preclinical studies preclude to draw firm conclusions on the efficacy and working mechanism of ECM-derived hydrogels on dermal wound healing. The use of ECM hydrogels can be considered safe. Standardization of decellularization protocols and implementation of quality and cytotoxicity controls will enable obtaining a generic and comparable ECM product.
Collapse
Affiliation(s)
- Linda Vriend
- University Medical Centre Groningen, 10173, Plastic Surgery, Groningen, Groningen, Netherlands.,University of Groningen, 3647, Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| | - Viktor Sinkunas
- University of São Paulo, São Paulo, Brazil, Department of Cardiovascular Surgery, Sao Paulo, Brazil;
| | - Cristina P Camargo
- University of Sao Paulo Hospital of Clinics, 117265, Plastic Surgery and Microsurgery and the Plastic Surgery Laboratory, Sao Paulo, São Paulo, Brazil;
| | - Berend van der Lei
- University Medical Centre Groningen, 10173, Plastic Surgery , Groningen, Groningen, Netherlands.,Bergman Clinics Heerenveen , Plastic Surgery , Heerenveen , Netherlands;
| | - Martin C Harmsen
- University Medical Centre Groningen, 10173, Pathology & Medical Biology, Groningen, Groningen, Netherlands.,University of Groningen, 3647, Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| | - Joris A van Dongen
- Utrecht University, 8125, Plastic Surgery, Utrecht, Utrecht, Netherlands.,University of Groningen, 3647, Department of Pathology & Medical Biology, Groningen, Groningen, Netherlands;
| |
Collapse
|
18
|
Qin X, He L, Feng C, Fan D, Liang W, Wang Q, Fang J. Injectable Micelle-Incorporated Hydrogels for the Localized Chemo-Immunotherapy of Breast Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46270-46281. [PMID: 34550685 DOI: 10.1021/acsami.1c11563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although immune checkpoint blockade (ICB) holds potential for the treatment of various tumors, a considerable proportion of patients show a limited response to ICB therapy due to the low immunogenicity of a variety of tumors. It has been shown that some chemotherapeutics can turn low-immunogenic tumors into immunogenic phenotypes by inducing a cascade of immune responses. In this paper, we synthesized an injectable micelle-incorporated hydrogel, which was able to sequentially release the chemotherapeutic gemcitabine (GEM) and the hydrophobic indoleamine 2, 3-dioxygenase inhibitor, d-1-methyltryptophan (d-1MT) at tumor sites. The hydrogel was formed via the thiol-ene click reaction between the thiolated chondroitin sulfate and the micelle formed by amphiphilic methacrylated Pluronic F127, in which hydrophobic d-1MT was encapsulated in the core of the F127 micelles and the hydrophilic GEM was dispersed in the hydrogel network. The successive release of chemotherapeutics and immune checkpoint inhibitors at tumor tissues will first promote the infiltration of cytotoxic T lymphocytes and subsequently induce a robust antitumor immune response, ultimately exerting a synergetic therapeutic efficacy. In a 4T1 tumor-bearing mice model, our results showed that the combination of chemotherapy and immunotherapy through the micelle-incorporated hydrogel triggered an effective antitumor immune response and inhibited tumor metastasis to the lung. Our results highlight the potential of the injectable micelle-incorporated hydrogel for the localized chemo-immunotherapy in the treatment of breast tumors.
Collapse
Affiliation(s)
- Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Liming He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chenglan Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Donghao Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiyu Fang
- Advanced Materials Processing and Analysis and Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
19
|
Sharma S, Madhyastha H, Laxmi Swetha K, Maravajjala KS, Singh A, Madhyastha R, Nakajima Y, Roy A. Development of an in-situ forming, self-healing scaffold for dermal wound healing: in-vitro and in-vivo studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112263. [PMID: 34474822 DOI: 10.1016/j.msec.2021.112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022]
Abstract
The importance of the extra-cellular matrix (ECM) for wound healing has been extensively researched. Understanding its importance, multiple ECM mimetic scaffolds have been developed. However, the majority of such scaffolds are prefabricated. Due to their stiffness, prefabricated scaffolds cannot come into direct contact with the basal skin cells at the wound bed, limiting their efficacy. We have developed a unique wound dressing, using chitosan (CH) and chondroitin sulfate (CS), that can form a porous scaffold (CH-CS PEC) in-situ, at the wound site, by simple mixing of the polymer solutions. As CH is positively and CS is negatively charged, mixing these two polymer solutions would lead to electrostatic cross-linking between the polymers, converting them to a porous, viscoelastic scaffold. Owing to the in-situ formation, the scaffold can come in direct contact with the cells at the wound bed, supporting their proliferation and biofunction. In the present study, we confirmed the cross-linked scaffold formation by solid-state NMR, XRD, and TGA analysis. We have demonstrated that the scaffold had a high viscoelastic property, with self-healing capability. Both keratinocyte and fibroblast cells exhibited significantly increased migration and functional markers expression when grown on this scaffold. In the rat skin-excisional wound model, treatment with the in-situ forming CH-CS PEC exhibited enhanced wound healing efficacy. Altogether, this study demonstrated that mixing CH and CS solutions lead to the spontaneous formation of a highly viscoelastic, porous scaffold, which can support epidermal and dermal cell proliferation and bio-function, with an enhanced in-vivo wound healing efficacy.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan.
| | - K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India
| | - Archana Singh
- CSIR Institute of Genomics and Integrative Biology (IGIB), New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 8891692 Miyazaki, Japan
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, Rajasthan 333031, India.
| |
Collapse
|
20
|
Yang H, Song L, Sun B, Chu D, Yang L, Li M, Li H, Dai Y, Yu Z, Guo J. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater Today Bio 2021; 12:100139. [PMID: 34632363 PMCID: PMC8488309 DOI: 10.1016/j.mtbio.2021.100139] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 02/05/2023] Open
Abstract
The impaired wound healing in diabetes is a central concern of healthcare worldwide. However, current treatments often fail due to the complexity of diabetic wounds, and thus, emerging therapeutic approaches are needed. Macrophages, a prominent immune cell in the wound, play key roles in tissue repair and regeneration. Recent evidence has demonstrated that macrophages in diabetic wounds maintain a persistent proinflammatory phenotype that causes the failure of healing. Therefore, modulation of macrophages provides great promise for wound healing in diabetic patients. In this study, the potential of paeoniflorin (PF, a chemical compound derived from the herb Paeonia lactiflora) for the transition of macrophages from M1 (proinflammatory phenotype) to M2 (anti-inflammatory/prohealing phenotype) was confirmed using ex vivo and in vivo experimental approaches. A hydrogel based on high molecular weight hyaluronic acid (HA) was developed for local administration of PF in experimental diabetic mice with a full-thickness wound. The resultant formulation (HA-PF) was able to significantly promote cutaneous healing as compared to INTRASITE Gel (a commercial hydrogel wound dressing). This outcome was accompanied by the amelioration of inflammation, the improvement of angiogenesis, and re-epithelialization, and the deposition of collagen. Our study indicates the significant potential of HA-PF for clinical translation in diabetic wound healing.
Collapse
Key Words
- Adipic acid dihydrazide, ADH
- Angiogenesis
- Anti-inflammation
- Hydrogel
- Macrophage polarization
- N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride, EDC.HCl
- Regenerative medicine
- arginase 1, Arg-1
- bone marrow-derived macrophages, BMDMs
- dimethyl sulfoxide, DMSO
- fetal bovine serum, FBS
- human umbilical vein endothelial cells, HUVECs
- hyaluronic acid, HA
- inducible nitric oxide synthase, iNOS
- integrated optical density, IOD
- interferon-γ, IFN-γ
- interleukin-10, IL-10
- interleukin-1β, IL-1β
- lipopolysaccharide, LPS
- macrophage colony-stimulating factor, M-CSF
- paeoniflorin, PF
- penicillin-streptomycin, P/S
- phosphate-buffered saline, PBS
- polyvinylidene difluoride, PVDF
- scanning electron microscopy, SEM
- signal transducer and activator of transcription, STAT
- streptozocin, STZ
- swelling ratio, SR
- transforming growth factor-β, TGF-β
- tumor necrosis factor-α, TNF-α
- α-smooth muscle actin, α-SMA
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Bingxue Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leilei Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Meng Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Huan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
21
|
Niu Y, Xue Q, Fu Y. Natural Glycan Derived Biomaterials for Inflammation Targeted Drug Delivery. Macromol Biosci 2021; 21:e2100162. [PMID: 34145960 DOI: 10.1002/mabi.202100162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/02/2021] [Indexed: 01/02/2023]
Abstract
Inflammation is closely related to a variety of fatal or chronic diseases. Hence, targeting inflammation provides an alternative approach to improve the therapeutic outcome of diseases such as solid tumors, neurological diseases, and metabolic diseases. Polysaccharides are natural components with immune regulation, anti-virus, anti-cancer, anti-inflammation, and anti-oxidation activities. Herein, this review highlights recent progress in the polysaccharide-based drug delivery systems for achieving inflammation targeting and its related disease treatment. Moreover, the chemical modification and the construction of polysaccharide materials for drug delivery are discussed in detail.
Collapse
Affiliation(s)
- Yining Niu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qixuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
22
|
Xu Y, Niu Y, Wu B, Cao X, Gong T, Zhang ZR, Fu Y. Extended-release of therapeutic microRNA via a host-guest supramolecular hydrogel to locally alleviate renal interstitial fibrosis. Biomaterials 2021; 275:120902. [PMID: 34087588 DOI: 10.1016/j.biomaterials.2021.120902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Activated fibroblasts are critical contributors to renal interstitial fibrosis thus becoming the cellular target for fibrosis treatment. Previously, microRNA 29 b (miR-29 b) is shown to be down-regulated in various animal models of renal fibrosis. Herein, we describe a facile strategy to achieve localized and sustained delivery of therapeutic microRNA to the kidney via a host-guest supramolecular hydrogel. Specifically, cationic bovine serum albumin is used to complex with miR-29 b to afford nanocomplexes (cBSA/miR-29 b), which is proven to specifically inhibit fibroblast activation in a dose-dependent manner in vitro. Following unilateral ureteral obstruction in mice, a single injection of the hydrogel loaded with cBSA/miR-29 b in vivo, significantly down-regulated proteins and genes related to fibrosis for up to 21 days without affecting the normal liver or kidney functions. Overall, the localized delivery of cBSA/miR-29 b via a host-guest supramolecular hydrogel represents a safe and effective intervention strategy to delay and reverse the progression of interstitial renal fibrosis.
Collapse
Affiliation(s)
- Yingying Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yining Niu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Beibei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xi Cao
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, and the Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Qin X, Xu Y, Zhou X, Gong T, Zhang ZR, Fu Y. An injectable micelle-hydrogel hybrid for localized and prolonged drug delivery in the management of renal fibrosis. Acta Pharm Sin B 2021; 11:835-847. [PMID: 33777685 PMCID: PMC7982499 DOI: 10.1016/j.apsb.2020.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Localized delivery, comparing to systemic drug administration, offers a unique alternative to enhance efficacy, lower dosage, and minimize systemic tissue toxicity by releasing therapeutics locally and specifically to the site of interests. Herein, a localized drug delivery platform ("plum‒pudding" structure) with controlled release and long-acting features is developed through an injectable hydrogel ("pudding") crosslinked via self-assembled triblock polymeric micelles ("plum") to help reduce renal interstitial fibrosis. This strategy achieves controlled and prolonged release of model therapeutics in the kidney for up to three weeks in mice. Following a single injection, local treatments containing either anti-inflammatory small molecule celastrol or anti-TGFβ antibody effectively minimize inflammation while alleviating fibrosis via inhibiting NF-κB signaling pathway or neutralizing TGF-β1 locally. Importantly, the micelle-hydrogel hybrid based localized therapy shows enhanced efficacy without local or systemic toxicity, which may represent a clinically relevant delivery platform in the management of renal interstitial fibrosis.
Collapse
Key Words
- Anti-TGFβ antibody
- BSA, bovine serum albumin
- CLT, celastrol
- Celastrol
- Controlled release
- Cy5.5-NHS, cyanine 5.5-N-hydroxysuccinimide
- DAPI, 4′,6-diamidino-2-phenylindole
- DEX, dexamethasone
- DiD, 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanineperchlorate
- ECM, extracellular matrix
- EDCI, carbodiimide hydrochloride
- ESR, equilibrium swelling ratio
- FITC, fluorescein isothiocyanate
- G", the loss modulus
- G', storage modulus
- HA, hyaluronic acid
- HASH, thiolated hyaluronic acid
- Hydrogel
- IL-1β, interleukin 1β
- IL-6, interleukin 6
- Inflammation
- Localized therapy
- MOD, mean optical density
- NHS, N-hydroxysuccinimide
- PDI, polydispersity index
- RIF, renal interstitial fibrosis
- RSR, real-time swelling ratio
- Renal fibrosis
- SD, standard deviation
- SEM, scanning electron microscopy
- TEM, transmission electron microscopy
- TGF-β1, transforming growth factor β1
- TNF-α, tumor necrosis factor α
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling
- UUO, unilateral ureteral obstruction
- bis-F127-MA, bis-F127-methacrylate
- iNOS, nitric oxide synthase
- α-SMA, α-smooth muscle actin
- “Plum‒pudding” structure
Collapse
|
24
|
Li X, Chen J, Xu Z, Zou Q, Yang L, Ma M, Shu L, He Z, Ye C. Osteoblastic differentiation of stem cells induced by graphene oxide-hydroxyapatite-alginate hydrogel composites and construction of tissue-engineered bone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:125. [PMID: 33247818 DOI: 10.1007/s10856-020-06467-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate the effect of graphene oxide (GO)-hydroxyapatite (HA)-sodium alginate (SA) composite application in the field of bone tissue engineering. Four scaffold groups were established (SA-HA, SA-HA-0.8%GO, SA-HA-1.0%GO and SA-HA-1.2%GO) and mixed with bone marrow mesenchymal stem cells (BMSCs). Hydrogel viscosity was measured at room temperature, and after freeze-drying and Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) to detect substance crystallinity, the printability of each hydrogel type was measured with a printing grid. Scanning electron microscopy (SEM) was used to observe the internal microstructure of the scaffolds and to evaluate the growth and proliferation of cells on the scaffold. A hollow cylinder was printed to compare the forming effect of the hydrogel bioinks, and cell-hydrogel composites were implanted under the skin of nude mice to observe the effect of the hydrogels on osteogenesis in vivo. Increased GO concentrations led to reduced scaffold degradation rates, increased viscosity, increased printability, increased mechanical properties, increased scaffold porosity and increased cell proliferation rates. In vivo experiments showed that hematoxylin and eosin (HE) staining, Alizarin red staining, alkaline phosphatase staining and collagen type I immunohistochemical staining increased as the implantation time increased. These results demonstrate that GO composites have high printability as bioinks and can be used for bioprinting of bone by altering the ratio of the different components.
Collapse
Affiliation(s)
- Xuanze Li
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, 550004, Guiyang, China
- National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, 550004, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Jiao Chen
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, 550004, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Zhe Xu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Qiang Zou
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, 550004, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Long Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, 550004, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Minxian Ma
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, 550004, Guiyang, China
- National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, 550004, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Liping Shu
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, 550004, Guiyang, China
- National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, 550004, Guiyang, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, 550004, Guiyang, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China.
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, 550004, Guiyang, China.
- National-Local Joint Engineering Laboratory of Cell Engineering and Biomedicine, 550004, Guiyang, China.
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, 550004, Guiyang, China.
- China Orthopaedic Regenerative Medicine Group (CORMed), 310000, Hangzhou, China.
| |
Collapse
|
25
|
Chen K, Chen X, Han X, Fu Y. A comparison study on the release kinetics and mechanism of bovine serum albumin and nanoencapsulated albumin from hydrogel networks. Int J Biol Macromol 2020; 163:1291-1300. [DOI: 10.1016/j.ijbiomac.2020.07.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022]
|
26
|
Li J, Yu F, Chen G, Liu J, Li XL, Cheng B, Mo XM, Chen C, Pan JF. Moist-Retaining, Self-Recoverable, Bioadhesive, and Transparent in Situ Forming Hydrogels To Accelerate Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2023-2038. [PMID: 31895528 DOI: 10.1021/acsami.9b17180] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the management of accelerating wound healing, moist environments play an important role. Compared with other scaffolds of various forms, hydrogels can maintain a moist environment in the wound area. They are cross-linked hydrophilic polymeric networks that resemble natural soft tissues and extracellular matrices. Among them, injectable hydrogels have attracted great attention in wound repair, as they can be injected into irregular-shaped skin defects and formed in situ to shape the contour of different dimensions. The excellent compliance makes hydrogels easy to adapt to the wound under different conditions of skin movement. Here, we oxidized hydroxyethyl starch (O-HES) and modified carboxymethyl chitosan (M-CMCS) to fabricate an in situ forming hydrogel with excellent self-recoverable extensibility-compressibility, biocompatibility, biodegradability, and transparency for accelerating wound healing. The oxidation degree of O-HES was 74%. The amino modification degree of M-CMCS was 63%. M-CMCS/O-HES hydrogels were formed through the Schiff base reaction. The physicochemical properties of M-CMCS/O-HES hydrogels with various ratios were investigated, and M-CMCS/O-HES hydrogel with a volume ratio of 5:5 exhibited appropriate gelation time, notable water-retaining capacity, self-recoverable conformal deformation, suitable biodegradability, and good biocompatibility for wound-healing application. Then, skin wound-healing experimental studies were carried out in Sprague-Dawley rats with full-thickness skin defects. Significant outcomes were achieved in the M-CMCS/O-HES hydrogel-treated group including higher wound closure percentage, more granulation tissue formation, faster epithelialization, and decreased collagen deposition. These findings demonstrate that using the obtained M-CMCS/O-HES hydrogels is a promising therapeutic strategy for wound healing.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics , Shanghai Tenth People's Hospital Affiliated to Tongji University , 301 Yanchang Road , Shanghai 200072 , China
| | - Fan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , 2999 North Renmin Road , Shanghai 201620 , China
| | - Gong Chen
- School of Environmental and Materials Engineering, College of Engineering , Shanghai Polytechnic University , Shanghai 201209 , China
| | - Jia Liu
- Department of Orthopedics , Shidong Hospital of Yangpu District , 999 Shiguang Road , Shanghai 200438 , China
| | - Xiao-Long Li
- Department of Orthopedics , Changhai Hospital, Naval Military Medical University , Shanghai 200433 , China
| | - Biao Cheng
- Department of Orthopedics , Shanghai Tenth People's Hospital Affiliated to Tongji University , 301 Yanchang Road , Shanghai 200072 , China
| | - Xiu-Mei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , 2999 North Renmin Road , Shanghai 201620 , China
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering , Shanghai Polytechnic University , Shanghai 201209 , China
| | - Jian-Feng Pan
- Department of Orthopedics , Shanghai Tenth People's Hospital Affiliated to Tongji University , 301 Yanchang Road , Shanghai 200072 , China
| |
Collapse
|
27
|
Du S, Chen X, Chen X, Li S, Yuan G, Zhou T, Li J, Jia Y, Xiong D, Tan H. Covalent Chitosan‐Cellulose Hydrogels via Schiff‐Base Reaction Containing Macromolecular Microgels for pH‐Sensitive Drug Delivery and Wound Dressing. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900399] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shoukang Du
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Xiaojin Chen
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Xiaofei Chen
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Shengke Li
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Guoliang Yuan
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Tianle Zhou
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Jianliang Li
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Yang Jia
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Dangsheng Xiong
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| | - Huaping Tan
- School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|